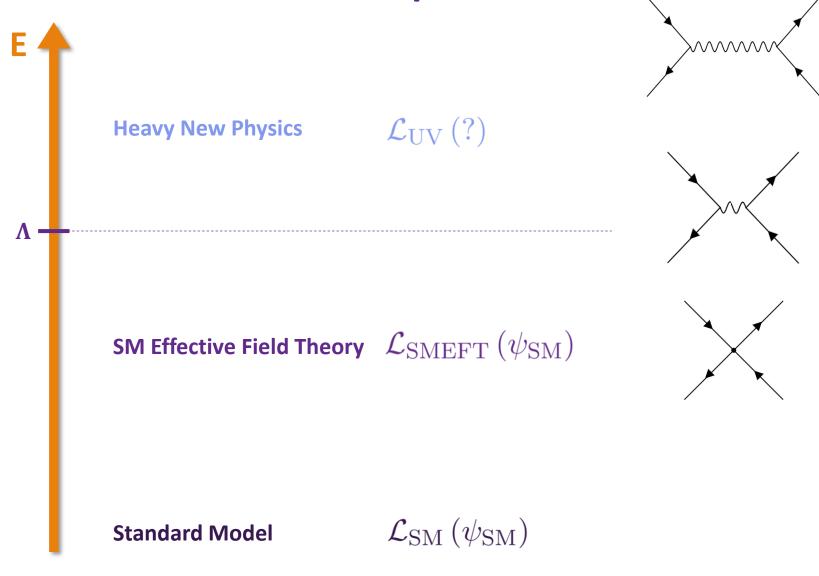
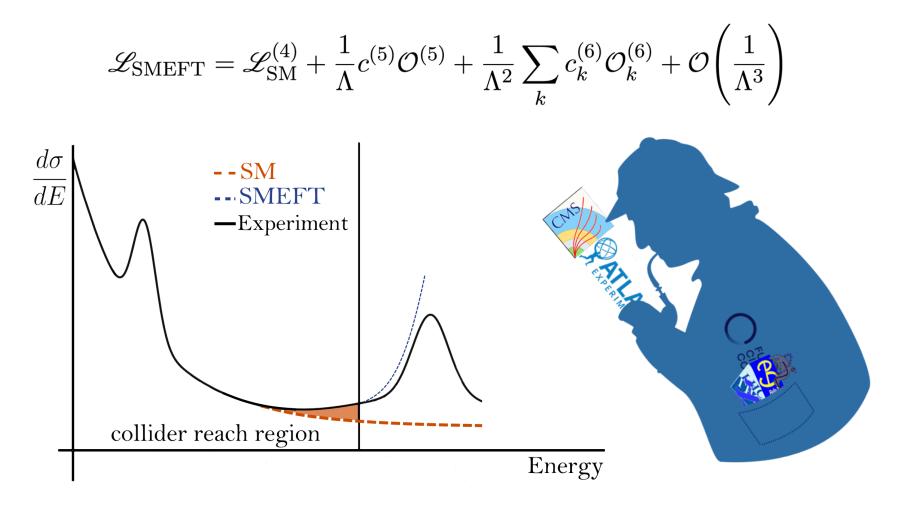
Diboson production in the SMEFT from gluon fusion

