

# Sherpa Tutorial @

# CMS Topical Workshop on Off-shell Higgs Boson Production at the LPC

Meng Lu (Northeastern University)

3/26/2024



# Disclaimer

- I'm also "LEARNING" during the preparation of this talk, e.g., checking the manual
- CREDITS: Thanks to Frank Siegert, Enrico Bothmann and Jie Xiao for help and a lot of materials appearing in this talk



# Sherpa Tutorial

- Brief introduction to Sherpa
  - Sherpa framework
  - Highlight recently
  - Input card
- How to run sherpa within CMS environment
  - $\circ~$  The workflow for sherpack
  - ggH (H→γγ)
  - o **gg→**4|
  - Gg→4I (Higgs only)
  - ttH
  - 0 ...

3



### Sherpa framework

<u>Sherpa</u> is a complete standalone generator framework (written in C++):

- Matrix-Element generator (ME): Ο
  - AMEGIC++ (Sherpa's original matrix-element generator)
  - COMIX (multi-leg tree-level matrix element generator, is a useful supplement to AMEGIC++ in the high multiplicity regime)
- Parton Shower (PS):
  - CSSHOWER++ (Sherpa's default parton shower)
  - DIRE (Sherpa's alternative parton shower)
- Multiple Interaction (MPI): AMISIC++ Ο
- Hadronization: AHADIC++ Ο
- Hadron and tau-lepton decay: HADRONS++ Ο
- **QED** radiation to hadron and tau-lepton decays: PHOTONS++ Ο

Finally, SHERPA is the steering module that initializes, controls and evaluates the different phases during the entire process of event generation



### Sherpa framework

### The SHERPA 2.2 event generator framework

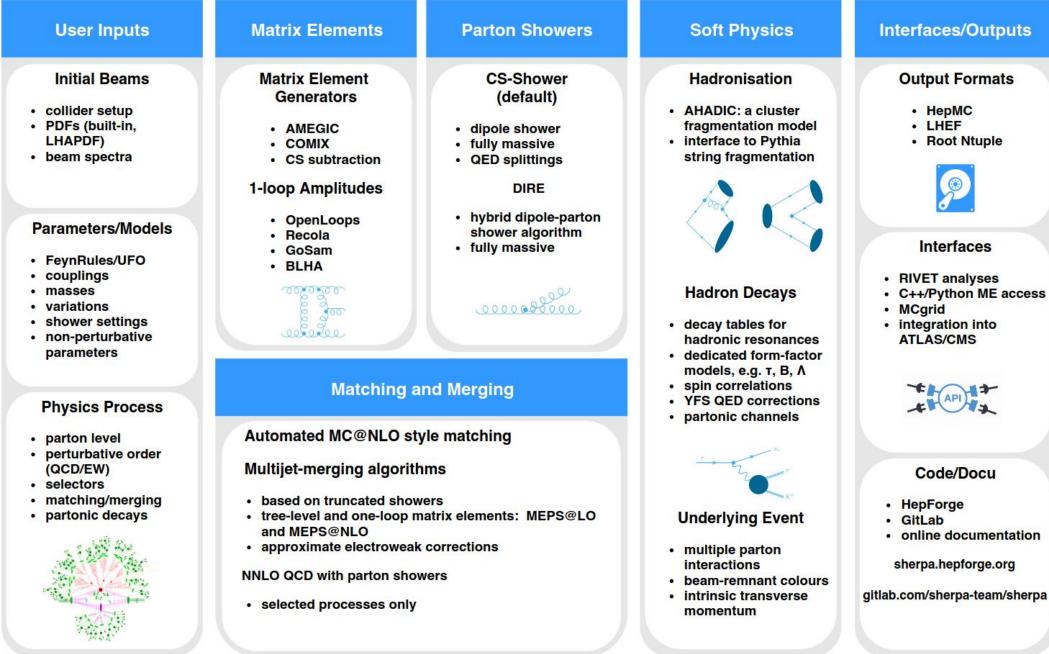



Figure 1: Overview of the SHERPA 2.2 event generator framework.

