

Electroweak corrections to double Higgs production at the LHC

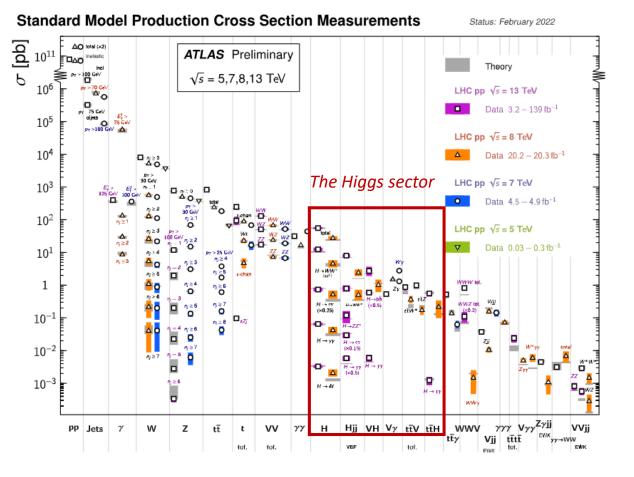
Huai-Min Yu

School of Physics, Peking University

February 21st, 2024

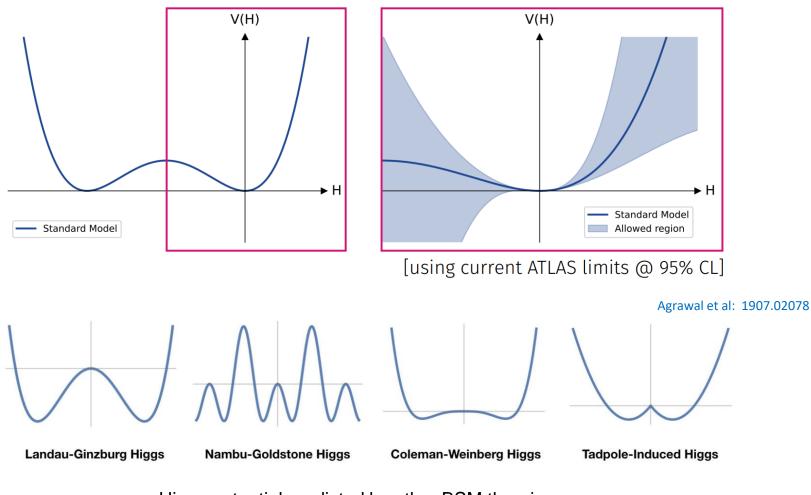
The Higgs WG4 meeting

Based on: arvix: 2311.16963


In cooperation with: Huan-Yu Bi, Li-Hong Huang, Rui-Jun Huang, Yan-Qing Ma

Introduction to Higgs

- Discovery of Higgs boson(2012,LHC): the last found elementary particle in SM
- Experiments at the ALTAS and CMS: consistent with the results predicted by SM


2/18

Higgs Potential

Problems not clear: shape of Higgs potential, new physics beyond SM...

Plot taken from Moser: Higgs 2023

Higgs potential predicted by other BSM theories.

Higgs trilinear coupling

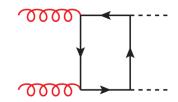
• Higgs potential is probed through determining the strength of Higgs boson selfinteractions in searches for HH production. ($\lambda^{SM} \approx 1/8$)

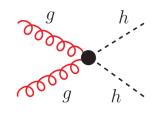
$$V(h) = \frac{m_h^2}{2}h^2 + \lambda^{SM}vh^3 + \frac{1}{4}\lambda^{SM}h^4 \implies H$$

• Experiment constraints on Higgs boson self-interactions:

ATLAS: 2007.02873 CMS: 2202. 09617 Jones: LHEP 2023 (2023) 442

- Current: $-1.5 < \lambda_{hhh}^{EX} / \lambda^{SM} < 6.7$ for ATLAS, $-2.3 < \lambda_{hhh}^{EX} / \lambda^{SM} < 9.4$ for CMS.
- Future: a limit of $-0.5 < \lambda_{hhh}^{EX} / \lambda^{SM} < 1.5$ will be achieved.

