Scalar sector of CP4 3HDM

Bei Liu (刘贝)

Sun Yat-sen University, China

CERN, October 21, 2024

Arxiv: 2409.05992 (Bei Liu, Igor P. Ivanov, João Gonçalves)

Bei Liu (Sun Yat-sen University)

Scalar sector of CP4 3HDM

CERN, October 21, 2024

1/16

1 Introduction

Scalar sector of CP4 3HDM

3 Outlook

ALC: 1 ALC: 1	1.00		** *	
Pot I m	(Sum	Vot con	1 1 2 2 2 2 7 6	Sec. 2 6 8 7
DCLLUU	L SUIT	141-801	UTITIVE	JI SH V

ъ

2/16

イロト イヨト イヨト イヨト

Multi-Higgs-Doublet Model and General CP Symmetry

Multi-Higgs-doublet model:

- 2HDM [T.D.Lee, 1973], see review: [G.C.Branco et al, 2012; Bhattacharyya et al, 2015].
- 3HDM [Weinberg, 1976], see review: [Igor P. Ivanov, 2017].

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Multi-Higgs-Doublet Model and General CP Symmetry

Multi-Higgs-doublet model:

- 2HDM [T.D.Lee, 1973], see review: [G.C.Branco et al, 2012; Bhattacharyya et al, 2015].
- 3HDM [Weinberg, 1976], see review: [Igor P. Ivanov, 2017].

General CP (GCP) transformation[G. Ecker et al, 1987; Grimus, Rebelo, 1997]:

$$\phi_i \xrightarrow{GCP} X_{ij} \phi_j^*$$

Apply CP transformation twice:

$$\phi_i \xrightarrow{GCP} X_{ij} \phi_j^* \xrightarrow{GCP} (XX^*)_{ij} \phi_j$$

- Usual CP: X = 1.
- CP symmetry of order 2 (CP2): $XX^* = 1$.
- CP symmetry of order 2k, if $(XX^*)^k = 1$.

CP4 3HDM

- Apply GCP symmetry to 2HDM [Ferreira et al, 2010] and 3HDM [Bree et al, 2024].
- 3HDM with CP symmetry of order 4 (CP4) was proposed in [Ivanov, Silva, 2015];
- The phenomenology of CP4 3HDM was discussed in [Ferreira et al, 2018; Zhao et al, 2023].

$$X = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & i \\ 0 & -i & 0 \end{pmatrix}, \quad XX^* = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad (XX^*)^2 = 1.$$

$$\phi_1 \rightarrow \phi_1^*, \quad \phi_2 \rightarrow i\phi_3^*, \quad \phi_3 \rightarrow -i\phi_2^*$$

Introduction

2 Scalar sector of CP4 3HDM

3 Outlook

Bei Liu (Sun Yat-sen University)

ъ

5/16

イロト イヨト イヨト イヨト

Higgs potential of CP4 3HDM

The Higgs potential with CP4 symmetry [Ivanov, Silva, 2015]:

$$\begin{split} V_0 &= -m_{11}^2(1^{\dagger}1) - m_{22}^2(2^{\dagger}2 + 3^{\dagger}3) + \lambda_1(1^{\dagger}1)^2 + \lambda_2[(2^{\dagger}2)^2 + (3^{\dagger}3)^2] \\ &+ \lambda_{34}(1^{\dagger}1)(2^{\dagger}2 + 3^{\dagger}3) + \lambda_{34}'(2^{\dagger}2)(3^{\dagger}3) - \lambda_4'[(2^{\dagger}2)(3^{\dagger}3) - (2^{\dagger}3)(3^{\dagger}2)] \\ &- \lambda_4[(1^{\dagger}1)(2^{\dagger}2) - (1^{\dagger}2)(2^{\dagger}1) + (1^{\dagger}1)(3^{\dagger}3) - (1^{\dagger}3)(3^{\dagger}1)] \\ V_1 &= \lambda_5(3^{\dagger}1)(2^{\dagger}1) + \lambda_8(2^{\dagger}3)^2 + \lambda_9(2^{\dagger}3)(2^{\dagger}2 - 3^{\dagger}3) + h.c. \end{split}$$

with complex λ_8, λ_9 , here $1, 2, 3 \equiv \phi_1, \phi_2, \phi_3$.

