Measuring triple Higgs production at current and future colliders

Gilberto Tetlalmatzi-Xolocotzi

A. Papaefstathiou, M. Zaro ,GTX: Eur.Phys.J.C 79 (2019) 11, 947 (1909.09166)

A. Papaefstathiou, T. Robens, GTX: JHEP 05 (2021) 193 (2101.00037)

A. Papaefstathiou, GTX: JHEP 06 (2024) 124 (2312.13562)

O. Karkout, A. Papaefstathiou, M. Postma, GTX, J. van de Vis, T du Pree (2404.12425)

CPPS, Theoretische Physik 1, Universität Siegen

Université Paris-Saclay, CNRS/IN2P3, IJCLab,

Extended Scalar Sectors From All Angles

CFRN \cdot October 25th 2024

Laboratoire de Physique des 2 Infinis

Higgs Self-Interactions in the SM

$$
V(\Phi^{\dagger}\Phi) = \mu^2 \Phi^{\dagger} \Phi + \lambda_{SM} (\Phi^{\dagger} \Phi)^2
$$

$$
\Phi = (0, v_0 + h)^T / \sqrt{2}
$$

$$
V(\Phi^{\dagger}\Phi)\supset \frac{1}{2}m_h^2h^2+\lambda_{SM}v_0h^3+\frac{\lambda_{SM}}{4}h^4
$$

In the SM
$$
m_h^2 = \lambda_{SM} v_0^2/2
$$
 $v_0^2 = -\mu^2/\lambda_{SM}$

Why study triple Higgs production?

• The triple Higgs self coupling is sensitive to New Particles.

It also gives the opportunity to test the Higgs quartic self couplings.

Why study triple Higgs production?

Double Higgs production is the lowest multiplicity to probe for a_3 .

Triple Higgs production is the lowest multiplicity to probe for a_4 .

FCC

Strategy

Study the feasibility of measuring triple Higgs production as in the SM in the FCC

Study the feasibility of measuring triple Higgs production as in the SM in the FCC

Include extra scalars and asses the feasibility of the measurement at the FCC

Study the feasibility of measuring triple Higgs production as in the SM in the FCC

Include extra scalars and asses the feasibility of the measurement at the FCC

NP scalars enhance the cross section!

Study the feasibility of measuring triple Higgs production as in the SM in the FCC

Include extra scalars and asses the feasibility of the measurement at the FCC

NP scalars enhance the cross section!

Study triple Higgs production in the presence of NP scalar also at the LHC

FCC Study

 $h h h \longrightarrow X$

Assuming a K-factor of 2 Maltoni, Vryonidou, Zaro: 1408.6542

Chen et al.:1510.04013 Fuks, Kim, Lee: 1510.07697

6-b final state has the largest Branching Fraction

This is the channel we are focusing on in this talk

Backgrounds

(pp @ 100 TeV)

In the HL-LHC In the FCC $\log_{10}(p) \approx 14$ TeV)

 $\mathcal{L} = 3000$ fb⁻¹

 $\mathcal{L} = 20$ ab⁻¹

Details on the study of the 6b final state

- Parton level events (signal/background) generated with MadGraph5_aMC@NLO.
- The source of background with the highest XS is QCD-6b-Jets.
- The production of the 6b-final state is challenging, it was generated in the Siegen computer cluster using the gridpack option available in MadGraph5_aMC@NLO.
- Parton shower and non-perturbative effects included with **Herwig 7.**
- The analysis was performed using HwSim. [*Papaefsathiou*, https://bitbucket.org/andreasp/hwsim]

Selection Analysis

- *Require 6 b-tagged jets*
- Construct all the possible combinations of 3-pairs of b-jets: *I*.
- For each combination *I* calculate the observable

$$
\chi^{2,(6)} = \sum_{qr \in I} (M_{qr} - m_h)^2
$$

- *Select the event based on the value of the combination which* $minimizes \chi^{2,6}$
- The combination determining $\chi^{2,(6)}_{min}$ defines the best candidates *for the set of 3-Higgs bosons in the event.*