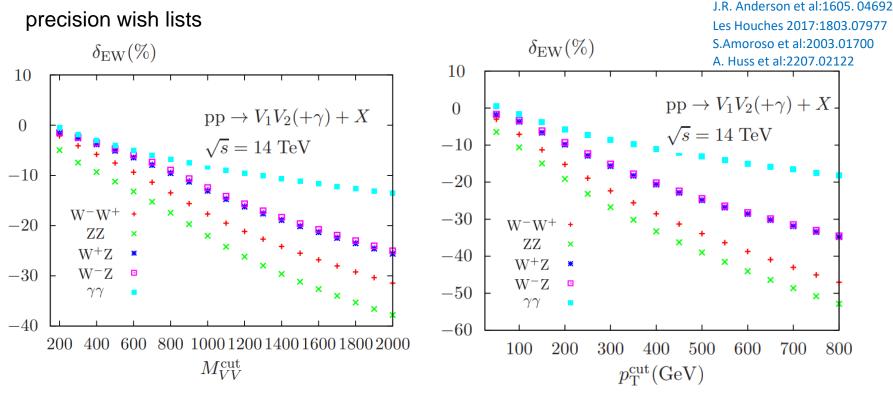

QCD corrections status



- corrections with full top quark mass dependence
 - NLO corrections keeping top quark mass, Borowka et al:1604.06447
 - NLO corrections matched to parton shower, Heinrich et al: 1703.09252
 - NLO corrections with soft-gluon resummation, Ferrera et al: 1609.01691
- corrections in heavy top limit (HTL) approximation
 - N²LO in HTL, Florian et al:1305.5206
 - N³LO in HTL, Chen et al:1909.06808
 - N²LO in HTL+ NLO with full top-quark mass dependence, Florian et al:2106.14050
 - N³LO in HTL include the top-quark mass effects, Chen et al:1912.13001
 - N²LO in HTL matched to parton shower, Alioli et al: 2212.10489
 - N³LO in HTL+ NLO with full top-quark mass dependence + soft-gluon resummation,

• Current QCD corrections uncertainties: O(1%) Jones: LHEP 2023 (2023) 442

Process	QCD	$\sigma_{th}[pb]$	δ_{th} [%]
HH production via gg fusion	N ³ LO _{HTL} NLO _{QCD}	0.03105	+2.2 -5.0



Ajjath et al:2209.03914

Why EW corrections

- EW corrections
 - $\alpha \sim \mathcal{O}(1\%)$, the biggest uncertainty from theoretical side!
 - Sudakov enhancement, $O(10\% \sim 30\%)$ corrections in high energy region. A Bierweiler et al: 1305.5402
 - NLO EW corrections are crucial, a focal point in 2015, 2017, 2019 and 2021 Les Houches

EW corrections status

https://indico.ihep.ac.cn/event/18025/

- Partial results
 - Higgs self-coupling corrections, Borowka et al: 1811.12366
 - two-loop box diagrams, Davies et al: 2207.02587
 - top-quark Yukawa corrections, Muhlleitner et al:2207.02524
- Recent developments on this topic: Higgs 2023, Nov 27- Dec 2, Beijing
 - Full NLO EW corrections in large- m_t limit

