Electroweak Baryogenesis via Domain Walls in the N2HDM

Mohamed Younes Sassi in collaboration with Gudrid Moortgat-Pick Geneva, 22/10/2024

Partially based on 2407.14468 and JHEP 04 (2024) 101

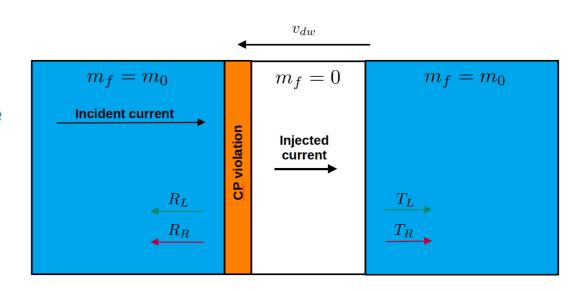
Motivation and main idea

Problem

- Matter anti-matter asymmetry cannot be solved using physics from the standard model alone.
- Conventional electroweak baryogenesis relies on CP-violation that is mainly constrained by EDM.

Proposed solution

- Several BSM Higgs sectors predict the formation of topological defects such as domain walls in the early universe (without the need for a first order phase transition!).
- The scalar doublets can have vanishing or very small VEVs inside the domain wall.
- CP-violating vacuum condensates generated in the vicinity of the wall.
- Similar mechanism proposed in 2404.13035 (Brandenberger and Schröder) in the context of embedded domain walls.



Introduction to Domain Walls

Simple definition

- Domain walls are a type of topological defects that arise after spontaneous symmetry breaking (SSB) of a discrete symmetry in the early universe.
- After SSB, different regions of the universe end up in different degenerate vacua. The universe is then divided into seperate cells with the boundary between them called a "domain wall".

Simplest example (real singlet scalar)

$$V(\phi) = \mu \phi^2 + \lambda \phi^4$$

V(Φ) is **invariant** under **Z**₂: $\phi \rightarrow -\phi$

 Universe gets seperated into different cells with positive and negative minima having the same probability to occur.

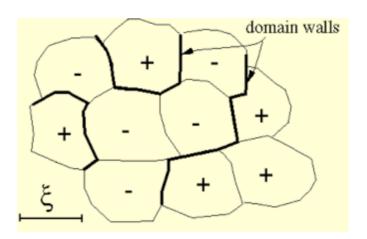


Fig from https://www.ctc.cam. ac.uk/outreach/origi ns/cosmic_structure s two.php

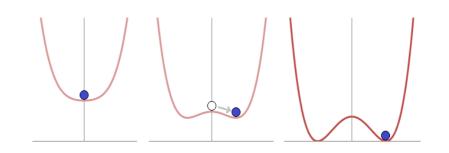


Fig from wikipedia

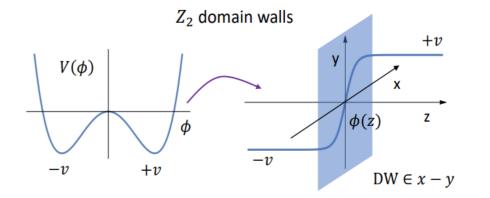


Fig from S.Blasi talk at DESY

The next-to-two-Higgs-doublet-model (N2HDM)

Add one extra doublet and one extra singlet to the Standard Model.

$$\begin{split} V_{N2HDM} &= m_{11}^2 \Phi_1^\dagger \Phi_1 + m_{22}^2 \Phi_2^\dagger \Phi_2 + m_{12}^2 (\Phi_1^\dagger \Phi_2 + h.c) + \frac{\lambda_1}{2} \left(\Phi_1^\dagger \Phi_1\right)^2 + \frac{\lambda_2}{2} \left(\Phi_2^\dagger \Phi_2\right)^2 \\ &\quad + \lambda_3 \left(\Phi_1^\dagger \Phi_1\right) \left(\Phi_2^\dagger \Phi_2\right) + \lambda_4 \left(\Phi_1^\dagger \Phi_2\right) \left(\Phi_2^\dagger \Phi_1\right) + \left[\frac{\lambda_5}{2} \left(\Phi_1^\dagger \Phi_2\right)^2 + h.c\right] \quad \text{Two Higgs doublets} \\ &\quad \left(+ \frac{m_S^2}{2} \Phi_s^2 + \frac{\lambda_6}{8} \Phi_s^4 + \frac{\lambda_7}{2} \Phi_s^2 (\Phi_1^\dagger \Phi_1) + \frac{\lambda_8}{2} \Phi_s^2 (\Phi_2^\dagger \Phi_2). \right) \quad \text{Singlet scalar component} \end{split}$$