### arXiv: 1905.09127



# Highlights

- Automated matching/merging
- Multileg production: Z+Jets, 0,1,2j @NLO + 3,4,5j @LO
- Approximate EW corrections for V+Jet
- HL-LHC readiness: significant Sherpa+Lhapdf performance improvements [<u>arXiv:2209.00843</u>]
  - $\circ$  ~x40 speed-up for Z+jet/ttbar
- HPC readiness [<u>arXiv: 2309.13154</u>]
- GPU [arXiv:2311.06198]
- Sherpa version3:
  - alpha version documentation Ο
  - Fully general & automated fixed-order NLO EW [arXiv:1712.07975] Ο
  - DY NNLO, polarized XS for massive vector boson... [arXiv:1405.3607, 2310.14803] Ο
  - rewritten+retuned soft QCD [arXiv:2203.11385] Ο
  - full NLL Alaric shower [arXiv:2208.06057] Ο
  - Improved workflow for using GPU Ο

6



A Sherpa setup is steered by various parameters, associated with the different components of event generation. Generally following blocks are used:

(run){ % general setting EVENTS 100K; ERROR 0.99;

% scales, tags for scale variations FSF:=1.; RSF:=1.; QSF:=1.; SCALES STRICT\_METS{FSF\*MU\_F2}{RSF\*MU\_R2}{QSF\*MU\_Q2}; SCALE\_VARIATIONS 0.25,0.25 0.25,1. 1.,0.25 1.,1. 1.,4. 4.,1. 4.,4.; ASSOCIATED\_CONTRIBUTIONS\_VARIATIONS EW EW|L01;

% tags for process setup NJET:=4; LJET:=2,3,4; QCUT:=20.;

% me generator settings ME\_SIGNAL\_GENERATOR Comix Amegic LOOPGEN; EVENT\_GENERATION\_MODE PartiallyUnweighted; OL\_PARAMETERS ew\_renorm\_scheme 1; LOOPGEN:=OpenLoops; PP\_RS\_SCALE VAR{0.25\*H\_Tp2};

% exclude tau from lepton container MASSIVE[15] 1;

% collider setup BEAM\_1 2212; BEAM\_ENERGY\_1 = 6500.; BEAM\_2 2212; BEAM\_ENERGY\_2 = 6500.;

PDF\_LIBRARY LHAPDFSherpa; PDF\_SET NNPDF30\_nnlo\_as\_0118; PDF\_VARIATIONS NNPDF30\_nnlo\_as\_0118[all];

(processes){ Process 93 93 -> 11 -11 93{NJET}; Order (\*,2); CKKW sqr(QCUT/E\_CMS); NLO\_QCD\_Mode MC@NLO {LJET}; ME\_Generator Amegic {LJET}; RS\_ME\_Generator Comix {LJET}; Loop\_Generator LOOPGEN {LJET}; Associated\_Contributions EW|LO1 {LJET}; #Enhance\_Observable VAR{PPerp(p[2]+p[3])}|0.|1000. {3,4,5,6}; Enhance\_Observable VAR{log10(PPerp(p[2]+p[3]))}|1.|3. {3,4,5,6}; Integration\_Error 0.02 {2}; Integration\_Error 0.02 {3}; Integration\_Error 0.02 {4}; Integration Error 0.05 {5}; Integration\_Error 0.05 {6}; End process; }(processes)

(selector){ Mass 11 -11 50. E\_CMS; }(selector)



A Sherpa setup is steered by various parameters, associated with the different components of event generation. Generally following blocks are used:

- processes: physical process is defined here, generator choice, matching parameter, integration precision...
  - Process 93 93 -> 11 -11 93{NJET}  $\rightarrow$  DY process with max jet multiplicity NJET Ο
  - Order (\*,2); CKKW sqr(QCUT/E\_CMS);  $\rightarrow$  coupling order (The first number) always refers to QCD, the second to electroweak. The third and following numbers are model specific.) and matching parameter
  - NLO\_QCD\_Mode MC@NLO {LJET};  $\rightarrow$  This setting specifies whether and in which mode an QCD NLO calculation should be performed
  - Enhance\_Observable VAR{log10(PPerp(p[2]+p[3]))}|1.|3. {3,4,5,6}; → 0 importance sampling
  - Integration\_Error 0.02 {XX}; → Integration precision at each jet multiplicity



A Sherpa setup is steered by various parameters, associated with the different components of event generation. Generally following blocks are used:

- run: parameters describe general run information...
  - $\circ$  Events  $\rightarrow$  This parameter specifies the number of events to be generated.
  - SCALES STRICT\_METS{FSF\*MU\_F2}{RSF\*MU\_R2}{QSF\*MU\_Q2}; → This parameter Ο specifies how to compute the renormalization and factorization scale and potential additional scales
  - SCALE\_VARIATIONS 0.25,0.25 0.25,1. 1.,0.25 1.,1. 1.,4. 4.,1. 4.,4.; → alternative event weights for different scale and PDF choices on-the-fly
  - NJET:=4; LJET:=2,3,4; QCUT:=20.; → Predefined parameter to be used in block "processes"
  - ME\_SIGNAL\_GENERATOR Comix Amegic LOOPGEN; 
    The list of matrix element Ο generators to be employed during the run
  - EVENT\_GENERATION\_MODE PartiallyUnweighted; 

    parameter specifies the event Ο generation mode
  - MASSIVE[15] 1; → Specifies whether the finite mass of particle with PDG id <id> is to be Ο considered in matrix-element calculations or not. (exclude tau from lepton container)
  - BEAM\_1 2212; BEAM\_ENERGY\_1 = 6500.; → collider type Ο
  - PDF\_SET NNPDF30\_nnlo\_as\_0118; → pdf choice Ο
  - PDF\_VARIATIONS NNPDF30\_nnlo\_as\_0118[all]; → pdf variation weight to be used Ο