CMS Off-Shell Workshop 27 March 2024

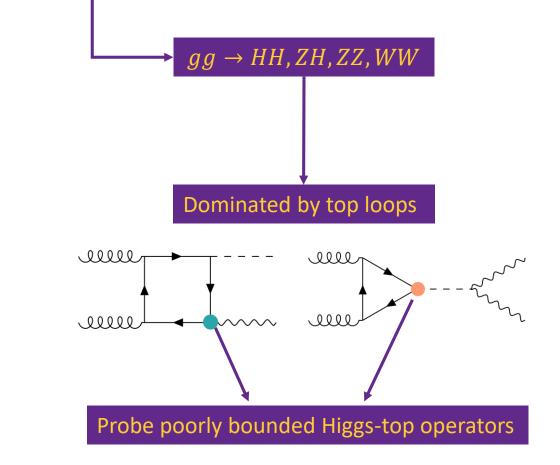
Alejo N. Rossia


Department of Physics and Astronomy The University of Manchester

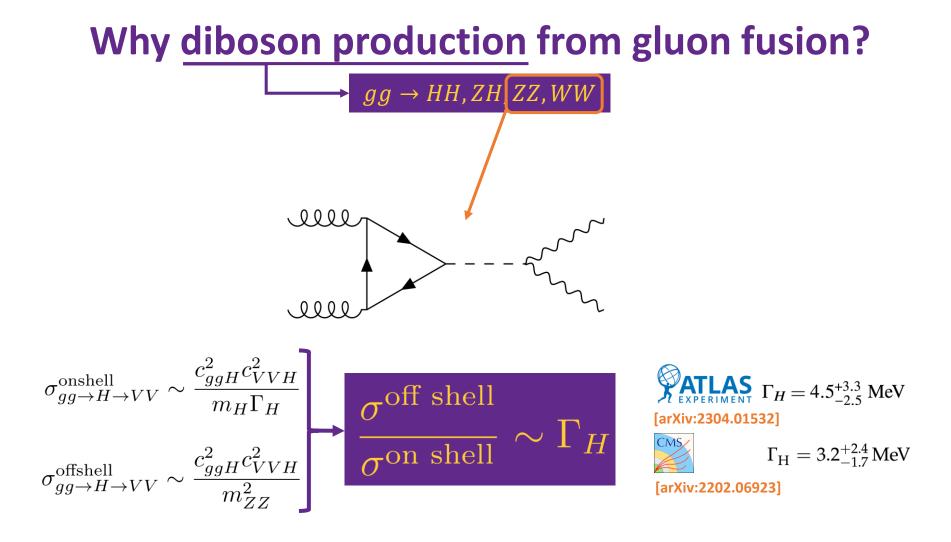
With M. Thomas and E. Vryonidou JHEP 11 (2023) 132 [arXiv: 2306.09963]


The University of Manchester

SMEFT primer

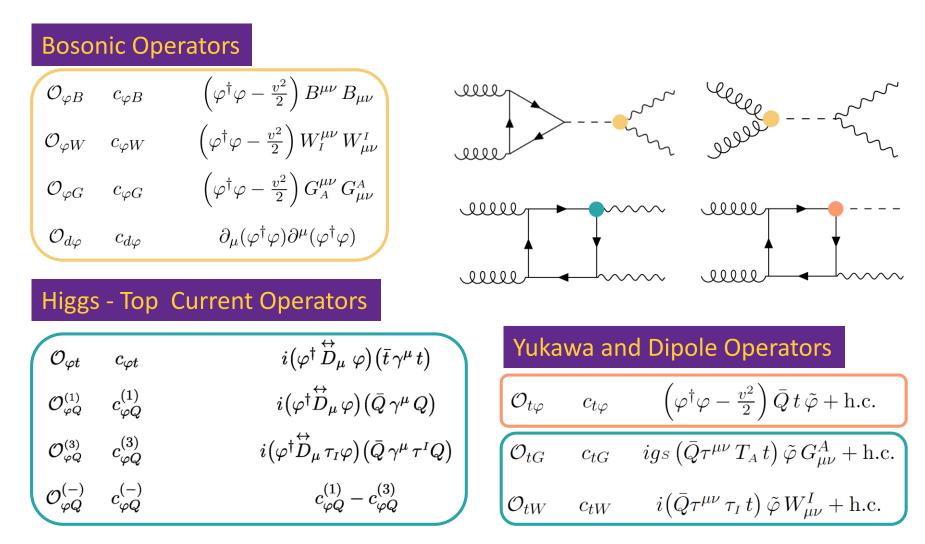

Wilson Coefficients and how to bound them

- Dimension-6 operators in Warsaw basis.
- Flavour symmetry: $U(2)_q \times U(3)_d \times U(2)_u$

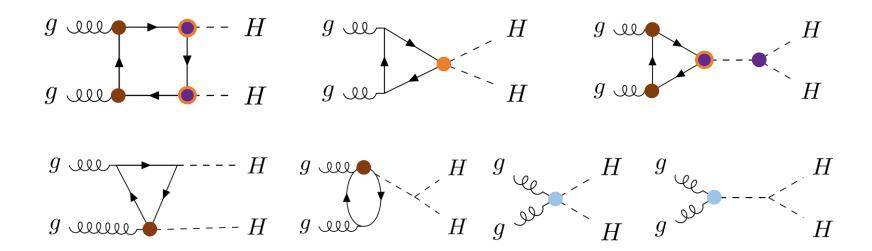


Why diboson production from gluon fusion?