Vacuum expectation value(vev): $\langle \phi_1 \rangle = v_1/\sqrt{2}$, $\langle \phi_2 \rangle = v_2/\sqrt{2}$, $\langle \phi_3 \rangle = v_3/\sqrt{2}$. $\tan \beta = \sqrt{v_2^2 + v_3^2}/v_1$, $\tan \psi = v_3/v_2$

Misalignment SM-like Higgs boson

Expand three doublets:

$$\phi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} h_1^+ \\ v_1 + \rho_1 + ia_1 \end{pmatrix}, \phi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} h_2^+ \\ v_2 + \rho_2 + ia_2 \end{pmatrix}, \phi_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} h_3^+ \\ v_3 + \rho_3 + ia_3 \end{pmatrix}$$

э

7/16

イロト 人間 とくほ とくほど

Misalignment SM-like Higgs boson

In a Higgs basis: $\langle \Phi_1 \rangle = \nu/\sqrt{2}, \ \langle \Phi_2 \rangle = 0, \ \langle \Phi_3 \rangle = 0.$

$$\Phi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} \, G^+ \\ v + h_1 + i G^0 \end{pmatrix}, \\ \Phi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} w_2^+ \\ h_2 + i \eta_2 \end{pmatrix}, \\ \Phi_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} w_3^+ \\ h_3 + i \eta_3 \end{pmatrix}$$

- Two charged Higgs boson with a 2×2 mass matrix.
- Five neutral Higgs boson with a 5×5 mass matrix.

Misalignment SM-like Higgs boson

In a Higgs basis: $\langle \Phi_1 \rangle = \nu/\sqrt{2}, \ \langle \Phi_2 \rangle = 0, \ \langle \Phi_3 \rangle = 0.$

$$\Phi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} \, G^+ \\ v + h_1 + i G^0 \end{pmatrix}, \\ \Phi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} w_2^+ \\ h_2 + i \eta_2 \end{pmatrix}, \\ \Phi_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} w_3^+ \\ h_3 + i \eta_3 \end{pmatrix}$$

- Two charged Higgs boson with a 2×2 mass matrix.
- Five neutral Higgs boson with a 5×5 mass matrix.
- Alignment: $h_{SM} = h_1$.
- Misalignment: $h_{SM} = c_{\epsilon} \cdot h_1 + s_{\epsilon} c_{\alpha} c_{\gamma_1} \cdot h_2 + s_{\epsilon} c_{\alpha} s_{\gamma_1} \cdot h_3 + s_{\epsilon} s_{\alpha} c_{\gamma_2} \cdot \eta_3 + s_{\epsilon} s_{\alpha} s_{\gamma_2} \cdot \eta_2$

(Abbreviation: $s_{\alpha} \equiv \sin \alpha, c_{\alpha} \equiv \cos \alpha$.)

Here c_{ϵ} plays the same role as $\sin(\beta - \alpha)$ in 2HDM, shows $h_{SM}VV$ coupling.

The mass matrix of neutral Higgs boson

The parameters in the matrix contain $m_{11}^2, m_{22}^2, \lambda_i$.

In Higgs basis $(h_1, h_2, h_3, \eta_3, \eta_2)$, the most general scalar mass matrix:

.

The mass matrix of neutral Higgs boson

The parameters in the matrix contain $m_{11}^2, m_{22}^2, \lambda_i$.

In Higgs basis $(h_1, h_2, h_3, \eta_3, \eta_2)$, tridiagonal scalar mass matrix in CP4 3HDM:

$$ilde{\mathcal{M}} = \left(egin{array}{cccccc} a_{11} & a_{12} & 0 & 0 & 0 \ a_{12} & a_{22} & a_{23} & 0 & 0 \ 0 & a_{23} & a_{33} & a_{34} & 0 \ 0 & 0 & a_{34} & a_{44} & a_{23} \ 0 & 0 & 0 & a_{23} & a_{55} \end{array}
ight)$$

(a_{ij} are function of m_{11}^2, m_{22}^2 and λ_i , they're related)

Inversion procedure

A usual procedure: random scan in $\lambda_i \longrightarrow$ Physical Higgs [Ferreira et al, 2018].

