
POWHEG Tutorial @
CMS Topical Workshop on Off-shell Higgs Boson

Production at the LPC

Meng Lu (Northeastern University)

3/25/2024

1

Disclaimer

● I’m NOT a theory expert, NO detail on the calculation, on the code
implementation …

● Some personal understanding (mostly conceptional) on POWHEG will be
shared, maybe useful from a non-expert point of view

● Some experience on how to use POWHEG within CMS, i.e., gridpack
● More detail on POWHEG main page, useful talks can be found in recent

GEN tutorial
● CREDITS: Thanks to Paolo Nason and Carlo Oleari for a lot of materials

appearing in this talk

2

https://powhegbox.mib.infn.it/
https://indico.cern.ch/event/1360658/#b-542336-powheg-session-part1

● Recap of MC events
● Brief introduction to Powheg

○ Shower MC
○ Sudakov form factor
○ NLOSMC and Powheg implementation

● How to run powheg within CMS environment
○ The CMS interface for POWHEG gridpack
○ Input card
○ Hands-on to a powheg gridpack
○ Check validity of gridpack
○ Other features

3

Powheg Tutorial

Recap of MC events in LHC

4

● Hard process: interaction between
partons from incoming protons, the
Matrix-element can be provided by: MG
(HELAS, OneLoop …), Sherpa (Amegic,
Comix) …

● Soft process: the evolution of the hard
event, QCD/QED radiation (color labels
are assigned to partons during parton
shower), typical generators are Pythia
and Herwig

● Hadronization: color singlet structures
are formed out of color connected
partons, i.e., hadrons, and then
undergo the decays

Underlying events: Beam remnants,
multiple-parton interactions (e.g., DPS)

Matrix Element + Parton Shower

5

QCD emission can happen in both
ME and PS, how to avoid double
counting (e.g., LO, MLM).
● Generate parton level event, with

requirement on minimum parton
energy as well as minimum
separation between partons

● Then events are showered, use jet
algorithm to get jets

● Starting from the hardest parton,
select the closest jet, if their
separation is smaller than some
pre-defined Rmin, the parton is
matched to the jet.

● Accept the event if all partons
have its corresponding jets.
Otherwise veto this event.

Shower MC

6

Given a partonic event, let’s say only one quark or gluon with energy E for simplicity,
the probability of emission in the interval dt:

Where
● Z is energy fraction
● There are many choice of t which

corresponds to different shower
algorithm, e.g. t=E2𝜃2

● Pi,jk is the splitting function

So the probability of no emission in the interval dt:

One thing keep in mind is that such “no emission” probability contains all the virtual
correction.

Shower MC: Sudakov form factor

7

Divide a finite interval [t2, t1] in N small intervals dt = (t1 - t2)/N

The probability of not emitting radiation between the two ordering scales t1 and t2 is
given by the product

The weight ∆(t1, t2) is called Sudakov form factor. It resums all the dominant virtual
corrections to the tree graph

Shower MC: XS for the first emission

8

The cross section for first emission in Shower MC can be defined (n-body at LO):

N-body phase space Born-level structure Observable Sudakov form factor Splitting function

● The first item in the square bracket is the no-emission probability, t0 stands for the
lower cutoff

● The second item in the square bracket is the probability of the first emission,
carrying energy zE and at separation t.

The expansion of above formula (basically expand ∆(t)) at order 𝛼s gives the NLO shower MC

https://arxiv.org/pdf/hep-ph/0409146.pdf#page=15

NLO + Parton shower

9

“An MC@NLO is affected by double counting if its prediction for any observable, at
the first order beyond the Born approximation in the expansion in the coupling
constant, is not equal to the NLO prediction.” in PAPER

→ combine a NLO with Shower MC need to overcome the double counting between
them, do a “matching” between Shower MC and fixed order NLO calculation.