9



A Sherpa setup is steered by various parameters, associated with the different components of event generation. Generally following blocks are used:

- <u>selector</u>: The setup of cuts at the matrix element level
  - One particle selectors: PT, Energy, Rapidity ...
  - Two particle selectors: Mass, DeltaEta, DeltaR ... Ο
    - Mass 11 -11 50. E\_CMS; → Invariant mass of two leptons
  - NLO selectors: Phase-space cuts that are applied on next-to-leading order calculations must be defined in a infrared safe way
    - PTNLO <flavour code> <min value> <max value> → One particle selector
    - PT2NLO <flavour1 code> <flavour2 code> <min value> <max value> + two particle selector
    - IsolationCut 22 <dR> <exponent> <epsilon>  $\rightarrow$  Cuts on photons
  - Ο

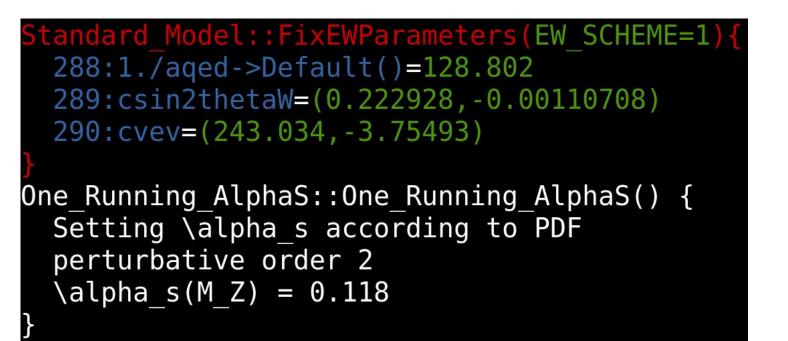


# The workflow for sherpack

Like other generators, all the setup needed to produce a gridpack is stored https://github.com/cms-sw/genproductions, all the hands-on will be done in Ixplus (I'm using Ixplus8), in your work area,

- cd YOUR/WORKING/PATH
- git clone --depth 1 https://github.com/cms-sw/genproductions
- cd genproductions/bin/Sherpa
- curl -O

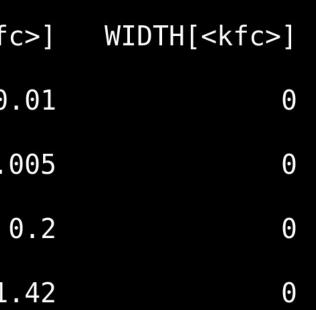
https://raw.githubusercontent.com/Offshell-Workshop-LPC/Sherpa-tutorial/mai <u>n/Run.dat\_DYee</u>

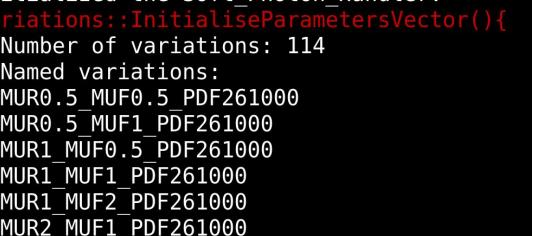

./sherpack\_generation.sh DYee Run.dat\_DYee

```
Process 93 93 -> 11 -11 93{NJET};
Order (*,2);
NJET:=0;
NLO_QCD_Mode MC@NLO {LJET};
Loop_Generator LOOPGEN {LJET};
```