Selection Analysis

Set of observables and optimized cuts applied during the selection analysis

 h^{i} : Higgs boson candidate

 $i=1,2,3$

Sensitivity to quartic-self couplings

 $V(h) = \frac{1}{2} m_h^2 h^2 + \lambda_{SM} (1 + c_3) v_0 h^3 + \lambda_{SM} \frac{(1 + d_4)}{4}$ 4 h^4 Consider a generalized version of the SM scalar potential

Anomalous couplings

Relevant phenomenological Lagriangian to test anomalous couplings

$$
\mathcal{L}_{\text{PhenoExp}} = -\lambda_{\text{SM}} v (1 + d_3) h^3 - \frac{\lambda_{\text{SM}}}{4} (1 + d_4) h^4 \n+ \frac{\alpha_s}{12\pi} \left(c_{g1} \frac{h}{v} - c_{g2} \frac{h^2}{2v^2} \right) G^a_{\mu\nu} G^{\mu\nu}_a \n- \left[\frac{m_t}{v} (1 + c_{t1}) \bar{t}_L t_R h + \frac{m_b}{v} (1 + c_{b1}) \bar{b}_L b_R h + \text{h.c.} \right] \n- \left[\frac{m_t}{v^2} c_{t2} \bar{t}_L t_R h^2 + \frac{m_b}{v^2} c_{b2} \bar{b}_L b_R h^2 + \text{h.c.} \right] \n- \left[\frac{m_t}{v^3} \left(\frac{c_{t3}}{2} \right) \bar{t}_L t_R h^3 + \frac{m_b}{v^3} \left(\frac{c_{b3}}{2} \right) \bar{b}_L b_R h^3 + \text{h.c.} \right],
$$

Obtained by considering D=6 EFT operators (SILH, 0703164) and breaking correlations (ATLAS and CMS)

Can also be obtained from the Electroweak chiral Lagrangian

See A. Papaefstathiou talk

Anomalous couplings

Relevant phenomenological Lagriangian to test anomalous couplings

$$
\mathcal{L}_{\text{PhenoExp}} = -\lambda_{\text{SM}} v (1 + d_3) h^3 - \frac{\lambda_{\text{SM}}}{4} (1 + d_4) h^4 \n+ \frac{\alpha_s}{12\pi} \left(c_{g1} \frac{h}{v} - c_{g2} \frac{h^2}{2v^2} \right) G^a_{\mu\nu} G^{\mu\nu}_{a} \n- \left[\frac{m_t}{v} (1 + c_{t1}) \bar{t}_L t_R h + \frac{m_b}{v} (1 + c_{b1}) \bar{b}_L b_R h + \text{h.c.} \right] \n- \left[\frac{m_t}{v^2} c_{t2} \bar{t}_L t_R h^2 + \frac{m_b}{v^2} c_{b2} \bar{b}_L b_R h^2 + \text{h.c.} \right] \n- \left[\frac{m_t}{v^3} \left(\frac{c_{t3}}{2} \right) \bar{t}_L t_R h^3 + \frac{m_b}{v^3} \left(\frac{c_{b3}}{2} \right) \bar{b}_L b_R h^3 + \text{h.c.} \right],
$$

Obtained by considering D=6 EFT operators (SILH, 0703164) and breaking correlations (ATLAS and CMS)

Can also be obtained from the Electroweak chiral Lagrangian

See A. Papaefstathiou talk

Two Real Singlet Extension of the SM **TRSM**

$$
V(\Phi, \phi_i) = V_{SM}(\Phi) + V(\Phi, S, X)
$$

Reduce the number of parameters by imposing

 \mathbb{Z}_2^S : *S* → − *S , X* → *X* \mathbb{Z}_2^X : $S \rightarrow S$, $X \rightarrow -X$

$$
V(\Phi, X, S) = \mu_{\Phi}^{2} \Phi^{\dagger} \Phi + \lambda_{\Phi} (\Phi^{\dagger} \Phi)^{2} + \mu_{S}^{2} S^{2} + \lambda_{S} S^{4}
$$

