Charge-breaking opportunities for the early Universe

Igor Ivanov

School of Physics and Astronomy, Sun Yat-sen University, Zhuhai

Extended Scalar Sectors From All Angles 2024 CERN, October 22, 2024

Based on: Aoki, Biermann, Borschensky, Ivanov, Mühlleitner, Shibuya, JHEP 02 (2024) 232 = arXiv:2308.04141 Yang, Ivanov, PRD110 (2024) 1, 015001 = arXiv:2401.03264.

Higgses can come in generations $\rightarrow N$ -Higgs-doublet models (NHDMs).

- T.D. Lee, 1973: 2HDM as a new source of CP-violation (CPV);
- Weinberg, 1976: 3HDM with natural flavor conservation and CPV;
- Intense activity in 70–80's: trying to reconstruct hierarchical quark and lepton masses and mixing patterns from symmetries and their breaking;
- Cosmological consequences: scalar dark matter candidates protected by residual symmetries and strong first-order phase transitions \rightarrow baryogenesis and GW signals.
- In total, $\mathcal{O}(10^4)$ papers over 40 years [Branco et al, 1106.0034; Ivanov, 1702.03776]

医尿囊炎

ヨー QQ

Charge-breaking vacuum in the early Universe

Igor Ivanov (SYSU, Zhuhai) [Charge-breaking for the early Universe](#page-0-0) 22/10/2024 2/22

Э× Þ

 \leftarrow \Box

 QQ

2HDM potential

2HDM with a softly broken \mathbb{Z}_2 symmetry (review Branco et al, 1106.0034):

$$
V_{\text{tree}} = m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + \text{h.c.}) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{\lambda_5}{2} [(\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.}].
$$

Vacuum stability: $\lambda_1, \lambda_2 > 0$, $\sqrt{\lambda_1\lambda_2} + \lambda_3 > 0$, $\sqrt{\lambda_1\lambda_2} + \lambda_3 + \lambda_4 - |\lambda_5| > 0$ [Deshpande, Ma, 1978]

• Perturbative unitarity: partial wave amplitudes $|a_{\ell}| < 1 \rightarrow$ eigenvalues of the 2 \rightarrow 2 quartic coupling matrix are $< 16\pi$ [Lee, Quigg, Thacker, 1977; Kanemura, Kubota, Takasugi, 1993; Logan, 2207.01064], see also [Goodsell, Staub, 1805.07310].

Natural flavor conservation [Glashow, Weinberg; Paschos, 1977] each right-handed fermion sector (u_R , d_R , ℓ_R) couples only to one Higgs doublet. Let's choose Type I 2HDM: all RH fermions couple only to Φ_2 .

Charge breaking vacuum

Minimization gives $\langle \Phi_1 \rangle$, $\langle \Phi_2 \rangle$, which can be written as

$$
\langle \Phi_1 \rangle = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0 \\ v_1 \end{array} \right) \, , \quad \langle \Phi_2 \rangle = \frac{1}{\sqrt{2}} \left(\begin{array}{c} u \\ v_2 e^{i\zeta} \end{array} \right) \, ,
$$

- Neutral vacuum: $u = 0$, residual symmetry $SU(2)_L \times U(1)_Y \to U(1)_{EM}$; the world we live in.
- Charge-breaking (CB) vacuum: $u \neq 0$: no residual symmetry, $SU(2)_L \times U(1)_Y$ is broken completely, massive photon, no conserved electric charge.
- **The usual procedure: disregard the CB vacuum, assume the neutral vacuum, choose** v_1, v_2, ξ **as** input, compute m_{ij}^2 , proceed with phenomenology.
- In general 2HDM, at tree level, the necessary and sufficient conditions for the CB minimum were established in [Ivanov, 2007].