DY to electron-positron process, 0j@NLO




You will see many information printed out, the parameters of EW section, the particle ID, particle container, as well as the weights (scale, pdf)




| List of          | Particl | e Data                  |
|------------------|---------|-------------------------|
| IDName           | kfc     | MASS[ <kf< td=""></kf<> |
| IVE[ <kfc></kfc> | >] YUKA | WA[ <kfc>]</kfc>        |
| d                | 1       |                         |
|                  | 1       | Θ                       |
| u                | 2       | Θ.                      |
|                  | 1       | Θ                       |
| S                | 3       |                         |
|                  | 1       | Θ                       |
| С                | 4       | 1                       |
|                  |         |                         |

| List of Particle Containers |     |                                         |  |  |
|-----------------------------|-----|-----------------------------------------|--|--|
| IDName                      | kfc | Constituents                            |  |  |
| l                           | 90  | {e-,e+,mu-,mu+}                         |  |  |
| V                           | 91  | {ve,veb,vmu,vmub,vtau,vtaub}            |  |  |
| j                           | 93  | <pre>{d,db,u,ub,s,sb,c,cb,b,bb,G}</pre> |  |  |
| Q                           | 94  | {d,db,u,ub,s,sb,c,cb,b,bb}              |  |  |
| r                           | 99  | <pre>{d,db,u,ub,s,sb,c,cb,b,bb,G}</pre> |  |  |

Number of variations: 114 Named variations: MUR0.5 MUF0.5 PDF261000 MUR0.5 MUF1 PDF261000 MUR1 MUF0.5 PDF261000 MUR1 MUF1 PDF261000 MUR1 MUF2 PDF261000 MUR2 MUF1 PDF261000







| Process_Group::CalculateTotalXSec(): Calculate xs for '2_2_j_j_j_j_MPI' (A |
|----------------------------------------------------------------------------|
| misic)                                                                     |
| Starting the calculation at 21:39:59. Lean back and enjoy                  |
| 3.99538e+10 pb +- ( 2.44306e+09 pb = 6.11471 % ) 5000 ( 7482 -> 66.8 % )   |
| full optimization: ( 0s elapsed / 52s left ) [21:40:00]                    |
| 3.97496e+10 pb +- ( 1.71146e+09 pb = 4.30559 % ) 10000 ( 12591 -> 97.8 % ) |
| full optimization: ( 1s elapsed / 51s left ) [21:40:01]                    |
| 3.90644e+10 pb +- ( 1.30884e+09 pb = 3.35048 % ) 15000 ( 17597 -> 99.8 % ) |
| full optimization: ( 2s elapsed / 50s left ) [21:40:01]                    |
| 3.90628e+10 pb +- ( 1.0817e+09 pb = 2.76914 % ) 20000 ( 22597 -> 100 % )   |

### MPI part



| Process_Group::CalculateTotalXSec(): Calculate xs for '2_2_j_j_ee                           | e+QCD(BVI)' (Amegic) |  |  |
|---------------------------------------------------------------------------------------------|----------------------|--|--|
| Starting the calculation at 21:42:33. Lean back and enjoy                                   |                      |  |  |
| ***************************************                                                     | ##                   |  |  |
| #                                                                                           | #                    |  |  |
| # You are using OneLOop                                                                     | #                    |  |  |
| #                                                                                           | #                    |  |  |
| # for the evaluation of 1-loop scalar 1-, 2-, 3- and 4-point functions                      | #                    |  |  |
| #                                                                                           | #                    |  |  |
| # author: Andreas van Hameren <hamerenremovethis@ifj.edu.pl></hamerenremovethis@ifj.edu.pl> | #                    |  |  |
| # date: 2018-06-13                                                                          | #                    |  |  |
| #                                                                                           | #                    |  |  |
| # Please cite                                                                               | #                    |  |  |
| # A. van Hameren,                                                                           | #                    |  |  |
| <pre># Comput.Phys.Commun. 182 (2011) 2427-2438, arXiv:1007.4716</pre>                      | #                    |  |  |
| # A. van Hameren, C.G. Papadopoulos and R. Pittau,                                          | #                    |  |  |
| # JHEP 0909:106,2009, arXiv:0903.4665                                                       | #                    |  |  |
| # in publications with results obtained with the help of this program.                      | #                    |  |  |
| #                                                                                           | #                    |  |  |
|                                                                                             | ##                   |  |  |
| 1838.46 pb +- ( 57.7728 pb = 3.14246 % ) 5000 ( 7828 -> 63.8 % )                            |                      |  |  |
| full optimization: ( 3s elapsed / 3m 40s left ) [21:42:37]                                  |                      |  |  |
| 1836.29  pb + - (36.5361  pb = 1.98967 %) 10000 (12967 -> 97.2 %)                           |                      |  |  |
| full optimization: ( 6s elapsed / 3m 36s left ) [21:42:40]                                  |                      |  |  |
| 1851.24  pb + - ( 26.8835 pb = 1.45219 % ) 15000 ( 17973 -> 99.8 % )                        |                      |  |  |
| full optimization: ( 10s elapsed / 3m 32s left ) [21:42:44]                                 |                      |  |  |
| 1859.4  pb + - ( $21.3492  pb = 1.14818 %$ ) 20000 ( $22973 - > 100 %$ )                    |                      |  |  |
| 1033.4  pb + (21.3432  pb - 1.14010 ) 20000 (22373 - 2100 )                                 |                      |  |  |