The N2HDM admits several discrete symmetries

- Z_2 Symmetry: $\Phi_1 \rightarrow \Phi_1$, $\Phi_2 \rightarrow -\Phi_2$, $\Phi_s \rightarrow \Phi_s$ (softly broken by m_{12} term). Used to forbid Flavor-Changing-Neutral-Currents at tree level when extended to the quarks in the Yukawa sector.
- **Z'₂Symmetry**: $\Phi_1 \rightarrow \Phi_1$, $\Phi_2 \rightarrow \Phi_2$, $\Phi_s \rightarrow -\Phi_s$. **Unbroken** in the **standard N2HDM**. Leads to the formation of stable domain walls that are **cosmologically forbidden**. Problem solved by adding small soft breaking terms:

$$a\Phi_s, b\Phi_s^3, c_1\Phi_s\Phi_1^2, c_2\Phi_s\Phi_2^2, c_3\Phi_s\Phi_1\Phi_2, \dots$$

 We assume those terms are very small making them irrelevant for the DW profiles (only relevant for determining the annihilation time of the DW network)

The next-to-two-Higgs-doublet-model (N2HDM)

Possible types of vacua in the N2HDM:

$$\langle \Phi_1 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_1 \end{pmatrix}, \qquad \langle \Phi_2 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} v_+ \\ \pm v_2 e^{i\xi} \end{pmatrix}, \qquad \langle \Phi_s \rangle = \pm v_s.$$

The N2HDM admits several types of vacua after SSB:

- Electrically charged vacuum: $v_+ \neq 0$. Breaks $U(1)_{em}$ and leads to photons being massive \rightarrow unphysical.
- CP-Violating vacuum: $\xi \neq 0$. CP-violation due to phase between the doublets \rightarrow constrained by EDM
- Neutral vacuum: $v_+ = 0$, $\xi = 0$. Same behavior as the SM Higgs vacuum \rightarrow used throughout this work
- It was shown that it is possible to have CP-violating or electric charge breaking vacua localized inside domain walls of the 2HDM (see (Battye, Pilaftsis, Viatic) [2006.13273] JHEP, (Pilaftsis, Law) [2110.12550] PRD and (MYS, Moortgat-Pick) [2309.12398] JHEP).
- Similar behavior in the N2HDM → Opportunity for electroweak baryogenesis via domain walls.

Domain Wall solutions in the N2HDM

We focus on domain walls related to the Z'₂ symmetry breaking:

To get the domain wall solution:

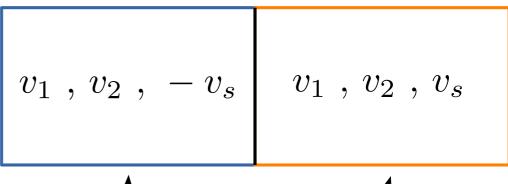
- Determine the boundary conditions
- Solve the equation of motion of the scalar fields:

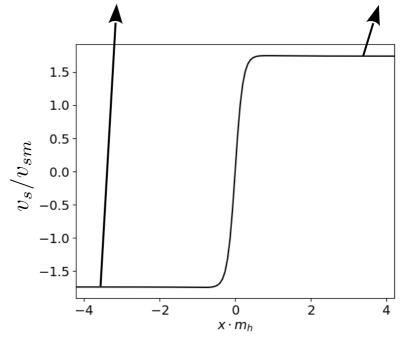
$$\frac{d^2v_s}{dx^2} - \frac{dV_{N2HDM}}{dv_s} = 0$$

$$\frac{d^2v_1}{dx^2} - \frac{dV_{N2HDM}}{dv_1} = 0$$

$$\frac{d^2v_2}{dx^2} - \frac{dV_{N2HDM}}{dv_2} = 0$$

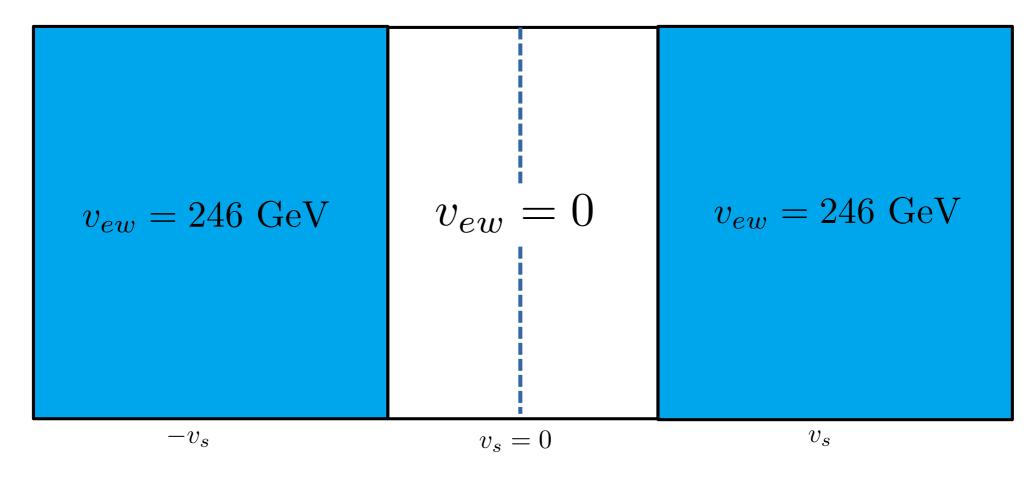
 This is done numerically using a gradient flow algorithm, see Battye, Brawn, Pilaftsis 2011 (JHEP)