 $\mathbf{y} = \mathbf{z}$. The \mathbf{y}

 \equiv Ω

Charge breaking vacuum

Minimization gives $\langle \Phi_1 \rangle$, $\langle \Phi_2 \rangle$, which can be written as

$$
\langle \Phi_1 \rangle = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0 \\ v_1 \end{array} \right) \, , \quad \langle \Phi_2 \rangle = \frac{1}{\sqrt{2}} \left(\begin{array}{c} u \\ v_2 e^{i\zeta} \end{array} \right) \, ,
$$

- Neutral vacuum: $u = 0$, residual symmetry $SU(2)_L \times U(1)_Y \to U(1)_{EM}$; the world we live in.
- Charge-breaking (CB) vacuum: $u \neq 0$: no residual symmetry, $SU(2)_L \times U(1)_Y$ is broken completely, massive photon, no conserved electric charge.
- The usual procedure: disregard the CB vacuum, assume the neutral vacuum, choose v_1, v_2, ξ as input, compute m_{ij}^2 , proceed with phenomenology.
- In general 2HDM, at tree level, the necessary and sufficient conditions for the CB minimum were established in [Ivanov, 2007].

\mathbb{Z}_2 symmetric 2HDM: the phase diagram

Conditions for the CB minimum: $\sqrt{\lambda_1 \lambda_2} > \lambda_3$, $\lambda_4 > |\lambda_5|$, the point (m_{11}^2, m_{22}^2) inside the CB wedge.

\mathbb{Z}_2 symmetric 2HDM: the phase diagram

 $\lambda_3 > 0$

The neutral/CB boundary is:

$$
\frac{m_{22}^2}{m_{11}^2} = \frac{\lambda_2}{\lambda_3} \, .
$$

The charged Higgs mass depends on the proximity to this boundary:

$$
\frac{m_{H^{\pm}}^2}{v^2} = \frac{\lambda_3}{2} \left(1 - \frac{m_{11}^2}{m_{22}^2} \frac{\lambda_2}{\lambda_3} \right) .
$$

Conditions for the CB minimum: $\sqrt{\lambda_1 \lambda_2} > \lambda_3$, $\lambda_4 > |\lambda_5|$, the point (m_{11}^2, m_{22}^2) inside the CB wedge.

 $\mathbf{F} \rightarrow \mathbf{F} \rightarrow \mathbf{F}$

 2990

Þ

Charge breaking vacuum

In the hot early Universe, the Higgs potential and its minima evolve with temperature $T \rightarrow$ phase transitions are expected.

Electroweak phase transition (EWPT) ($v = 0 \Rightarrow v \neq 0$) is the most famous example. But other phase transitions could have taken place.

What if the charge-breaking vacuum existed in the hot early Universe in a range of T?

Ginzburg, Ivanov, Kanishev, 0911.2383: a simple tree-level study revealed benchmark 2HDMs with an intermediate CB vacuum at finite T.

 \mathbf{y} , and \mathbf{y} is

ヨー QQ

Charge breaking vacuum

In the hot early Universe, the Higgs potential and its minima evolve with temperature $T \rightarrow$ phase transitions are expected.

Electroweak phase transition (EWPT) ($v = 0 \Rightarrow v \neq 0$) is the most famous example. But other phase transitions could have taken place.

What if the charge-breaking vacuum existed in the hot early Universe in a range of T?

Ginzburg, Ivanov, Kanishev, 0911.2383: a simple tree-level study revealed benchmark 2HDMs with an intermediate CB vacuum at finite T.

In Aoki et al, 2308.04141, we returned to this possibility with the finite- τ loop-corrected effective potential and the code BSMPT v2 [Basler, Mühlleitner, Müller, 2007.01725].

- \bullet Is it possible at all to have a CB vacuum at intermediate T ?
- Are such scenarios compatible with the LHC Higgs results?
- **If they are, what are the characteristic features of such scenarios?**

 \equiv ΩQ

The formalism

Finite T one-loop corrected effective potential: $V = V_{tree} + V_{CW} + V_{CT} + V_T$, where

- \bullet V_{CW} : T-independent one-loop Coleman-Weinberg potential,
- \bullet V_{CT} : T-independent counterterms (keep v and m_h),
- \bullet V_T : one-loop thermal corrections at finite T:

$$
V_T = \sum_k n_k \frac{T^4}{2\pi^2} J_{\pm}^{(k)} \left(\frac{m_k^2}{T^2}\right) ,
$$

with summation over all fields, n_k is the number of d.o.f., J's are the thermal integrals, m_k depend on the values of scalar fields; full expressions in [Basler et al, 1612.04086, 1803.02846].

Thermal masses are consistently implemented at one loop using the Arnold-Espinosa resummation procedure [Arnold, Espinosa, hep-ph/9212235; Quiros, hep-ph/9901312].