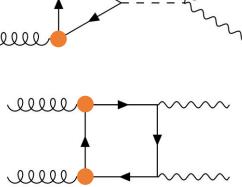
The Higgs teaches us about the top

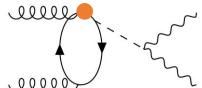


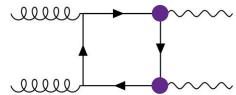
Off-shell lifts flat directions in on-shell data [arXiv:2203.02418]


Which operators can we probe?

Growing helicity amplitudes in $gg \rightarrow HH$

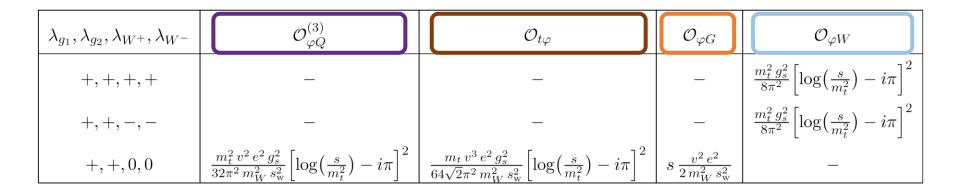

$\lambda_{g_1},\lambda_{g_2},\lambda_{H_1},\lambda_{H_2}$	$\mathcal{O}_{t \varphi}$	\mathcal{O}_{tG}	\mathcal{O}_{darphi}	$\mathcal{O}_{\varphi G}$
+, +, 0, 0	$\frac{3m_tvg_s^2}{32\pi^2} \Big[\log \Big(\frac{s}{m_t^2}\Big) - i\pi \Big]^2$	$s \frac{m_t g_s^2}{4\pi^2 v} \left[\log \left(\frac{s}{\mu_{EFT}^2} \frac{\sqrt{1-c\theta^2}}{2} \right) - 2 \right]$	$rac{m_t^2 g_s^2}{8\sqrt{2} \pi^2} \Big[\log ig(rac{s}{m_t^2} ig) - i \pi \Big]^2$	$s\sqrt{2}$
+, -, 0, 0	_	$s rac{m_tg_s^2}{8\pi^2v}$	—	/

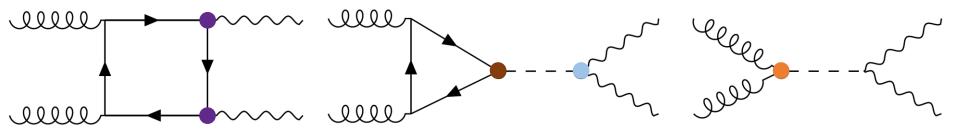


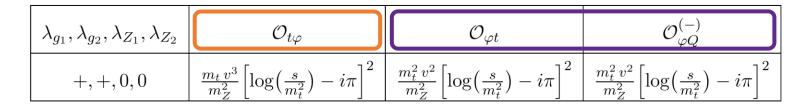


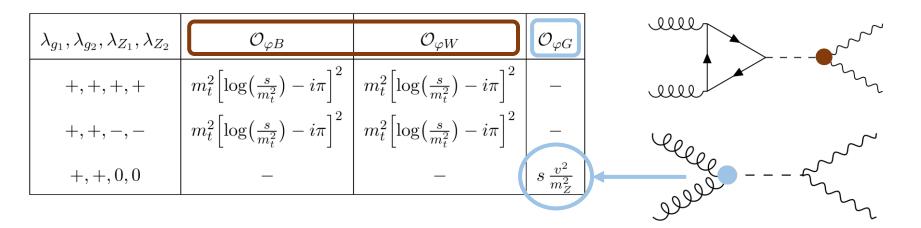
Helicity amplitudes in $gg \rightarrow W^+W^-$