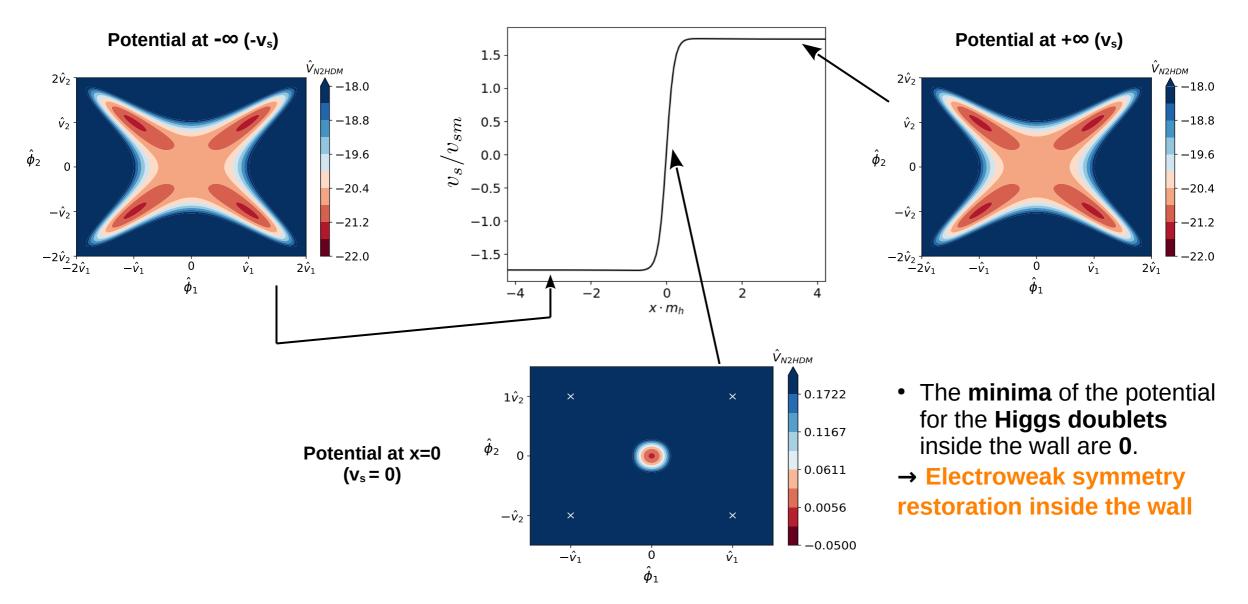


First ingredient for Baryogenesis via domain walls:

- The electroweak symmetry is restored inside and in the vicinity of the wall.
- Therefore EW sphalerons are unsuppressed inside the wall.



How to realise this? Use the domain wall solution of the singlet in the N2HDM to make the 2HDM potential dependent on the space coordinate x:



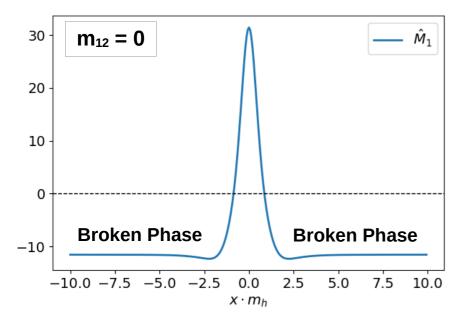
In the N2HDM the effective mass terms are:

$$V_{N2HDM} = m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 + m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + h.c) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \left[\frac{\lambda_5}{2} (\Phi_1^{\dagger} \Phi_2)^2 + h.c \right] + \frac{m_S^2}{2} \Phi_s^2 + \frac{\lambda_6}{8} \Phi_s^4 + \frac{\lambda_7}{2} \Phi_s^2 (\Phi_1^{\dagger} \Phi_1) + \frac{\lambda_8}{2} \Phi_s^2 (\Phi_2^{\dagger} \Phi_2).$$