Inversion procedure

A usual procedure: random scan in $\lambda_i \longrightarrow$ Physical Higgs [Ferreira et al, 2018].

- $h_{SM} = c_{\epsilon} \cdot h_1 + s_{\epsilon} c_{\alpha} c_{\gamma_1} \cdot h_2 + s_{\epsilon} c_{\alpha} s_{\gamma_1} \cdot h_3 + s_{\epsilon} s_{\alpha} c_{\gamma_2} \cdot \eta_3 + s_{\epsilon} s_{\alpha} s_{\gamma_2} \cdot \eta_2$
- With eigenvalue: $m_{SM}^2 = (125 \,\text{GeV})^2$.

$$\begin{pmatrix} a_{11} & a_{12} & 0 & 0 & 0 \\ a_{12} & a_{22} & a_{23} & 0 & 0 \\ 0 & a_{23} & a_{33} & a_{34} & 0 \\ 0 & 0 & a_{34} & a_{44} & a_{23} \\ 0 & 0 & 0 & a_{23} & a_{55} \end{pmatrix} \begin{pmatrix} c_{\epsilon} \\ s_{\epsilon}c_{\alpha}c_{\gamma_{1}} \\ s_{\epsilon}s_{\alpha}c_{\gamma_{2}} \\ s_{\epsilon}s_{\alpha}s_{\gamma_{2}} \end{pmatrix} = m_{\rm SM}^{2} \begin{pmatrix} c_{\epsilon} \\ s_{\epsilon}c_{\alpha}c_{\gamma_{1}} \\ s_{\epsilon}c_{\alpha}s_{\gamma_{1}} \\ s_{\epsilon}s_{\alpha}c_{\gamma_{2}} \\ s_{\epsilon}s_{\alpha}s_{\gamma_{2}} \end{pmatrix}$$

Inversion procedure

A usual procedure: random scan in $\lambda_i \longrightarrow$ Physical Higgs [Ferreira et al, 2018].

- $h_{SM} = c_{\epsilon} \cdot h_1 + s_{\epsilon} c_{\alpha} c_{\gamma_1} \cdot h_2 + s_{\epsilon} c_{\alpha} s_{\gamma_1} \cdot h_3 + s_{\epsilon} s_{\alpha} c_{\gamma_2} \cdot \eta_3 + s_{\epsilon} s_{\alpha} s_{\gamma_2} \cdot \eta_2$
- With eigenvalue: $m_{SM}^2 = (125 \,\text{GeV})^2$.

$$\begin{pmatrix} a_{11} & a_{12} & 0 & 0 & 0 \\ a_{12} & a_{22} & a_{23} & 0 & 0 \\ 0 & a_{23} & a_{33} & a_{34} & 0 \\ 0 & 0 & a_{34} & a_{44} & a_{23} \\ 0 & 0 & 0 & a_{23} & a_{55} \end{pmatrix} \begin{pmatrix} c_{\epsilon} \\ s_{\epsilon}c_{\alpha}c_{\gamma_{1}} \\ s_{\epsilon}s_{\alpha}c_{\gamma_{2}} \\ s_{\epsilon}s_{\alpha}s_{\gamma_{2}} \\ s_{\epsilon}s_{\alpha}s_{\gamma_{2}} \end{pmatrix} = m_{\rm SM}^{2} \begin{pmatrix} c_{\epsilon} \\ s_{\epsilon}c_{\alpha}c_{\gamma_{1}} \\ s_{\epsilon}c_{\alpha}s_{\gamma_{1}} \\ s_{\epsilon}s_{\alpha}c_{\gamma_{2}} \\ s_{\epsilon}s_{\alpha}s_{\gamma_{2}} \end{pmatrix}$$

Use m_{SM}^2 , ϵ , α , γ_1 , γ_2 as input parameters.

Five coefficients in Higgs potential are not free anymore.

Angles $\epsilon, \alpha, \gamma_1, \gamma_2$ related to the Yukawa coupling of h_{SM} [Zhao et al, 2023].