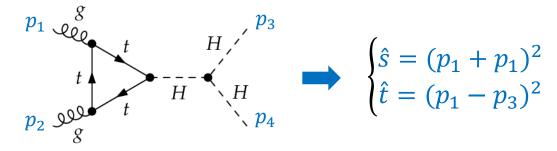
See talk by KIT group

Higgs-Higgs and Higgs-Yukawa parts corrections

See talk by Shandong University group

Yukawa and Self-Coupling Corrections
 <u>See talk by Durham University group</u>

Higgs

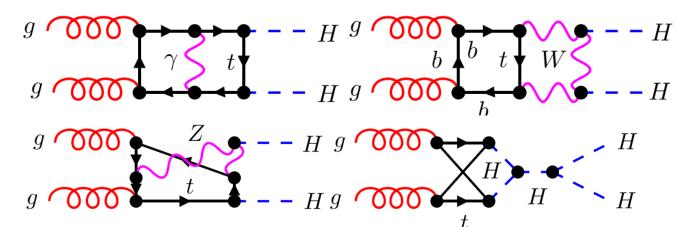

Production Rate

• Di-Higgs production cross section:

$$\sigma(\text{pp} \to \text{HH}) = \int dx_1 \, dx_2 f_g(x_1) f_g(x_2) \hat{\sigma}_{gg \to HH}(\hat{s}, m^2)$$

• Kinematics invariants and mass scales include $m_h, m_t, m_W, m_Z, \hat{s}, \hat{t}$,

- Multiple mass scales, analytic result for $\hat{\sigma}$ is challenging. X
- Monte Carlo integration method can be adopted.


$$\int dx_1 dx_2 f_g(x_1) f_g(x_2) d\hat{t} \frac{d\hat{\sigma}}{d\hat{t}}(\hat{s}, \hat{t}) = \sum_{i,j} \Delta_{i,j} \times \frac{d\hat{\sigma}}{dt} (\hat{s}_i, \hat{t}_j)$$

• Lots of numerical results for $d\hat{\sigma}/d\hat{t}$ at different phase space points are required.

Calculation procedure

- Numerical results for $d\hat{\sigma}/d\hat{t}$ at a phase space point (\hat{s}_i, \hat{t}_j) can be evaluated using following steps:
 - Generate Feynman amplitudes: 8 LO diagrams, 2020 NLO virtual correction diagrams.
 NLO real corrections are forbidden due to Furry theorem.

- Manipulate amplitudes to obtain scalar integrals.
- Reduce scalar integrals to master integrals.
- Calculate master integrals.
- Remove divergence via renormalization

T. Hahn:0012260

Manipulate amplitudes

• Amplitudes for $g(p_1)g(p_2) \rightarrow H(p_3)H(p_4)$:

$$M_{ab} = \delta_{ab} \epsilon_1^{\mu} \epsilon_2^{\nu} M_{\mu\nu}$$

• Decomposition to form factor

$$M_{\mu\nu} = F_1(\hat{s}, \hat{t}, m^2) T_1^{\mu\nu} + F_2(\hat{s}, \hat{t}, m^2) T_2^{\mu\nu}$$

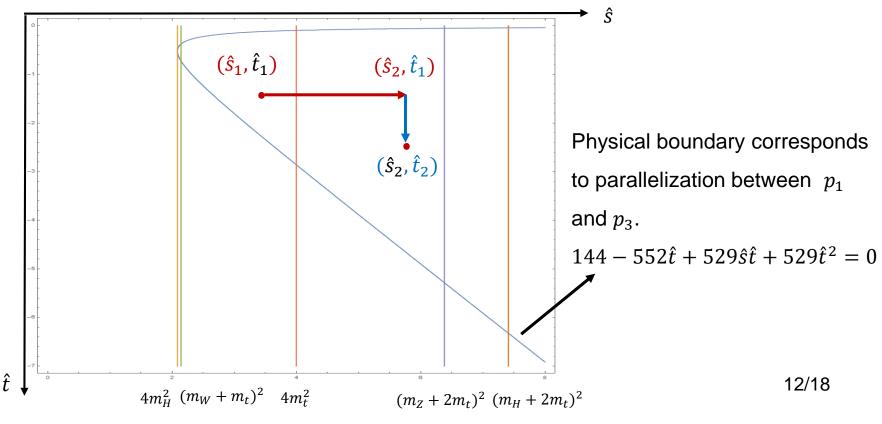
• Decomposition to scalar integrals

$$F_i(\hat{s}, \hat{t}, m^2) = \sum_j C_{i,j}(\hat{s}, \hat{t}, m^2) \times I_{i,j}(\hat{s}, \hat{t}, m^2)$$