### Born + Virtual



| Process_Group::CalculateTotalXSec(): Calculate xs for '2_3_j_j_ee+_j_QCD(RS)' (Comix) |
|---------------------------------------------------------------------------------------|
| Starting the calculation at 21:46:07. Lean back and enjoy                             |
| 189.756 pb +- ( 7.73534 pb = 4.07646 % ) 5000 ( 7835 -> 63.8 % )                      |
| full optimization: ( 4s elapsed / 4m 31s left ) [21:46:11]                            |
| 185.839 pb +- ( 5.15317 pb = 2.77293 % ) 10000 ( 12973 -> 97.3 % )                    |
| full optimization: ( 8s elapsed / 4m 27s left ) [21:46:15]                            |
| 184.605 pb +- ( 3.93693 pb = 2.13262 % ) 15000 ( 17984 -> 99.7 % )                    |
| full optimization: ( 12s elapsed / 4m 23s left ) [21:46:20]                           |
| 184.667 pb +- ( 3.22922 pb = 1.74867 % ) 20000 ( 22984 -> 100 % )                     |
| full optimization: ( 16s elapsed / 4m 19s left ) [21:46:24]                           |
| 184.919 pb +- ( 2.75957 pb = 1.49232 % ) 25000 ( 27984 -> 100 % )                     |
| full optimization: ( 21s elapsed / 4m 14s left ) [21:46:29]                           |
| 184.689 pb +- ( 2.41782 pb = 1.30913 % ) 30000 ( 32984 -> 100 % )                     |
| full optimization: ( 25s elapsed / 4m 10s left ) [21:46:33]                           |
| 185.402 pb +- ( 1.93209 pb = 1.04211 % ) 40000 ( 42984 -> 100 % )                     |
| full optimization: ( 33s elapsed / 4m 1s left ) [21:46:42]                            |
| 185.644 pb +- ( 1.61869 pb = 0.871932 % ) 50000 ( 52984 -> 100 % )                    |
| full optimization: ( 42s elapsed / 3m 51s left ) [21:46:50]                           |
| 185.922 pb +- ( 1.40051 pb = 0.753278 % ) 60000 ( 62984 -> 100 % )                    |
| full optimization: ( 50s elapsed / 3m 42s left ) [21:46:59]                           |
| 186.341 pb +- ( 1.23935 pb = 0.665097 % ) 70000 ( 72984 -> 100 % )                    |
| full optimization: ( 58s elapsed / 3m 34s left ) [21:47:07]                           |
| 185.95 pb +- ( 1.11478 pb = 0.599505 % ) 80000 ( 82984 -> 100 % )                     |
| full optimization: ( 1m 6s elapsed / 3m 25s left ) [21:47:16]                         |
| 186.162 pb +- ( 1.01568 pb = 0.545588 % ) 90000 ( 92984 -> 100 % )                    |
| full optimization: ( 1m 15s elapsed / 3m 17s left ) [21:47:24]                        |

### Real emission



### Simple DY gridpack

```
Event 101 ( 1 s total ) = 2.9088e+07 \text{ evts/day}
In Event_Handler::Finish : Summarizing the run may take some time.
    Total XS is 1920.18 pb +- ( 187.992 pb = 9.79 % )
Return_Value::PrintStatistics(): Statistics {
  Generated events: 101
 Retried events {
   From "Hadronization:Ahadic": 1 (113) -> 0.8 %
   From "Jet Evolution:CSS": 3 (346) -> 0.8 %
 Retried phases {
   From "Hadron Decay Handler::RejectExclusiveChannelsFromFragmentation": 1 (0) -> 1.
Please cite the publications listed in 'Sherpa_References.tex'.
  Extract the bibtex list by running 'get bibtex Sherpa References.tex'
  or email the file to 'slaclib2@slac.stanford.edu', subject 'generate'.
Time: 10m 39s on Sun Mar 17 21:50:36 2024
```

Successful generation, 10mins for this process.