			β.
$\lambda_{g_1},\lambda_{g_2},\lambda_{W^+},\lambda_{W^-}$	\mathcal{O}_{tG}	\mathcal{O}_{tW}	IIII
+, +, +, +	$\frac{m_t v e^2 g_s^2}{\pi^2 s_{\rm w}^2} \log\left(\frac{\mu_{EFT}^2}{m_t^2}\right)$	_	
+, +, +, -	$\frac{m_t v e^2 g_s^2}{\pi^2 s_{\rm w}^2} \log \Bigl(\frac{s}{m_t^2}\Bigr)$	_	elle
+, +, -, +	$\frac{m_t v e^2 g_s^2}{\pi^2 s_{\rm w}^2} \log \Bigl(\frac{s}{m_t^2}\Bigr)$	$\frac{m_t v e g_s^2}{\pi^2 s_{\rm W}} \log^2\left(\frac{s}{m_t^2}\right)$	ULLL
+, +, -, -	$\frac{m_t v e^2 g_s^2}{\pi^2 s_{\rm w}^2} \log^2\left(\frac{s}{m_t^2}\right)$	$\frac{m_t v e g_s^2}{\pi^2 s_{\rm w}} \log^2\left(\frac{s}{m_t^2}\right)$	
+, +, +, 0	$\sqrt{s} rac{m_t v e^2 g_s^2}{\pi^2 m_W s_{ m w}^2}$	-	IIII
+, +, 0, +	$\sqrt{s} rac{m_t v e^2 g_s^2 c heta}{\pi^2 m_W s_{\mathrm{w}}^2} \mathrm{log}\left(rac{s}{m_t^2} ight)$	-	0.0.0.0
+, +, 0, -	$\sqrt{s} \frac{m_t v e^2 g_s^2 c \theta}{\pi^2 m_W s_w^2} \log^2\left(\frac{s}{m_t^2}\right)$	_	III
+, +, 0, 0	$s rac{m_t v e^2 g_s^2}{\pi^2 m_W^2 s_{\mathrm{w}}^2} \log\left(rac{s}{\mu_{EFT}^2} ight)$	-	III
+, -, -, -	$\frac{m_t v e^2 g_s^2}{\pi^2 s_{\rm w}^2} \log \Bigl(\frac{s}{m_t^2}\Bigr)$	$\frac{m_t v e g_s^2}{\pi^2 s_{\rm W}} \log^2 \left(\frac{s}{m_t^2}\right)$	
+, -, -, 0	$\sqrt{s} rac{m_t v e^2 g_s^2}{\pi^2 m_W s_{ m w}^2}$	_	llll
+, -, 0, -	$\sqrt{s} \frac{m_t v e^2 g_s^2 c\theta}{\pi^2 m_W s_{\rm w}^2}$	-	llll
+, -, 0, 0	$S {{m_t v e^2 g_s^2} \over {\pi^2 m_W^2 s_{ m w}^2}}$	-	