Reduction to master integrals with Blade program package https://gitlab.com/multiloop-pku

$$I_{i,j,k}(\hat{s}, \hat{t}, m^2) = \sum_{k} P_{i,j,k}(\hat{s}, \hat{t}, m^2) \times \underbrace{M_{i,j,k}(\hat{s}, \hat{t}, m^2)}_{\text{To be calculated, results for } \mathcal{O}(10^4) \, (\hat{s}_i, \hat{t}_i) \text{ are required}}_{10/16}$$

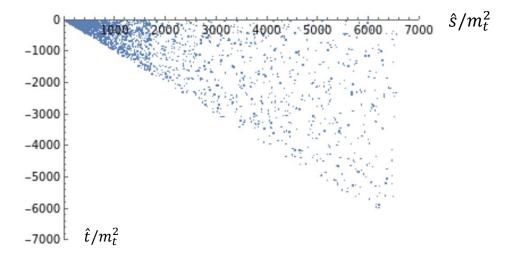
Calculate integrals


- Calculate integrals for a phase space point
 - Only two dimensional regulator ϵ points ($\epsilon = \pm \frac{1}{1000}$) are required
 - 3000 cpu.h run time using AMFlow program package https://gitlab.com/multiloop-pku
- Calculate integrals for 30000 phase space points
 - $O(10^8)$ cpu.h run time with all points calculated by AMFlow
 - Differential equation running method, $\mathcal{O}(10^5)$ cpu.h run time
- Solution of differential equation
 - Differential equations provided by Blade, $\frac{\partial}{\partial \hat{s}}\vec{I} = A_{\hat{s}}\vec{I}, \frac{\partial}{\partial \hat{t}}\vec{I} = A_{\hat{t}}\vec{I}$
 - Numerical boundary provided by AMFlow, $\vec{I}(\hat{s}_0, \hat{t}_0)$
 - General solution for DE of single variable:

$$I_{i} = \sum_{\mu \in S} (x - x_{0})^{\mu} \sum_{k=0}^{k_{\mu}} \log(x - x_{0})^{k} \sum_{n=0}^{m} c_{i,\mu,k,n} (x - x_{0})^{n}$$

DE running

- Only physical singularities in \hat{s} direction when intermediate particles go on-shell
- Continuation direction for \hat{s} is $+i0^-$
- Asymptotic expansion at singularities is required when crossing them for DE running in the *ŝ* direction
- Taylor expansion for DE running in the \hat{t} direction


MC samples

• LO production cross section:

$$\sigma_{\rm LO} = \sum_{i=1}^{N} \frac{1}{\mathrm{flux}_i} f_g(x_1^i, \mu) f_g(x_2^i, \mu) |\overline{M_{\rm LO}^i}(\hat{s}, \hat{t})|^2 \Delta x_1^i \Delta x_2^i \Delta \Phi_2^i$$

- μ is factorization scale and $\Delta \Phi_2$ corresponds to the element of phase space integral, $\Delta \Phi_2 \sim \Delta \hat{t}$
- Importance sampling based on LO cross section

• Samples are sparse at high energy region due to the suppression of gluon PDFs

Total cross sections

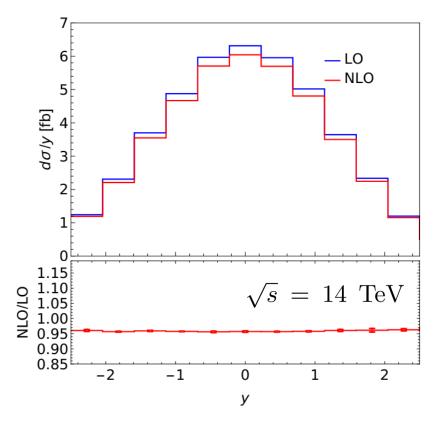
• Input parameters

•
$$\alpha = \frac{\sqrt{2}}{\pi} G_{\mu} m_W^2 \left(1 - \frac{m_W^2}{m_Z^2} \right) m_t = 172.69 \text{ GeV} \quad \alpha = 1/133.12$$