# Simple DY: event production

a good way to test the generated python file is to cross-check it with cmsDriver.py: <I> cmsDriver.py A/B/python/sherpa DYee MASTER cff.py \ -s GEN -n 100 -- no exec -- conditions auto:mc -- eventcontent RAWSIM

[melu@lxplus804 Sherpa]\$ ls

DYee\_sherpack DYee\_workdir README.md Run.dat DYee cards production sherpack generation.sh

[melu@lxplus804 Sherpa]\$ ls DYee sherpack/ Run.dat DYee sherpa DYee MASTER.md5 sherpa DYee MASTER.tgz sherpa DYee MASTER cff.py

DYee\_workdir is the "CMSSW\_12\_4\_18"

- cp DYee\_sherpack/sherpa\_DYee\_MASTER\_cff.py DYee\_workdir/src/MY/PROJECT/python/
- cd DYee\_workdir/src/
- cp ../../DYee\_sherpack/sherpa\_DYee\_MASTER.tgz .
- cmsenv
- scram b
- cmsDriver.py MY/PROJECT/python/sherpa\_DYee\_MASTER\_cff.py -s GEN -n 100 --no exec --conditions auto:mc --eventcontent RAWSIM

### Simple DY: event production



[melu@lxplus804 src]\$ ls GeneratorInterface MY sherpa DYee MASTER\_cff\_py\_GEN.py

### cmsRun sherpa\_DYee\_MASTER\_cff\_py\_GEN.py

```
Begin processing the 100th record. Run 1, Event 100, LumiSection 1 on stream 0 at 17-Mar-2024 22:41:33.306 CET
 Event 100 (2 \text{ s total}) = 3.82301e+06 \text{ evts/day}
In Event Handler::Finish : Summarizing the run may take some time.
  _____
  Total XS is 2282.69 pb +- ( 217.237 pb = 9.51 % )
  Event 100 (2 \text{ s total}) = 3.82301e+06 \text{ evts/day}
In Event Handler::Finish : Summarizing the run may take some time.
 Total XS is 2282.69 pb +- ( 217.237 pb = 9.51 % )
              GenXsecAnalyzer:
Before Filter: total cross section = 2.283e+03 +- 2.172e+02 pb
Filter efficiency (taking into account weights)= (1.66865e+06) / (1.66865e+06) = 1.000e+00 +- 0.000e+00
Filter efficiency (event-level)= (100) / (100) = 1.000e+00 +- 0.000e+00 [TO BE USED IN MCM]
After filter: final cross section = 2.283e+03 +- 2.172e+02 pb
After filter: final fraction of events with negative weights = 1.000e-02 +- 9.950e-05
After filter: final equivalent lumi for 1M events (1/fb) = 4.207e-01 + 3.924e-02
```



### Simple DY: event production

| [melu@lxplus804 src]\$ ls                       |                                   |              |
|-------------------------------------------------|-----------------------------------|--------------|
| GeneratorInterface                              | Result                            | sherpa_DYee_ |
| 'MIG_P+P+_13000_LHA[NNPDF30_nnlo_as_0118]_2.db' | Result.db                         | sherpa_DYee  |
| MPI Cross Sections.dat                          | Run.dat                           | sherpa DYee  |
| MY                                              | Sherpa References.tex             |              |
| Process                                         | <pre>sherpa_DYee_MASTER.tar</pre> |              |

curl -O https://raw.githubusercontent.com/Offshell-Workshop-LPC/Sherpa-tutorial/main/info.py

[melu@lxplus804 src]\$ python3 info.py #event: 100 Evt 0 pt: 0.0 pdgid: 2212 Status: 4 pt: 0.0 pdgid: 2212 Status: 11 pt: 0.0 pdgid: 2212 Status: 4 pt: 0.0 pdgid: 2212 Status: 11 pt: 1.7457729578018188 pdgid: 21 Status: 11 pt: 0.9126977920532227 pdgid: 3 Status: 11 pt: 2.02317214012146 pdgid: 21 Status: 11 pt: 0.3245411515235901 pdgid: 2203 Status: 11 pt: 0.2244596630334854 pdgid: 1 Status: 11 pt: 0.08571519702672958 pdgid: -3 Status: 11 pt: 2.16273832321167 pdgid: 2 Status: 11 pt: 3.98333740234375 pdgid: 2 Status: 11 pt: 1.4145997762680054 pdgid: 21 Status: 11 pt: 1.3599739074707031 pdgid: 2103 Status: 11 pt: 0.6708537340164185 pdgid: -2 Status: 11

Particle list in the event after parton shower/hadronization.

You can generate more events and try get the kinematics.

### MASTER.tgz \_MASTER\_cff\_py\_GEN.py MASTER cff\_py\_GEN.root



# $ggH(H \rightarrow \gamma \gamma)$

### Higgs process can be found in

https://sherpa.hepforge.org/doc/SHERPA-MC-2.2.15.html#HJets.