Recently extended to the general 2HDM using the bilinear formalism [Cao, Cheng, Xu, 2305.12764] and the Dirac algebra formalism [Pilaftsis, 2408.04511].

To gain qualitative insights, let's consider a toy model:

- stay with the tree-level potential,
- assume that the main thermal effect is in the quadratic coefficients:

$$
m_{11}^2(T) = m_{11}^2 + c_1 T^2
$$
, $m_{22}^2(T) = m_{22}^2 + c_2 T^2$, $m_{12}^2(T) = m_{12}^2$,

where for Type I 2HDM we have

$$
c_1 = \frac{1}{12} (3\lambda_1 + 2\lambda_3 + \lambda_4) + \frac{1}{16} (3g^2 + g'^2) ,
$$

\n
$$
c_2 = \frac{1}{12} (3\lambda_2 + 2\lambda_3 + \lambda_4) + \frac{1}{16} (3g^2 + g'^2) + \frac{1}{12} (y^2 + 3y^2 + 3y^2).
$$

Then one can describe thermal evolution as a straight trajectory on the phase diagram.

E

Ē.

Qualitative analysis

The ray passes through the CB wedge if

$$
\frac{c_2}{c_1} > \frac{|m_{22}^2|}{|m_{11}^2|} > \frac{\lambda_2}{\lambda_3}.
$$

- Not easy to satisfy!
- Placing $T = 0$ point close to the wedge will lead to a dangerously light charged Higgs!
- The plot is for

 $\lambda_1 = 2, \lambda_2 = 0.25, \lambda_3 = 0.6, \lambda_4 = 2.8,$

which leads to $m_{H^{\pm}} = 82$ GeV.

Adding m_{12}^2 plays against the CB phase.

∍

∍

The procedure adopted in Aoki et al, 2308.04141:

- Scan over parameter space of the tree-level potential to generate seed points:
	- At $T = 0$: neutral vacuum, $v = 246.22$ GeV, $m_h = 125.09$ GeV
	- At $T \neq 0$: intermediate CB phase.
- \bullet For each seed point, analyze the full finite-T one-loop corrected effective potential using BSMPT v2.
- Select points for which the intermediate CB phase survives for the effective potential.
- Use ScannerS [Coimbra et al, 1301.2599] to apply scalar sector constraints (unitarity, STU, flavor physics, HiggsSignals/HiggsBounds).
- **•** Unfortunately, all such seed points are excluded by the LHC data, mainly by $\mu_{\gamma\gamma}$, due to the presence of a light H^\pm .
- So, one more tweak: we explore the parameter space patches in the vicinity of seed points: the CB phase must be present in the full effective potential, but no need to require it in V_{tree} .

Numerical results

Intermediate CB vacuum is possible in the 2HDM — but only at the expense of a large λ_1 and EW symmetry non-restoration at high T! Typical predictions: large tan $\beta \sim 10 - 100$ and rather small $m_{H^+} \sim 150 - 200$ GeV.

 \leftarrow

凸

[Slide borrowed from the talk by Christoph Borschensky at Scalars 2023] Confirmed with BSMPT v3, Basler et al, 2404.19037.

×. Þ Þ

Charge-breaking bubbles walls in multi-Higgs-doublet models

Igor Ivanov (SYSU, Zhuhai) [Charge-breaking for the early Universe](#page-0-0) 22/10/2024 13/22

Ξ

 $\mathbf{F} \rightarrow \mathbf{F} \rightarrow \mathbf{F}$

 \leftarrow \Box

 QQ

ヨー

A powerful feature of 3HDM: a lot of new symmetry options available!

abelian groups: [Ferreira, Silva, 1012.2874; Ivanov, Keus, Vdovin, 1112.1660]

 \mathbb{Z}_2 , \mathbb{Z}_3 , \mathbb{Z}_4 , $\mathbb{Z}_2 \times \mathbb{Z}_2$, $U(1)$, $U(1) \times \mathbb{Z}_2$, $U(1) \times U(1)$.

finite non-abelian groups: [Ivanov, Vdovin, 1210.6553; Darvishi, Pilaftsis, 1912.00887]:

S₃, D₄, A₄, S₄, Δ(54), Σ(36).