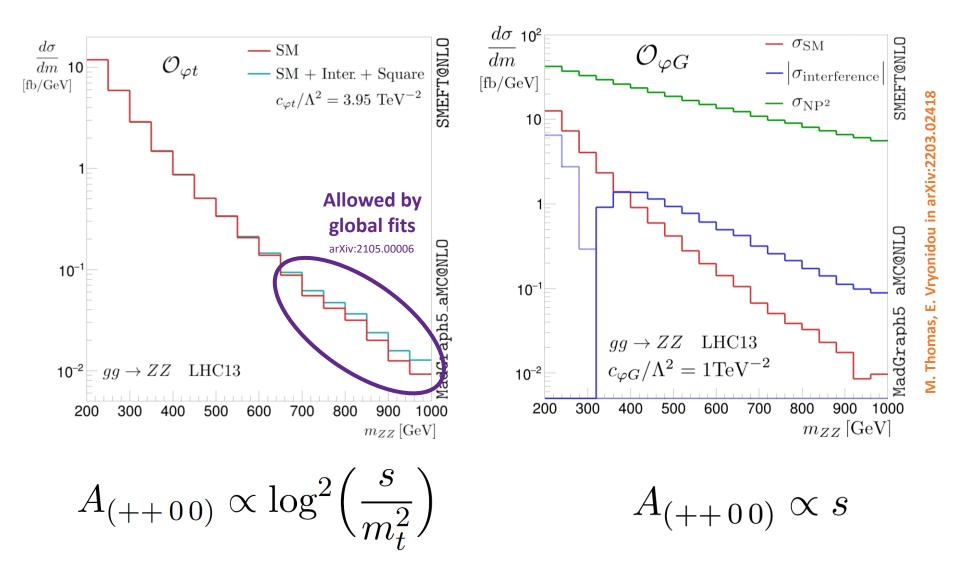




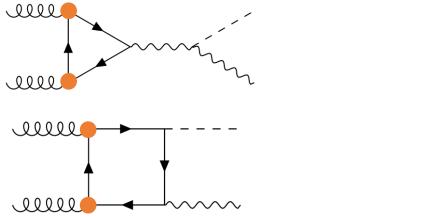

Helicity amplitudes in $gg \rightarrow W^+W^-$

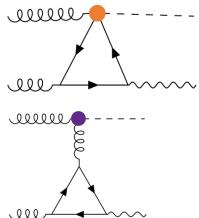


Growing helicity amplitudes in $gg \rightarrow ZZ$



Tail effects

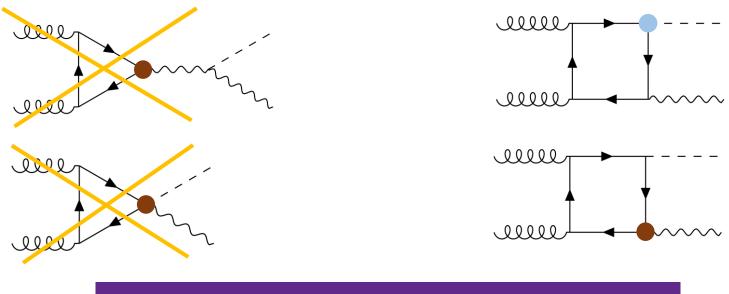



Diboson production from in the SMEFT from gluon fusion | Alejo N. Rossia, 27 March 24

The University of Manchester

Growing helicity amplitudes in $gg \rightarrow ZH$

$\lambda_{g_1},\lambda_{g_2},\lambda_H,\lambda_Z$	\mathcal{O}_{tG}	$\mathcal{O}_{arphi G}$	
+, +, 0, +	$\sqrt{s} \frac{m_t g_s^2 g_{t,A}^Z}{\pi^2} \log \Bigl(\frac{s}{m_t^2} \Bigr)$	_	Tightly constrained
+, +, 0, -	$\sqrt{s}rac{m_tg_s^2g_{t,A}^Z}{\pi^2}\logigg(rac{s}{m_t^2}igg)$	_	
+, +, 0, 0	$\frac{m_t m_Z g_s^2 g_{t,A}^Z}{\pi^2} \log^2\left(\frac{s}{m_t^2}\right)$	$rac{m_t^2 v g_s^2 g_{t,A}^Z}{\pi^2 m_Z} \log^2 \Bigl(rac{s}{m_t^2}\Bigr)$	$-0.019 \mathrm{TeV}^{-2} < c_{\varphi G} < 0.003 \mathrm{TeV}^{-2}$
+, -, 0, +	$\sqrt{s}rac{m_tg_s^2g_{t,A}^Z}{\pi^2}$	_	$0.062 \mathrm{TeV}^{-2} < c_{tG} < 0.24 \mathrm{TeV}^{-2}$
+, -, 0, 0	$s rac{m_t g_s^2 g_{t,A}^Z}{\pi^2 m_Z}$	$rac{m_t^2 v g_s^2 g_{t,A}^Z}{\pi^2 m_Z} \log^2 \Bigl(rac{s}{m_t^2}\Bigr)$	SMEFiT Collab. [arXiv:2105.00006]