(processes){

Process 93 93 -> 22 22; NLO\_QCD\_Mode Fixed\_Order; NLO\_QCD\_Part BVIRS; Order (\*,2); Enable\_MHV 12; Loop\_Generator LGEN; Integrator PS2; RS\_Integrator PS3; End process;

}(processes)

(selector){ HiggsFinder 40 30 2.5 100 150; IsolationCut 22 0.4 2 0.025; }(selector)

- Fixed-order QCD (a pure QCD process, no Matching is needed)
- NLO\_QCD\_part: In case of fixed-order NLO calculations this switch specifies which pieces of a QCD NLO calculation are computed

B: born, V: virtual, I: subtraction term, RS: real emission

- Include the interference between continuum  $gg \gamma \gamma$  and  $ggH \rightarrow \gamma\gamma$
- "Enable\_MHV 12"  $\rightarrow$  hard coded module for Higgs interference calculation
- HiggsFinder: valid for diphoton process, here require the two leading photons with pt>40/30 GeV, |eta| < 2.5, and with invariant mass ~ [100, 150] GeV → change this to require the off-shell Higgs
- Isolation cut, refer to Frixione isolation cone



# $ggH(H \rightarrow \gamma \gamma)$

### Higgs process can be found in

### https://sherpa.hepforge.org/doc/SHERPA-MC-2.2.15.html#HJets.

### (run){

% scales, tags for scale variations EVENTS 1M; LGEN:=Higgs; EVENT\_GENERATION\_MODE W; AMEGIC\_ALLOW\_MAPPING 0; ME\_SIGNAL\_GENERATOR Amegic LGEN; SCALES VAR{Abs2(p[2]+p[3])};

% tags for process setup YUKAWA[4] 1.42; YUKAWA[5] 4.8; YUKAWA[15] 1.777; EW\_SCHEME 3;

### % collider setup BEAM\_1 2212; BEAM\_ENERGY\_1 = 6500.; BEAM\_2 2212; BEAM\_ENERGY\_2 = 6500.; PDF\_LIBRARY LHAPDFSherpa; PDF\_SET NNPDF30\_nnlo\_as\_0118; PDF\_VARIATIONS NNPDF30\_nnlo\_as\_0118[all];

% HIGGS\_INTERFERENCE\_MODE 1;


• Setup of pdf, EW parameters, collision energy ...

P\_QCD(BVI) : 0.0478947 pb +- ( 0.000223334 pb = 0.466303 % ) ex eff: 3.23193 j\_QCD(RS) : -0.00248694 pb +- ( 0.000133576 pb = 5.37108 % ) Ρ exp. eff: 0.00616454 % Total XS is 0.0439673 pb +- ( 0.00699675 pb = 15.91 % )

}(run)



21



### $gg \rightarrow 4I$ with Higgs contribution

(run){ % general settings EVENTS 1M;

% scales, tags for scale variations FSF:=1.; RSF:=1.; QSF:=1.; SCALES STRICT\_METS{FSF\*MU\_F2}{RSF\*MU\_R2}{QSF\*MU\_Q2}; CORE\_SCALE VAR{Abs2(p[2]+p[3]+p[4]+p[5])/4.0}; EXCLUSIVE\_CLUSTER\_MODE 1;

% tags for process setup NJET:=1; QCUT:=20;

% me generator settings ME\_SIGNAL\_GENERATOR Amegic LOOPGEN; EVENT\_GENERATION\_MODE Weighted; LOOPGEN:=OpenLoops; AMEGIC\_ALLOW\_MAPPING 0; % the following phase space libraries have to be generated with the % corresponding qq->llll setup (RUNDATA=Run.tree.dat) first; % they will appear in Process/Amegic/lib/libProc\_fsrchannels\*.so SHERPA\_LDADD Proc\_fsrchannels4 Proc\_fsrchannels5;

% collider setup BEAM\_1 2212; BEAM\_ENERGY\_1 6500.; BEAM\_2 2212; BEAM\_ENERGY\_2 6500.; }(run)

(processes){ Process 93 93 -> 90 90 90 90 93{1}; CKKW sqr(QCUT/E\_CMS); Order (2,4) {4}; Order (3,4) {5}; Integrator fsrchannels4 {4}; Integrator fsrchannels5 {5}; Enable\_MHV 10; # initialises external process Loop\_Generator LOOPGEN; Integration\_Error 0.02 {5}; End process; calculation }(processes) (selector){ Mass 11 -11 10.0 E\_CMS; Mass 13 -13 10.0 E\_CMS; Mass 15 -15 10.0 E\_CMS;

}(selector)

Just put the card here, not able to run yet, the external libs should be included during compiling sherpa, which seems not the case in CMSSW

