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Can we do better? 
Can we use the full field?

See Matilde's talk!
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Goal: Fit the full cosmic fieldSummary statistics:
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• Bayesian physical forward modelling which includes survey and observational effects
• Explicit likelihood which captures the cosmic formation history, and all available probes for PNG
• Differentiable forward model at the field-level, which allows for Hamiltonian MC
• Explore the full, uncompressed posterior of (discretised) initial conditions, 

 nuisance parameters, and fNL See Beatriz's talk on LEFT-field!
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Bias parameters

kmax=0.2 h/Mpc

Posterior distribution

Mock Data Inferred ICs Uncertainty
Radial selection function

Angular selection function
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See Jamie's talk+paper on bphi!
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Preliminary results: Inferring , bias and ICsfnl

✓Reconstruct 
underlying fields

✓Consistently 
recover ground 
truth values

✓Outperform 
traditional summary 
statistics



Summary  

Posterior distribution of fnl

1. Competitive results, incl. 
forecasts of  
for SDSS3/BOSS

σfnl
≈ 8.8 (68%)

3. Reconstruction of ICs

2. Incorporation of survey 
geometry effects

Survey geometry

Inferred Initial Conditions

mailto:adam.andrews@fysik.su.se


Δ

Setting-up: Fixed-phase analysis
ϕg( ⃗q)

ρh( ⃗x)

kmax = 0.1 h/Mpc, p=1