 $G_{\mu} = 1.166378 \times 10^{-5} \text{ GeV}^{-2}$

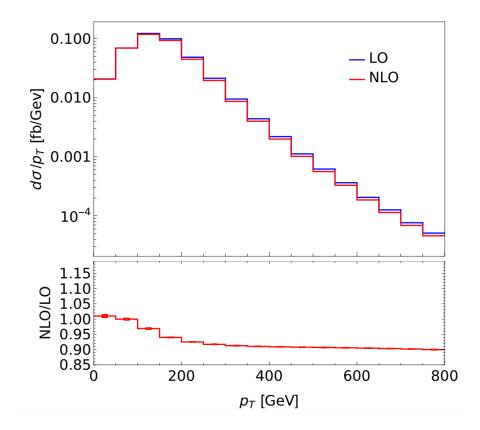
- NNPDF3.1 PDF set
- Renormalization
 - On-shell renormalization for masses and fields
 - G_{μ} -scheme renormalization for electromagnetic coupling
- Results: 1.8×10^4 events
 - K factor is stable. Its statistical error is smaller than cross sections
 - -4% NLO EW corrections

μ	$M_{HH}/2$	$\sqrt{p_T^2 + m_H^2}$	m_H
LO	19.96(6)	21.11(7)	25.09(8)
NLO	19.12(6)	20.21(6)	23.94(8)
$\mathcal{K} ext{-factor}$	0.958(1)	0.957(1)	0.954(1)

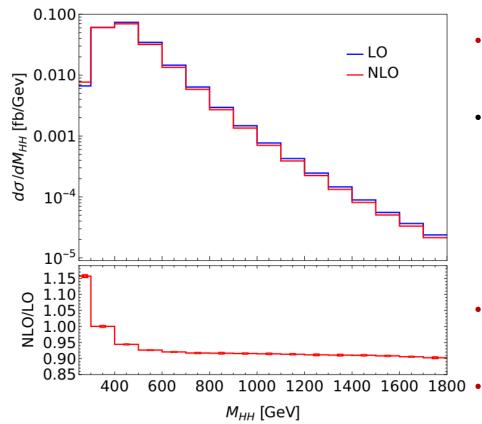

y differntial distribution

The differential K factor can get a controllable error with far fewer events

 $\Delta \sigma^{\rm NLO} = \Delta \mathbf{K} \times \Delta \sigma^{\rm LO}$


- ΔK uses 1.8×10^4 events for σ and additional 400 events for each bin
- $\Delta \sigma^{\text{LO}}$ uses 3×10^5 events
- Up to NLO, $K \approx 0.96$

p_T differntial distribution



-10% NLO corrections at the tail

M_{HH} differntial distribution

- +15% NLO corrections at the beginning of spectrum
- Substantial increase near threshold arises, considering heavy top-quark mass expansion, due to the leading term in the expansion at NLO is larger than that at LO by m_t^4
- -10% corrections in the tail, similar to p_T differential distribution
 - Sudakov enhancement

Summary

- Higgs trilinear coupling is important
- NLO EW corrections to total cross sections is about -4%
- -4% NLO EW corrections to rapidity distribution
- +15% NLO corrections at the beginning of spectrum for the M_{HH} , Sudakov effect was observed for both p_T and M_{HH} distribution
- Sufficient precision from current QCD corrections and NLO EW corrections for measurements at the HL-LHC

Thanks for your attention!