# 22

hard coded module for Higgs interference



# gg**→**4l, Higgs only

Sherpa interface with openloops, we can add corresponding openloops libs to get the desired process, i.e.,  $gg \rightarrow 4I$  with Higgs only contribution


| ppllll2_onlyh  | gg → IIII  | Approximation 'onlyh'; Loop-induced product<br>leptons (all combinations of leptons and neu-<br>gluon fusion: only diagrams which contain a<br>coupling                                                  |
|----------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ppllllj        | pp → IIIIj | Production of four leptons (all combinations neutrinos) and a jet.                                                                                                                                       |
| ppllllj2       | pp → IIIIj | Squared one-loop matrix elements for four l<br>production (all combinations of leptons and<br>gluon fusion (+qq splitting), i.e. gggllll and g<br>the four-lepton system is directly coupled to<br>loop. |
| ppllllj2_onlyh | gg → IIIIj | Approximation 'onlyh'; Loop-induced product<br>leptons (all combinations of leptons and neu-<br>gluon fusion (+qq splitting), i.e. gggllll and g<br>diagrams which contain a Higgs Yukawa cou            |

ction of four eutrinos) in a Higgs Yukawa

### s of leptons and

lepton d neutrinos); gqqllll where the quark

ction of four eutrinos) in gqqllll: only upling



(run){ % general settings EVENTS 1M;

% scales, tags for scale variations FSF:=1.; RSF:=1.; QSF:=1.; SCALES STRICT\_METS{FSF\*MU\_F2}{RSF\*MU\_R2}{QSF\*MU\_Q2}; CORE\_SCALE VAR{Abs2(p[2]+p[3]+p[4]+p[5])/4.0}; EXCLUSIVE\_CLUSTER\_MODE 1;

% tags for process setup NJET:=1; QCUT:=20;

% me generator settings ME\_SIGNAL\_GENERATOR Amegic LOOPGEN; EVENT\_GENERATION\_MODE Weighted; LOOPGEN:=OpenLoops; AMEGIC\_ALLOW\_MAPPING 0; % the following phase space libraries have to be generated with the % corresponding qq->llll setup (RUNDATA=Run.tree.dat) first; % they will appear in Process/Amegic/lib/libProc\_fsrchannels\*.so SHERPA\_LDADD Proc\_fsrchannels4 Proc\_fsrchannels5; OL\_PARAMETERS preset 2 allowed\_libs ppllll2\_onlyh,ppllllj2\_onlyh;

### gg**→**4l, Higgs only

% collider setup BEAM\_1 2212; BEAM\_ENERGY\_1 6500.; BEAM\_2 2212; BEAM\_ENERGY\_2 6500.; }(run)

(processes){ Process 93 93 -> 90 90 90 90 93{1}; CKKW sqr(QCUT/E\_CMS); Order (2,4) {4}; Order (3,4) {5}; Integrator fsrchannels4 {4}; Integrator fsrchannels5 {5}; Enable\_MHV 10; # initialises external process Loop\_Generator LOOPGEN; Integration\_Error 0.02 {5}; End process; }(processes)

```
(selector){
  Mass 11 -11 10.0 E_CMS;
  Mass 13 -13 10.0 E_CMS;
  Mass 15 -15 10.0 E_CMS;
}(selector)
```



# generator parameters EVENTS 0; LGEN:=TTH; ME\_SIGNAL\_GENERATOR Amegic LGEN; HARD\_DECAYS On; % particle properties (ME widths need to be zero if external) WIDTH[6] 0; WIDTH[6] 0; STABLE[25] 0; WIDTH[25] 0.;

% settings for hard decays HDH\_STATUS[25,22,22] 2;

# physics parameters
SCALES VAR{sqr(175+125/2)};
PDF\_LIBRARY LHAPDFSherpa;
PDF\_SET MSTW2008nlo90cl;
USE\_PDF\_ALPHAS 1;

# collider parameters
BEAM\_1 2212; BEAM\_ENERGY\_1 6500;
BEAM\_2 2212; BEAM\_ENERGY\_2 6500;
}(run);

(processes){
 Process 93 93 -> 25 6 -6;
 NLO\_QCD\_Mode MC@NLO;
 Loop\_Generator LGEN;
 Order (\*,1);
 End process;
}(processes);

### ttH

Process 93 93 -> 25 6 -6;
→ Higgs is produced on-shell

STABLE[25] 0; WIDTH[25] 0.;
→ set Higgs to unstable

HARD\_DECAYS On; HDH\_STATUS[25,22,22] 2;

→ force Higgs decays to diphoton





### Summary

- Sherpa is a very powerful and automated generator, especially in the high multiplicity production
- Sherpa is integrated into CMSSW and ready for use
- For some specific processes, further development is needed in CMS side, i.e., including the necessary libs
- CMS doesn't use sherpa that much, a lot of space for contributions, for sure with the help of the sherpa authors

# Thanks!