

$gg \rightarrow 4\ell$ with POWHEG and color singlet production via gluon fusion in GENEVA

Simone Alioli

MILANO-BICOCCA UNIVERSITY & INFN

CMS WS 27/3/2024

Outline

• $gg \rightarrow 4\ell$ at NLO+PS in POWHEG-BOX-RES

Improving precision of MC event generators to NNLO+PS

Loop-induced color singlet production in GENEVA

SIMONE ALIOLI - CMS WS 27/3/2024

Structure of the NLO $gg \to 4\ell$ calculation

• Separately calculate Higgs-mediated amplitude $gg \to H \to 4\ell$ (signal), background and their interference

$$|A|^{2} = |A_{\text{signal}}|^{2} + |A_{\text{bkgd}}|^{2} + 2\text{Re}\left(A_{\text{signal}}A_{\text{bkgd}}^{*}\right).$$

$$g \xrightarrow{Q} \xrightarrow{H} \xrightarrow{Z/\gamma} \stackrel{\ell'^{+}}{\swarrow} \stackrel{\ell'^{-}}{\ell'^{-}} \stackrel{\ell'^{-}}{\ell'^{-}} \stackrel{\ell'^{-}}{\swarrow} \stackrel{\ell'^{-}}{\swarrow} \stackrel{\ell'^{-}}{\swarrow} \stackrel{\ell'^{-}}{\swarrow} \stackrel{\ell'^{-}}{\swarrow} \stackrel{\ell'^{-}}{\swarrow} \stackrel{\ell'^{-}}{\swarrow} \stackrel{\ell'^{+}}{\swarrow} \stackrel{\ell'^{-}}{\swarrow} \stackrel{\ell'^{-}}{\swarrow} \stackrel{\ell'^{+}}{\downarrow} \stackrel{\ell'^{-}}{\downarrow} \stackrel{\ell'^{-}}{$$

- Loop-induced calculation, ggVVamp for massless loops.
- Mass effects difficult to include or only known for on shell Z at 2 loops. [Agarwal et al. '20]
- ▶ For ZZ background, top-loop effects included through systematically-improvable $1/m_t$ expansion. Applicability limited to $m_{4\ell} \leq 2m_t$, $p_{T,\ell\ell} < m_t$ [Caola et al. '15, SA et al. '16]

Structure of the NLO $gg \rightarrow 4\ell$ calculation

• Can be extended via reweighting $\mathcal{A}_{bkgd}^{(2),ZZ} \approx \mathcal{A}_{bkgd}^{(2),ZZ}(d, u, s, c, b) \times$

 $\mathcal{A}_{\mathrm{bkgd}}^{(2),ZZ} \approx \mathcal{A}_{\mathrm{bkgd}}^{(2),ZZ}(d, u, s, c, b) \times \frac{\mathcal{A}_{\mathrm{bkgd}}^{(1),ZZ}(d, u, s, c, b, \mathbf{t})}{\mathcal{A}_{\mathrm{bkgd}}^{(1),ZZ}(d, u, s, c, b)}$

Differences not so marked for value slightly above threshold

Structure of the NLO $gg \rightarrow 4\ell$ calculation

For WW top and bottom quarks mix in the loops, so no clear distinction between massless and massive loops with $n_f = 5$

 $\mathcal{A}_{\mathrm{bkgd}}^{(2),WW} \approx \mathcal{A}_{\mathrm{bkgd}}^{(2),WW}(d, u, s, c) \times \frac{\mathcal{A}_{\mathrm{bkgd}}^{(1),WW}(d, u, s, c, b, \mathbf{t})}{\mathcal{A}_{\mathrm{bkgd}}^{(1),WW}(d, u, s, c)}$

- Real emissions also includes $\mathcal{O}(\alpha_s^3)$ corrections to $q\bar{q} \rightarrow 4\ell$
- Top-quark mass dependence exactly included in reals via OpenLoops

Implementation in POWHEG-BOX-RES [SA et al. '21]

- Chosen RES for better sampling of resonance structure, despite no colored resonances present.
- POWHEG framework extended to be able to handle event generation with NEGATIVE cross-sections appearing in interference contribution.
- Cut $p_T^{\ell\ell} > 100 \text{ MeV}$ to tame instabilities
- NLO calculation interface to PYTHIA8 parton shower with different recoil schemes

Results for ZZ channel

Expected effects for inclusive quantities.

Results for ZZ channel

More marked difference after showering exclusive quantities.

SIMONE ALIOLI - CMS WS 27/3/2024

Results for WW channel

SIMONE ALIOLI - CMS WS 27/3/2024

PEGLI STUDI DI MILANO

What is a precision MC?

- Fully differential event generator producing hadronic final states, at high accuracy
- Precision enters in multiple ways:
- Perturbative accuracy of integrated total xs (NⁿLO)
- Perturbative description of radiation pattern (resumm./ shower)
- Description of hard tails (multi-jet)

Increasing event generator accuracy

- The increasing experimental precision of LHC measurements challenges existing generators, pushing the request for higher accuracy
- The state-of-the-art is the inclusion of NNLO corrections into parton-shower Monte Carlo
- Three main approach to the problem:

[Campbell et al. 2108.07133]

DEGLI STUDI DI MILANO B I C O C C A

SIMONE ALIOLI - CMS WS 27/3/2024

Accuracy goals - Example for $gg \rightarrow H$

- NNLO accuracy for observables inclusive over extra radiation, e.g. $d\sigma/dy_H$
- NLO accuracy for H+1 jet observables $d\sigma/dp_T^{J_1}$
- LO accuracy for H+2 jet observables $d\sigma/dp_T^{j_2}$ or $d\sigma/dm_{j_1,j_2}$
- Resumm. accuracy (or Shower Sudakov) for
 small p_T^H
- Further emissions only in shower soft/coll approximation.