+
$$
\mu_{X}^{2} X^{2} + \lambda_{X} X^{4} + \lambda_{\Phi S} \Phi^{\dagger} \Phi X^{2} + \lambda_{SX} S^{2} X^{2}
$$

$$
X = (\phi_{X} + \nu_{X})/\sqrt{2}
$$

 $h_{\rm l}\!=\!h_{\rm}$ is the SM Higgs boson

$$
M_1 = 125 \, GeV
$$

Free independent parameters $M_{\overline{2},} M_{\overline{3},} \overline{\theta}_{\overline{h}S}$, $\overline{\theta}_{\overline{h}X}$, $\overline{\theta}_{\overline{S}X}$, $\overline{\nu}_S$, $\overline{\nu}_X$

Change to the physical basis

$$
\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = R(\theta_X, \theta_S) \begin{pmatrix} \phi_h \\ \phi_S \\ \phi_X \end{pmatrix}
$$

Robens, Stefaniak, Wittbrodt: 1908.08554

Old Benchmark Scenario of Study BP3

The BP3 Scenario introduced in 1908.08554 which allows for a large h1 h1 h1 production while obeying current theoretical and experimental constraints.

We consider the mass hierarchy

Production cross section

The X-Section can reach up to 50 fb for M² ~(263,280) GeV and M³ ~450 GeV

Old benchmark points

These points are associated with large couplings which can break perturbativity at the energy scale MZ

Determine phase space that enhances triple Higgs production in the TRSM based on

Determine phase space that enhances triple Higgs production in the TRSM based on

> *Perturbative conditions* $\lambda_{11} < \frac{\pi^2}{3} \approx 3.3$, $\lambda_{22}, \lambda_{33} < \frac{4\pi^2}{9} \approx 4.4$, $\lambda_{12}, \lambda_{13}, \lambda_{23} < 2\pi^2 \approx 20$

Determine phase space that enhances triple Higgs production in the TRSM based on

> *Perturbative conditions* $\lambda_{11} < \frac{\pi^2}{3} \approx 3.3$, $\lambda_{22}, \lambda_{33} < \frac{4\pi^2}{9} \approx 4.4$, $\lambda_{12}, \lambda_{13}, \lambda_{23} < 2\pi^2 \approx 20$

> > Boundedness from below

Determine phase space that enhances triple Higgs production in the TRSM based on

> *Perturbative conditions* $\lambda_{11} < \frac{\pi^2}{3} \approx 3.3$, $\lambda_{22}, \lambda_{33} < \frac{4\pi^2}{9} \approx 4.4$, $\lambda_{12}, \lambda_{13}, \lambda_{23} < 2\pi^2 \approx 20$

> > Boundedness from below

Experimental constraints from HiggsTools (HiggsSignals and HiggsBounds)

Determine phase space that enhances triple Higgs production in the TRSM based on

> *Perturbative conditions* $\lambda_{11} < \frac{\pi^2}{3} \approx 3.3$, $\lambda_{22}, \lambda_{33} < \frac{4\pi^2}{9} \approx 4.4$, $\lambda_{12}, \lambda_{13}, \lambda_{23} < 2\pi^2 \approx 20$

> > Boundedness from below

Experimental constraints from HiggsTools (HiggsSignals and HiggsBounds)

Determine phase space that enhances triple Higgs production in the TRSM based on

> *Perturbative conditions* $\lambda_{11} < \frac{\pi^2}{3} \approx 3.3$, $\lambda_{22}, \lambda_{33} < \frac{4\pi^2}{9} \approx 4.4$, $\lambda_{12}, \lambda_{13}, \lambda_{23} < 2\pi^2 \approx 20$

> > Boundedness from below

Experimental constraints from HiggsTools (HiggsSignals and HiggsBounds)