Do some tricks on the formula to make it match the NLO calculation. Two
well-established and widely used methods currently:
● POWHEG (POSITIVE-WEIGHT HARDEST EMISSION GENERATOR)
● MC@NLO (Equivalent as Powheg, but may have large number of negatively

weighted events for some processes)

https://arxiv.org/pdf/hep-ph/0204244.pdf
https://arxiv.org/pdf/hep-ph/0409146.pdf
https://arxiv.org/pdf/hep-ph/0204244.pdf

Fixed order NLO

10

The virtual and real-radiation integrals are separate divergent, but their sum is finite.
Use counter term to re-organize the integrals

Finite

Finite

More on fixed order NLO

11

Modify the corresponding terms in NLOSMC to fit the fixed order
NLO calculation

POWHEG implementation

12

➢ generate a random number 0 < r < 1
➢ Solve the equation ∆(Φ, pT) = r for pT
➢ If pT < pTmin, no radiation is generated
➢ Otherwise, the other radiation variables are generated at fixed pT proportionally to R/B
➢ Then put the event in the shower MC with requirement: no emission larger than pT

Why POWHEG avoid negative weight event?
→ Following formula is negative must signal the failure of perturbation theory, since
the NLO negative terms have overcome the Born term, generally it should be
positive

POWHEG within CMS

13

● As shown earlier, POWHEG needs to modify the sudakov form
factor according to the process, specific code is needed for
each process, all available processes can be found here.

● Most of the CMS samples are produced using gridpack mode,
during which the compilation and integration are performed,
which are usually very time consuming. All the detail for
POWHEG gridpack production can be found here

https://powhegbox.mib.infn.it/
https://twiki.cern.ch/twiki/bin/view/CMS/PowhegBOXPrecompiled

The CMS interface for POWHEG gridpack

14

The codes used for gridpack production is stored in git

The steer script for the
gridpack production:

● run_pwg_condor.py
● run_pwg_parallel_c

ondor.py: multicore
mode

https://github.com/cms-sw/genproductions/tree/master/bin/Powheg

The CMS interface for POWHEG gridpack

15

run_pwg_condor.py:

● -p grid production stage [f] (one go)
● -i intput card name [powheg.input]
● -m process name (process defined in POWHEG: CANNOT be a sub-process, see below)
● -f working folder [my_ggH]
● -q job flavor / batch queue name (run locally if not specified)
● -n the number of events to run

If you plan to generate ggH with the quark mass effect, the parameter
after ‘-m’ MUST EXACTLY BE “gg_H_quark-mass-effects”

The input card

16

Powhg is widely used within CMS, basically you should be able to find all the process
cards under GEN_Git. Or if you are eager to learn more, you can download all the
materials you are interested in. The POWHEG BOX is made available only via SVN, with
the command, e.g., in lxplus:

● svn checkout svn://powhegbox.mib.infn.it/trunk/POWHEG-BOX-NoUserProcesses
POWHEG-BOX

● cd POWHEG-BOX
● svn checkout svn://powhegbox.mib.infn.it/trunk/POWHEG-BOX/"process-of-interest", e.g.,

svn checkout svn://powhegbox.mib.infn.it/trunk/POWHEG-BOX/gg_H
● cd gg_H

e.g., inside Docs, you have the fully
documentation of this process, as
well as the template card

https://github.com/cms-sw/genproductions/tree/master/bin/Powheg/production
http://powhegbox.mib.infn.it/trunk/POWHEG-BOX/%22process-of-interest
http://powhegbox.mib.infn.it/trunk/POWHEG-BOX/gg_H

The input card: gg_H_quark-mass-effects

17

Use gg_H_quark-mass-effects_NNPDF31_13TeV_M125.input as the example

numevts NEVENTS ! number of events to be generated

ih1 1 ! hadron 1 (1 for protons, -1 for antiprotons)

ih2 1 ! hadron 2 (1 for protons, -1 for antiprotons)

ebeam1 6500 ! energy of beam 1

ebeam2 6500 ! energy of beam 2

lhans1 325300 ! pdf set for hadron 1 (LHA numbering)

lhans2 325300 ! pdf set for hadron 2 (LHA numbering)