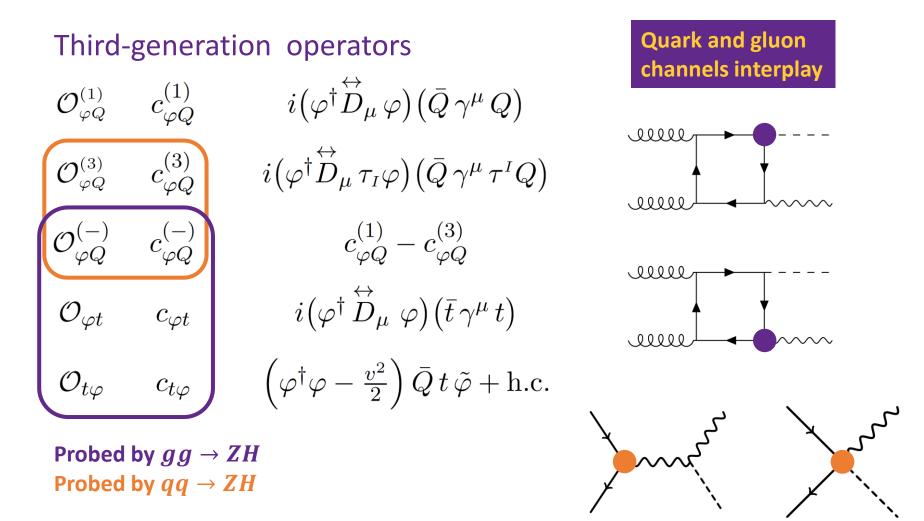


Helicity amplitudes in $gg \rightarrow ZH$

λ_g	$_{g_1},\lambda_{g_2},\lambda_{H},\lambda_{Z}$	$\mathcal{O}_{arphi t}$	${\cal O}^{(-)}_{arphi Q}$	$\mathcal{O}_{t \varphi}$
	+, +, 0, 0	$\frac{m_t^2 v e g_s^2}{32\pi^2 m_Z c_{\rm w} s_{\rm w}} \left[\log\left(\frac{s}{m_t^2}\right) - i\pi \right]^2$	$rac{m_t^2 v e g_s^2}{32 \pi^2 m_Z c_{\mathrm{w}} s_{\mathrm{w}}} \Big[\log \Big(rac{s}{m_t^2} \Big) - i \pi \Big]^2$	$\frac{m_t v^2 e g_s^2}{32\sqrt{2}\pi^2 m_Z c_{\mathrm{w}} s_{\mathrm{w}}} \left[\log\left(\frac{s}{m_t^2}\right) - i\pi \right]^2$

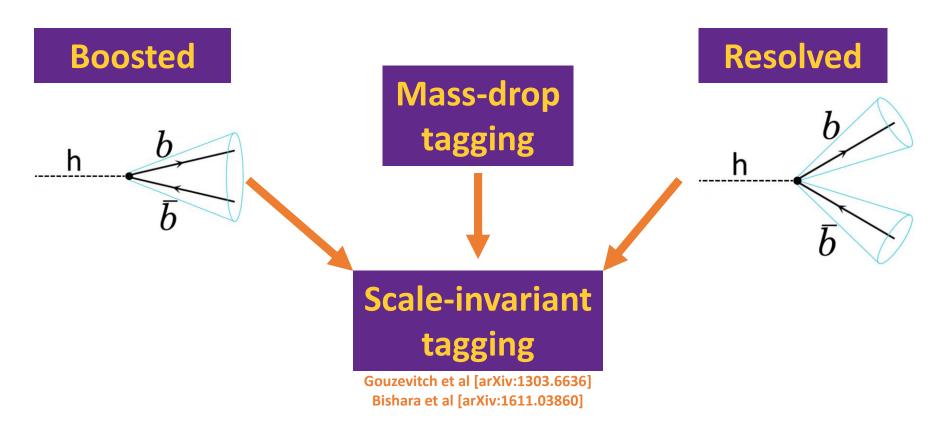
The triangles cancel each other out

Flat directions in $gg \rightarrow ZH$


$\lambda_{g_1}, \lambda_{g_2},$	$,\lambda_{H},\lambda_{Z}$	$\mathcal{O}_{arphi t}$	${\cal O}^{(-)}_{arphi Q}$	$\mathcal{O}_{t \varphi}$
+,+,	, 0, 0	$rac{m_t^2 v e g_s^2}{32 \pi^2 m_Z c_{\mathrm{w}} s_{\mathrm{w}}} \Big[\log \Big(rac{s}{m_t^2} \Big) - i \pi \Big]^2$	$\frac{m_t^2 v e g_s^2}{32\pi^2 m_Z c_{\rm w} s_{\rm w}} \left[\log\left(\frac{s}{m_t^2}\right) - i\pi \right]^2$	$\frac{m_t v^2 e g_s^2}{32\sqrt{2}\pi^2 m_Z c_{\mathrm{w}} s_{\mathrm{w}}} \left[\log\left(\frac{s}{m_t^2}\right) - i\pi \right]^2$

Sensitive only to
$$c_{\varphi Q}^{(-)} - c_{\varphi t} + \frac{c_{t \varphi}}{y_t}$$
 $ightarrow$ exact degeneracy

Bounds on Higgs and top operators from the tails of $pp \rightarrow ZH$



Diboson production from in the SMEFT from gluon fusion | Alejo N. Rossia, 27 March 24

15.

Pheno analysis details

Extended $qq \rightarrow ZH$ analysis by Bishara, Englert, Grojean, Panico, ANR [arXiv:2208.11134]