MINNLOPS Diboson production

• Independent implementation of NLO $gg \to 4\ell$ included in MiNNLOPS diboson process

Buonocore et al. '21

The Geneva method

- Monte Carlo fully-differential event generation at higherorders (NNLO)
- Resummation plays a key role in the defining the events in a physically sensible way

 $\ln Q$

 $\ln k_{\perp} \left(\mathcal{T}_{N}^{\mathrm{c}} \right)$

 $\ln \mathcal{T}_N^{\rm c}$

 Results at partonic level can be further evolved by different shower matching and hadronization models

Diboson production in GENEVA

SA et al. '21

• Original NNLO+PS implementation $q\bar{q} \rightarrow e^+e^-\mu^+\mu^-$ extended to 4ℓ production.

SIMONE ALIOLI - CMS WS 27/3/2024

NLO gluon-induced channel also included.

Higgs production via gluon fusion

SA et al. '23

Heavy top-quark limit rescaled with exact LO m_t dependence (rEFT).

NNLL' \mathcal{T}_0 resummation requires gluon beam functions

Include 7-point scale variations, introducing explicit μ_F dependence in beam function and their pert. matching coefficients I_{ij} .

Additional variations must be considered also in the resummation region to probe independent μ_B and μ_F changes.

Variations combine in inclusive quantities and give perfect agreement in both central values and FO variations with MATRIX.

Showered results

PYTHIA8 showering gives expected results for inclusive quantities. Reasonable differences for more exclusive ones. Theoretical uncertainties reasonably small.

Comparison with LHC data at fiducial level

Fiducial cross section affected by resummation, parton shower effects, hadron decays, mainly due to photon isolation requirements, etc...

Comparison with ATLAS shows similar agreement. High p_T tail sensitive to m_t effects.

Higgs production via gluon fusion

- Many directions for improvements in high-pT regions.
- Inclusion of top(bottom) quark mass effects. Czakon et al. '21, Bonciani et al. '22
- Inclusion of EW and mixed QCD-EW corrections Becchetti et al. '21, Bonciani et al. '22
- Extension to H+j NNLO+PS simulation needs 1-jet resolution.

- First step towards this goal is NNLL' for 1-Jett. Only Z+1jet for now, but H+1jet is next...
- ► N3LO+PS further ahead.

Double Higgs production

Calculation in infinite top-quark mass limit, not useful for pheno but for validating method $|\log(\mathcal{T}_0/M_{HH})| \gg 1$ Extensions to full \mathcal{M}_t effects possible.

Very good agreement for invariant mass and rapidities Interesting discrepancy when p_T of the hardest

Higgs boson H_1 goes to zero.

Signals inadequacy of fixed-order calculations when $p_{T,HH} \rightarrow 0$

Double Higgs production: showered results

Exploring different shower models: PYTHIA8 standard (simple), DIRE and SHERPA

Inclusive quantities correctly described by all showers.

SIMONE ALIOLI - TORINO 16/12/2022

Higgs pair production

- At NLO+PS top mass effects are included matching exact results or small-pT expansion to high-energy expansion.
- Mass-scheme uncertainty on par with scale uncertainties

Ongoing effort for top-quark mass effects in FT-approx in NNLO+PS....

Associated HZ production via gluon fusion

• Gluon channel has large NLO corrections and scale unc.

Chen et al., DeGrassi at al '22

Using the jet pT as resolution variable - WW

GENEVA recently extended to jet veto resummation in [Gavardi et al. 2308.11577].

Focus on $W^+W^- \rightarrow \mu^+\nu_{\mu}e^-\bar{\nu}_e$ with jet veto, in 4-flavor scheme to avoid top contaminations.

We include the resummation of the $q\bar{q}$ channel at NNLL' and the gg channel at NLL

Jet veto resummation available in MCFM up to partial N3LL accuracy. Different treatment of uncertanties. [Campbell et al. 2301.11768]

NNLO validation against MATRIX

[Grazzini et al. 1711.06631]

SIMONE ALIOLI - CMS WS 27/3/2024

Data comparison

Inclusion of *gg* channel necessary for agreement with data.

Extension of *gg* channel to NLO+NLL' ongoing

0.8

0.7

0.6

 $^{i}_{N}$ 0.5 $^{i}_{O}$ 0.4 $^{i}_{O}$ 0.3 $^{i}_{O}$

0.2

0.1

0.0 -

0

ratio

C C A

Conclusion and outlook

- Precision MCs for the production of Higgs bosons have reached the NNLO+PS stage for many different processes
- NLO $gg \rightarrow 4\ell$ production available in POWHEG-BOX-RES. Also available in MINNLOPS and GENEVA diboson processes.
- H and HH gluon-initiated loop-induced color singlet processes available in GENEVA at NNLO+PS. Inclusion of heavy-quark mass effects still not at the same level, but within range.
- Other loop-induced processes which are the current unc. bottleneck should be improved, e.g. $gg \rightarrow HZ$
- NNLO+PS are tools that make the most accurate theory predictions available in an easy-to-use event format. Experimental collaborations should try their best to take advantage of their availability.

SIMONE ALIOLI - CMS WS 27/3/2024

Thank you for your attention.