Nothing special, collision
setup, beam, energy, PDF

! Parameters to allow or not the use of stored data

use-old-grid 1 ! if 1 use old grid if file pwggrids.dat is present
(<> 1 regenerate)

use-old-ubound 1 ! if 1 use norm of upper bounding function
stored in pwgubound.dat, if present; <> 1 regenerate

In order to re-use the existing grid files,
these two settings are required in the
powheg input data card

https://github.com/cms-sw/genproductions/blob/cb9350092002bb0980cef94088ac6739810dd328/bin/Powheg/production/2017/13TeV/Higgs/gg_H_quark-mass-effects_NNPDF31_13TeV/gg_H_quark-mass-effects_NNPDF31_13TeV_M125.input

The input card: gg_H_quark-mass-effects

18

Use gg_H_quark-mass-effects_NNPDF31_13TeV_M125.input as the example

ncall1 550000 ! number of calls for initializing the integration grid

itmx1 7 ! number of iterations for initializing the integration grid

ncall2 75000 ! number of calls for computing the integral and finding upper bound

itmx2 5 ! number of iterations for computing the integral and finding upper bound

foldcsi 2 ! number of folds on csi integration

foldy 5 ! number of folds on y integration

foldphi 2 ! number of folds on phi integration

nubound 50000 ! number of bbarra calls to setup norm of upper bounding function

icsimax 1 ! <= 100, number of csi subdivision when computing the upper bounds

iymax 1 ! <= 100, number of y subdivision when computing the upper bounds

xupbound 2d0 ! increase upper bound for radiation generation

● ncall1, itmx1: Perform a total of ncall1×itmx1 calls to the function btilde to initialize the grid.
● ncall2, itmx2: At fixed grids, the integral and the determination of the upper bounding

functions for btilde and the remnants is carried out.
● foldcsi, foldy, foldphi. Generally used if too many negative weights show up (the folding
● number must be a divisor of 50)

https://github.com/cms-sw/genproductions/blob/cb9350092002bb0980cef94088ac6739810dd328/bin/Powheg/production/2017/13TeV/Higgs/gg_H_quark-mass-effects_NNPDF31_13TeV/gg_H_quark-mass-effects_NNPDF31_13TeV_M125.input

The input card: gg_H_quark-mass-effects

19

Use gg_H_quark-mass-effects_NNPDF31_13TeV_M125.input as the example

! OPTIONAL PARAMETERS

renscfact 1 ! (default 1d0) ren scale factor: muren = muref * renscfact
facscfact 1 ! (default 1d0) fac scale factor: mufact = muref * facscfact
testplots 1 ! (default 0, do not) do NLO and PWHG distributions
hfact 60.0d0 ! (default no dumping factor) dump factor for high-pt radiation: > 0 dumpfac=h**2/(pt2+h**2)
runningscale 1 ! 0 = scales equal to the Higgs pole mass; 1 = scales equal to the Higgs virtuality;

 ! 2 = scales equal to the Higgs pole mass for Born-like configuration and to the transverse mass for real
emission contribution

iseed SEED ! initialize random number sequence

● hfact is used to avoid very large pT emission

https://github.com/cms-sw/genproductions/blob/cb9350092002bb0980cef94088ac6739810dd328/bin/Powheg/production/2017/13TeV/Higgs/gg_H_quark-mass-effects_NNPDF31_13TeV/gg_H_quark-mass-effects_NNPDF31_13TeV_M125.input

The input card: gg_H_quark-mass-effects

20

Use gg_H_quark-mass-effects_NNPDF31_13TeV_M125.input as the example

! GGF_H production:
! **** Mandatory parameters for ALL models ****
massren 0 ! Mass renormalization scheme. 0 = OS, 1 = MSBAR , 2 = DRBAR
zerowidth 0 ! Control if the Higgs boson is to be produced on-shell or not: 1 = On-Shell; 0 = Off-shell with Breit-Wigner
ew 1 ! ew = 0 disable EW corrections - ew = 1 enable EW corrections
model 0 ! model: 0 = SM
gfermi 0.116637D-04 ! GF
hdecaymode -1 ! PDG code for first decay product of the higgs
masswindow 1d0 !(default 10d0) number of widths around hmass in the BW for an off-shell Higgs boson