We consider the threshold

 $\sigma_{3h_1} > 100 \sigma_{3h_1}^{\text{SM}},$

Our analysis entailed 530,000 phase space points

Only 130 points fulfilled all the conditions

See Osama Karkout talk

Update of A. Papaefstathiou, T. Robens, GTX: 2101.00037/ JHEP 05 (2021), 193

 $\lambda_{11} < \frac{\pi^2}{3} \approx 3.3$, $\lambda_{22}, \lambda_{33} < \frac{4\pi^2}{9} \approx 4.4$, $\lambda_{12}, \lambda_{13}, \lambda_{23} < 2\pi^2 \approx 20$

 $\lambda_{11} < \frac{\pi^2}{3} \approx 3.3$, $\lambda_{22}, \lambda_{33} < \frac{4\pi^2}{9} \approx 4.4$, $\lambda_{12}, \lambda_{13}, \lambda_{23} < 2\pi^2 \approx 20$

In practice our points fulfil the following theoretical relationship

 $\ln(\mu_{\rm pole}/\mu_{\rm pert})=2$

 $\mu_{\rm pole} \approx 7.4 \mu_{\rm pert}$

Closing Remarks

- Triple Higgs production $h_1h_1h_1$ as in the SM cannot be probed at the LHC due to its tiny cross section.
- The improved luminosity and center of mass energy of a 100 TeV collider can make the detection of the SM $h_1h_1h_1$ possible.
- The 6-b jets final state is a good candidate to search for $h_1h_1h_1$ within *and beyond the SM*
- *Extended scalar sectors can be probed through h¹ h1 h1 even in the HL-LHC (consider for instance the TRSM).*

Acknowledgements

 This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 945422

$$
\mathcal{L}_{h^{n}} = -\mu^{2}|H|^{2} - \lambda|H|^{4} - (y_{t}\bar{Q}_{L}H^{c}t_{R} + y_{b}\bar{Q}_{L}Hb_{R} + \text{h.c.})
$$

+
$$
\frac{c_{H}}{2\Lambda^{2}}(\partial^{\mu}|H|^{2})^{2} - \frac{c_{6}}{\Lambda^{2}}\lambda_{\text{SM}}|H|^{6} + \frac{\alpha_{s}c_{g}}{4\pi\Lambda^{2}}|H|^{2}G^{a}_{\mu\nu}G^{\mu\nu}_{a}
$$

$$
- \left(\frac{c_{t}}{\Lambda^{2}}y_{t}|H|^{2}\bar{Q}_{L}H^{c}t_{R} + \frac{c_{b}}{\Lambda^{2}}y_{b}|H|^{2}\bar{Q}_{L}Hb_{R} + \text{h.c.}\right),
$$

Anomalous couplings

Confidence regions on the anomalous couplings at proton-proton colliders

HL-LHC FCC

In this plot it is assumed that the SM is the underlying theory

Adding an Extra-Scalar Singlet The x-SM potential

$$
V(\Phi, S) = \mu_{\Phi}^{2} \Phi^{\dagger} \Phi + \lambda_{\Phi} (\Phi^{\dagger} \Phi)^{2} + \left(\frac{a_{1}}{2}\right) (\Phi^{\dagger} \Phi) S \text{ Notwal et al. 1605.06123}
$$

+ $\left(\frac{a_{2}}{2}\right) (\Phi^{\dagger} \Phi) S^{2} + \left(\frac{b_{2}}{2}\right) S^{2} + \left(\frac{b_{3}}{3}\right) S^{3} + \left(\frac{b_{4}}{4}\right) S^{4}$

 $S = (\phi_S + v_S)/\sqrt{2}$ $h_1 = h \cos \theta + \phi_s \sin \theta$ $h_2 = -h \sin \theta + \phi_s \cos \theta$ **Mass Eigenstates**

Triple Higgs production in the presence of an extra-scalar

Analysis results

Benchmark points which lead to a Strong-First Order EW Phase Transition

Benchmark Significance