• The classification is exhaustive: any other finite group leads to an accidental continuous symmetry. Accidental symmetries were classified in [Darvishi, Pilaftsis, 1912.00887].

Large finite groups come up with many minima and saddle points

 \Rightarrow consequences for phase transitions!

 \equiv Ω

The scalar potential

$$
V = -m^2 \left[\phi_1^{\dagger} \phi_1 + \phi_2^{\dagger} \phi_2 + \phi_3^{\dagger} \phi_3 \right] + \lambda_1 \left[\phi_1^{\dagger} \phi_1 + \phi_2^{\dagger} \phi_2 + \phi_3^{\dagger} \phi_3 \right]^2 - \lambda_2 \left[|\phi_1^{\dagger} \phi_2|^2 + |\phi_2^{\dagger} \phi_3|^2 + |\phi_3^{\dagger} \phi_1|^2 - (\phi_1^{\dagger} \phi_1)(\phi_2^{\dagger} \phi_2) - (\phi_2^{\dagger} \phi_2)(\phi_3^{\dagger} \phi_3) - (\phi_3^{\dagger} \phi_3)(\phi_1^{\dagger} \phi_1) \right] + \lambda_3 \left(|\phi_1^{\dagger} \phi_2 - \phi_2^{\dagger} \phi_3|^2 + |\phi_2^{\dagger} \phi_3 - \phi_3^{\dagger} \phi_1|^2 + |\phi_3^{\dagger} \phi_1 - \phi_1^{\dagger} \phi_2|^2 \right),
$$

where terms in blue are $SU(3)$ -invariant and λ_3 term selects out $\Sigma(36)$ subgroup.

- The model is extremely constrained \rightarrow numerous relations among scalar masses and couplings.
- Many features remain even if $\Sigma(36)$ is softly broken [Varzielas, Ivanov, Levy, 2107.08227].

 $\mathbf{F} \rightarrow \mathbf{F} \rightarrow \mathbf{F}$

 QQ

ヨー

Σ(36) 3HDM

[Ivanov, Nishi, 1410.6139]: up to cyclic permutations, the global minimum can only be at

A:
$$
(\omega, 1, 1)
$$
, A': $(\omega^2, 1, 1)$, B: $(1, 0, 0)$,
C: $(1, 1, 1)$, $(1, \omega, \omega^2)$, $(1, \omega^2, \omega)$.

Notation: for example, $(1, 1, 1)$ denotes the case $v_1 = v_2 = v_3$, that is

$$
\left(\langle \phi_1^0 \rangle, \, \langle \phi_2^0 \rangle, \, \langle \phi_3^0 \rangle \right) = \frac{\nu}{\sqrt{6}} \left(1, \, 1, \, 1 \right).
$$

- In each case, there are 6 degenerate global minima: $A+A'$ or $B+C.$
- But if we study phase transitions, we want to know:
	- \triangleright Can we have local minima? Can we have CB minima?
	- \triangleright Can we have CB saddle points which would separate neutral minima?
	- ▶ In 2HDM, CB domain walls were recently studied in [Sassi, Moortgat-Pick, 2309.12398] and
	- \triangleright See also [Fu et al, 2409.16359] for non-abelian domain walls and GW signals.

Σ(36) 3HDM

[Ivanov, Nishi, 1410.6139]: up to cyclic permutations, the global minimum can only be at

A:
$$
(\omega, 1, 1)
$$
, A': $(\omega^2, 1, 1)$, B: $(1, 0, 0)$,
C: $(1, 1, 1)$, $(1, \omega, \omega^2)$, $(1, \omega^2, \omega)$.

Notation: for example, $(1, 1, 1)$ denotes the case $v_1 = v_2 = v_3$, that is

$$
\left(\langle \phi_1^0 \rangle,\, \langle \phi_2^0 \rangle,\, \langle \phi_3^0 \rangle \right) = \frac{\nu}{\sqrt{6}} \left(1,\, 1,\, 1 \right).
$$

- In each case, there are 6 degenerate global minima: $A+A'$ or $B+C.$
- But if we study phase transitions, we want to know:
	- ▶ Can we have local minima? Can we have CB minima?
	- \triangleright Can we have CB saddle points which would separate neutral minima?
	- ▶ In 2HDM, CB domain walls were recently studied in [Sassi, Moortgat-Pick, 2309.12398] and
	- \triangleright See also [Fu et al, 2409.16359] for non-abelian domain walls and GW signals.