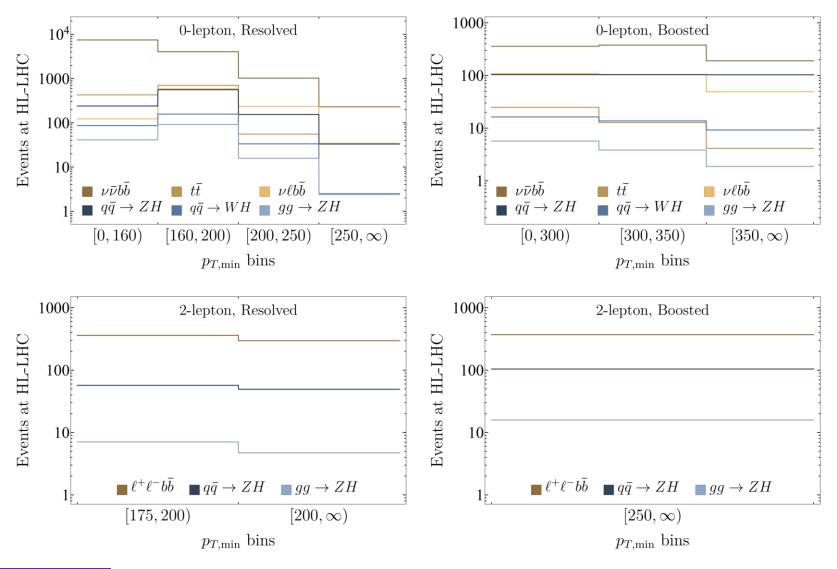
Adding Resolved category: 10-20% improvement at LHC.

Pheno analysis details

Cut-based analysis, cuts taken from ATLAS VH analyses:

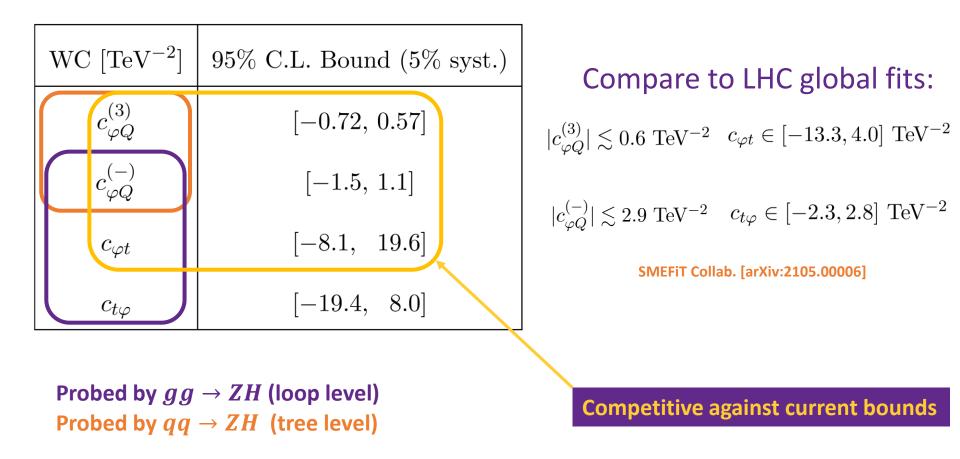
[arXiv:2007.02873] [arXiv:2008.02508]

B-tagger adjusted to match published ATLAS diff. distributions

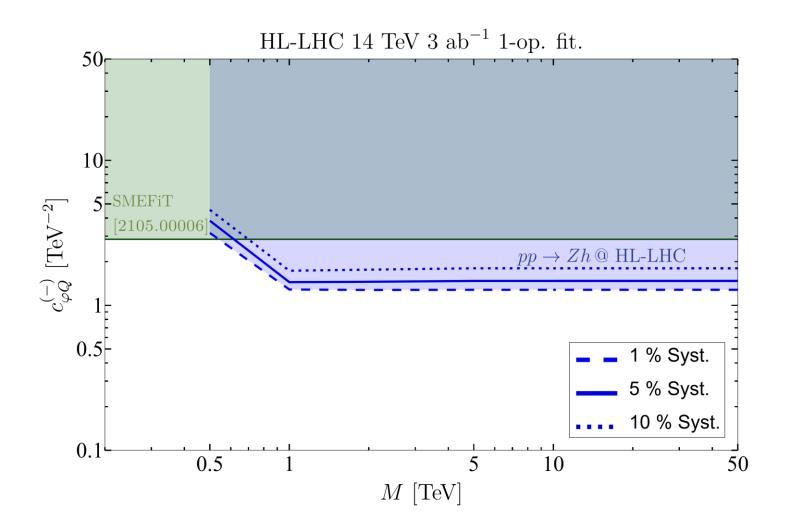

Backgrounds: **0-lep:** $v\overline{v}b\overline{b}$, $t\overline{t}$, $vlb\overline{b}$ **2-lep:** $l^+l^-\overline{v}b\overline{b}$ NLO effects: $qq \rightarrow Zh$: sim. @NLO QCD + EW k-Factor $gg \rightarrow Zh$: NLO QCD k-Factor