! **** Mandatory parameters for SM or MW ****
hmass 125d0 ! Higgs boson mass
hwidth 0.00407D0 ! Higgs boson width
topmass 172.5 ! top quark mass
bottommass 4.75d0 ! bottom quark mass - if defined it enables the bottom quark

! Optional
hdecaywidth 0 ! If equals to 1 read total decay width from HDECAY sm.br2 file
withnegweights 1
pdfreweight 0 ! PDF reweighting
storeinfo_rwgt 0 ! store weight information
bwshape 3 ! complex-pole scheme according to Passarino et al.

https://github.com/cms-sw/genproductions/blob/cb9350092002bb0980cef94088ac6739810dd328/bin/Powheg/production/2017/13TeV/Higgs/gg_H_quark-mass-effects_NNPDF31_13TeV/gg_H_quark-mass-effects_NNPDF31_13TeV_M125.input

Hands-on to a powheg gridpack

21

➢ Login to lxplus8, cd to YOUR/WORK/DIRECTORY
➢ cmsrel CMSSW_12_4_8
➢ cd CMSSW_12_4_8/src/
➢ cmsenv
➢ git clone --depth 1 https://github.com/cms-sw/genproductions.git
➢ cd genproductions/bin/Powheg/
➢ curl -O

https://raw.githubusercontent.com/Offshell-Workshop-LPC/Powheg-tutorial/main/tt.input
➢ python3 ./run_pwg_condor.py -p f -i tt.input -m hvq -f my_tt -q longlunch -n 1000

https://github.com/cms-sw/genproductions.git

check powheg gridpack validaity

22

The gridpack size is very small, it’s the feature of POWHEG. (MG gridpack can be ~O(Gb))
Basically for all kinds of gridpacks, one fast way to check it’s valid or not is to untar it and do
some LHE event generation locally.
➢ mkdir tmp
➢ cp hvq_el8_amd64_gcc10_CMSSW_12_4_8_my_tt.tgz tmp/
➢ cd tmp/
➢ tar xf hvq_el8_amd64_gcc10_CMSSW_12_4_8_my_tt.tgz

Check the file “pwg-stat.dat”, N.B, the XS here doesn’t include the BR

check powheg gridpack validaity

23

➢ ./runcmsgrid.sh 100 10 >& tt.logs

check powheg gridpack validaity

24

If everything is fine, you should have “cmsgrid_final.lhe” now. The tt.logs and LHE file can be
accessed from git. Every Event in LHE file with format
<event>
…
</event>

E.g., this event is gluon-gluon induced, the ME process before decay is g g → t t~ g, then top →
b W, and W undergoes the leptonic decay.

https://github.com/Offshell-Workshop-LPC/Powheg-tutorial/tree/main

Other features

25

● NNLO+PS → MiNNLOPS, this is the
future!

● Electroweak correction
○ Sometimes the NLO EW correction is

non-negligible, or even larger than
the NLO QCD correction, e.g., p p >
mu+ e+ ve vm j j

● Powheg interface to MG5

All the above materials can be found here

https://arxiv.org/pdf/1708.00268.pdf
https://arxiv.org/pdf/1708.00268.pdf
https://arxiv.org/abs/2008.06364
https://indico.cern.ch/event/1360658/#b-542336-powheg-session-part1

Summary

26

● POWHEG is an implementation of NLO+Shower MC,
with the advantage of suppressing the negative
weight event

● The code of POWHEG is process dependent, i.e.,
every process needs its own code

● There are many useful and interesting features in
POWHEG, which have been widely used within CMS

Thanks!

27

Additional materials

28

29

MC@NLO vs POWHEG

Pythia/Herwig