The mass distribution of extra neutral Higgs (general scan)

- With constraints:
 - Bounded from below [Ferreira et al, 2018].
 - Unitarity and Perturbativity constraints [Bento et al, 2022].
 - STU constraints [Grimus et al, 2008].
- $m_{min}(m_{max})$ is the minimum(maximum) mass of the four extra Higgs boson.
- $\tan \beta = \sqrt{v_2^2 + v_3^2} / v_1$
- Plot show: No decoupling limit
- All points have $m_{min} < 200 \,\text{GeV}!!!$

Few large m_{min} points

For $m_{min} < m_t$, the top quark $t \rightarrow Hc$ [CMS, 2024] and $t \rightarrow H^{\pm}b$ [ATLAS, 2018] decay channels could easily exceed experimental constraints.

 Scalar sector of CP4 3HDM

General Vs. Limit (Mismatch)

General Vs. Limit (Mismatch)

By analyzing the analytic form of mass matrix, we find that large m_{min} points $(m_{min} > 200 \text{ GeV})$ exist in a very narrow range in parameter space.

Focused scan in the high-mass region

Introduction

2 Scalar sector of CP4 3HDM

3 Outlook

Outlook: Misalignment Higgs boson and FCNC

SM-like Higgs boson could induce FCNC in CP4 3HDM:

$$egin{aligned} h_{SM} &= c_\epsilon \cdot h_1 + s_\epsilon c_lpha c_{\gamma_1} \cdot h_2 + s_\epsilon c_lpha s_{\gamma_1} \cdot h_3 + s_\epsilon s_lpha c_{\gamma_2} \cdot \eta_3 + s_\epsilon s_lpha s_{\gamma_2} \cdot \eta_2 \ & \mathcal{L} \supset ar{d}_L \operatorname{N}_{\operatorname{d}} d_R \, h_{SM} + h.c. \end{aligned}$$

• Coupling matrix N_{d2} for h_2 , η_2 [Zhao, 2023]: • Coupling matrix N_{d3} for h_3 , η_3 :

$$N_{d2} = \begin{pmatrix} m_d \cot \beta & 0 & 0 \\ 0 & m_s \cot \beta & 0 \\ 0 & 0 & -m_b \tan \beta \end{pmatrix}. \qquad N_{d3} \propto \begin{pmatrix} -m_s c_{2\theta} & -m_s s_{2\theta} & 0 \\ -m_d s_{2\theta} & m_d c_{2\theta} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Control angles $\epsilon, \alpha, \gamma_1, \gamma_2 \implies$ control FCNC.

.

Outlook: LFV

Connect the scalar sector to the lepton sector:

- h_{SM} LFV decay.
- Explore $H \to \ell_i^+ \ell_j^-$ [CMS, 2023]: For instance: the coupling of $H \to e^+ e^-$ is proportional to m_{μ} .
- Explore $\mu \to e \gamma$:

Thanks!

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQで

Find high-mass points

Method: find a strategy to make all diagonal elements large enough at the same time.

$ \left(\begin{array}{c} a_{11}\\ a_{12}\\ 0\\ 0\\ \dots\end{array}\right) $	$a_{12} \\ a_{22} \\ a_{23} \\ 0 \\ \dots$	$\begin{array}{ccc} 0 & 0 \\ a_{23} & 0 \\ a_{33} & a_{34} \\ a_{34} & a_{44} \\ \dots & \dots \end{array}$	···· ···· ····	= m	$n_{_{ m SM}}^2\cdot {f 1}$ -	$+a_{12}$	$ \tan x_2 1 0 0 \dots $	$\begin{array}{c} 1\\ \cot x_{2}\\ 0\\ 0\\ \cdots\end{array}$	$\begin{array}{c} 0\\ 2 & 0\\ 0\\ 0\\ 0\\ \ldots\end{array}$	0 0 0 0	···· ···· ····	
$+ a_{23}$	$ \left(\begin{array}{c} 0\\ 0\\ 0\\ 0\\ \ldots \right) $	$\begin{array}{c} 0\\ \tan x_3\\ 1\\ 0\\ \ldots\end{array}$	0 1 $\cot x_3$ 0 \dots	0 0 0 0	···· ···· ····	$+ a_{34}$	$ \left(\begin{array}{c} 0\\ 0\\ 0\\ 0\\ \dots\end{array}\right) $	0 0 0 0	$\begin{array}{c} 0\\ 0\\ \tan x_4\\ 1\\ \ldots\end{array}$	0 0 1 $\cot x_4$ \ldots	···· `)+