Categories		$p_{T,\min} \in$	
0-lepton	boosted	$\{0, 300, 350, \infty\}$	
	resolved	$\{0, 160, 200, 250, \infty\}$	
2-lepton	boosted	$\{250,\infty\}$	
	resolved	$\{175, 200, \infty\}$	

 $p_{T,\min} = \min\{p_T^Z, p_T^H\}$



Differential distributions in the SM



HL-LHC projected bounds from $pp \rightarrow ZH$

HL-LHC projected bounds from pp ightarrow ZH

Conclusions

- $gg \rightarrow HH, ZH, ZZ, WW$ help to study different Higgs and top properties.
- In the SMEFT, they can probe poorly constrained Higgs and top operators.
- Off-shell Higgs effects lift flat directions.
- Many Higgs and top operators lead to growing amplitudes, hence possible deviations from SM on differential distributions.
- $pp \rightarrow ZH$ gives competitive constraints on some third-generation operators \rightarrow motivates precision measurements and inclusion in global fits.
- Extension to CPV operators on the way.

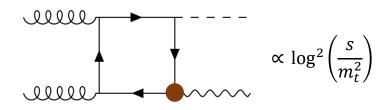
Thanks for your attention!

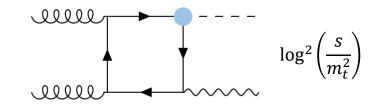
Contact:

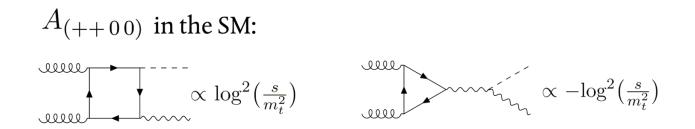
Alejo N. Rossia

HEP Theory Group – Dept. Of Physics and Astronomy

E-mail: alejo dot rossia at manchester dot ac dot uk

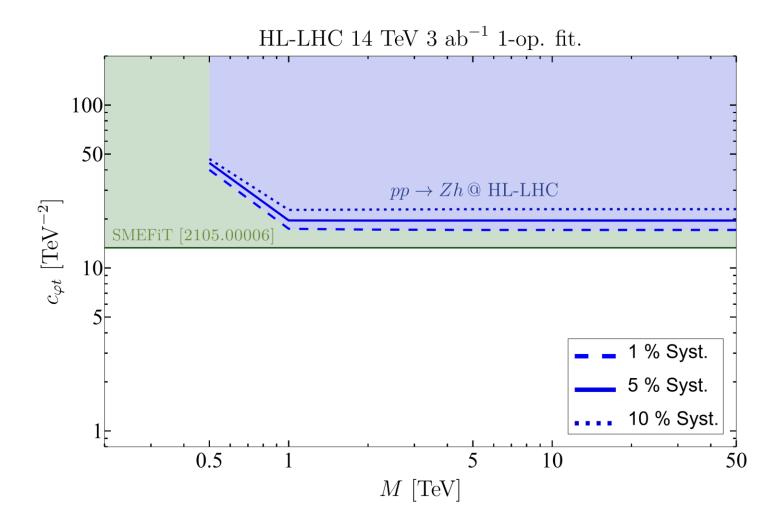

http://www.hep.man.ac.uk/


I thank M. Thomas for the slides template.



The reason for the growth

$igsquarbox{} \lambda_{g_1}, \lambda_{g_2}, \lambda_H, \lambda_Z$	$\mathcal{O}_{arphi t}$	${\cal O}^{(-)}_{arphi Q}$	$\mathcal{O}_{t \varphi}$
+, +, 0, 0	$\frac{m_t^2 v e g_s^2}{32\pi^2 m_Z c_{\rm w} s_{\rm w}} \left[\log\left(\frac{s}{m_t^2}\right) - i\pi \right]^2$	$rac{m_t^2 v e g_s^2}{32 \pi^2 m_Z c_{\mathrm{w}} s_{\mathrm{w}}} \Big[\log \Big(rac{s}{m_t^2} \Big) - i \pi \Big]^2$	$\frac{m_t v^2 e g_s^2}{32\sqrt{2}\pi^2 m_Z c_{\mathrm{w}} s_{\mathrm{w}}} \left[\log\left(\frac{s}{m_t^2}\right) - i\pi \right]^2$



Diboson production from in the SMEFT from gluon fusion | Alejo N. Rossia, 27 March 24

HL-LHC projected bounds from pp ightarrow ZH