Σ(36) 3HDM

[Ivanov, Nishi, 1410.6139]: up to cyclic permutations, the global minimum can only be at

A:
$$
(\omega, 1, 1)
$$
, A': $(\omega^2, 1, 1)$, B: $(1, 0, 0)$,
C: $(1, 1, 1)$, $(1, \omega, \omega^2)$, $(1, \omega^2, \omega)$.

Notation: for example, $(1, 1, 1)$ denotes the case $v_1 = v_2 = v_3$, that is

$$
\left(\langle \phi_1^0 \rangle,\, \langle \phi_2^0 \rangle,\, \langle \phi_3^0 \rangle \right) = \frac{\nu}{\sqrt{6}} \left(1,\, 1,\, 1 \right).
$$

- In each case, there are 6 degenerate global minima: $A+A'$ or $B+C.$
- But if we study phase transitions, we want to know:
	- ▶ Can we have local minima? Can we have CB minima?
	- \triangleright Can we have CB saddle points which would separate neutral minima?
	- ▶ In 2HDM, CB domain walls were recently studied in [Sassi, Moortgat-Pick, 2309.12398] and [Battye et al, 2006.13273; Law, Pilaftsis, 2110.12550].
	- ▶ See also [Fu et al, 2409.16359] for non-abelian domain walls and GW signals.

Exact Σ (36)

In Yang, Ivanov, arXiv:2401.03264, we find an extremely rich picture, with 69 or 78 extrema in total. Color encodes neutral (black) and charge-breaking extrema (shades of red). Note: for $\lambda_3 > 2$, the deepest saddle point is charge-breaking.

Igor Ivanov (SYSU, Zhuhai) [Charge-breaking for the early Universe](#page-0-0) 22/10/2024 17/22

э

Softly broken Σ(36)

Adding \mathbb{Z}_3 -preserving soft breaking terms: $m_{ii}^2(\phi_i^{\dagger} \phi_i)$ with $m_{11}^2 + m_{22}^2 + m_{33}^2 = 0$. Parametrizing them via

$$
\mu_1 = \frac{1}{\sqrt{2}} \frac{m_{11}^2 - m_{22}^2}{m^2} \,, \quad \mu_2 = \frac{\sqrt{6}}{2} \frac{m_{33}^2}{m^2} \,.
$$

Coexistence of local and global minima on the plane of soft breaking parameters (μ_1, μ_2) . Also shown: T evolution in benchmark model 1 and benchmark model 2.

 QQ

Softly broken $\Sigma(36)$ 3HDM: benchmark 1

- Used the same simple tree-level thermal evolution with $m_{ii}^2(T) = m_{ii}^2 + c_i T^2$.
- A clear example of a deepest CB saddle point.
- The red dashed line indicates an approximate nucleation temperature (criterion: equal depth differences).
- **These features should survive in an accurate** numerical study.

Softly broken $\Sigma(36)$ 3HDM: benchmark 2

- **•** Here, we have several saddle points, either neutral or charge-breaking, which closely follow each other.
- Which bounce trajectory corresponds to the most probable bubble nucleation? Impossible to answer with this simplistic analysis!

 QQ

Softly broken $\Sigma(36)$ 3HDM: benchmark 2

- **•** Here, we have several saddle points, either neutral or charge-breaking, which closely follow each other.
- Which bounce trajectory corresponds to the most probable bubble nucleation? Impossible to answer with this simplistic analysis!
- **If several saddle points compete, it may happen** than bubbles of the same true and the same false vacua but completely different bubble wall profiles emerge in the Universe. How do they merge? What GW signatures are expected?
- A dedicated numerical study is required!

 QQ

- Rich phase transition dynamics in multi-Higgs models around the EW scale!
- \bullet Intermediate charge-breaking phases at finite T or charge-breaking bubble walls between neutral vacua are possible within 2HDM and become more intriguing in the 3HDM.
- Within the 3HDM, competing minima and saddle points are ubiquitous and may lead to highly non-trivial bubble nucleation and coalescence dynamics.
- What happens to fermions during evolution through a CB phase or upon the passage of a CB bubble wall? Any consequences for baryogenesis?

医尿囊炎

ヨー QQ