Extract the effective mass terms for the doublets:

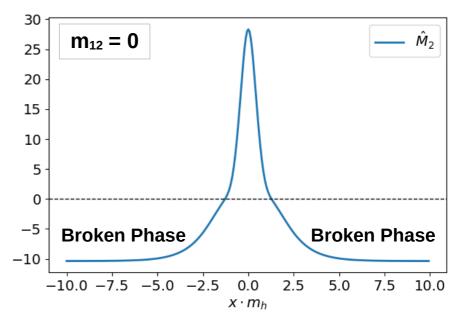
$$M_1 = \frac{m_{11}^2}{2} + \lambda_{345}v_2^2(x) + \frac{\lambda_7}{2}v_s^2(x)$$

Symmetric Phase



$$M_2 = \frac{m_{22}^2}{2} + \lambda_{345}v_1^2(x) + \frac{\lambda_8}{2}v_s^2(x)$$

Symmetric Phase



Verify the possibility of electroweak symmetry restoration by solving the EOMs of the scalar fields:

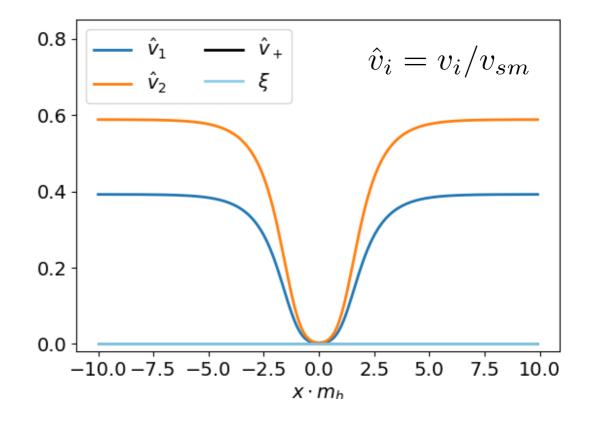
$$\frac{d^2v_s}{dx^2} - \frac{dV_{N2HDM}}{dv_s} = 0 \qquad \frac{d^2v_2}{dx^2} - \frac{dV_{N2HDM}}{dv_2} = 0$$
$$\frac{d^2v_1}{dx^2} - \frac{dV_{N2HDM}}{dv_1} = 0$$

Boundary conditions:

$$\Phi_1(\pm \infty) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_1 \end{pmatrix}$$

$$\Phi_s(-\infty) = -v_s$$

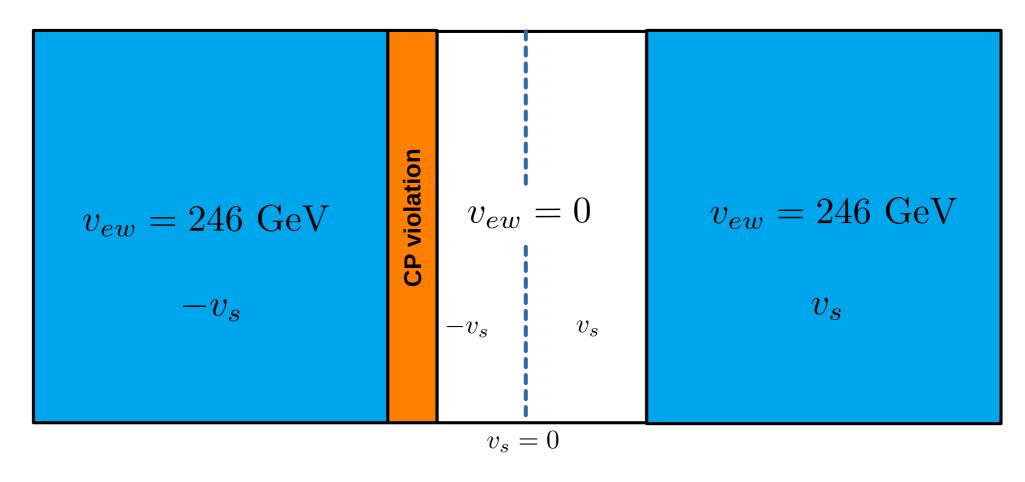
$$\Phi_2(\pm \infty) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_2 \end{pmatrix} \qquad \Phi_s(+\infty) = v_s$$



- Indeed, the profiles of v₁(x) and v₂(x) vanish inside the singlet wall → Electroweak symmetry restoration!
- Sphalerons are unsuppressed inside the wall.

Second ingredient for Baryogenesis via domain walls:

- Need a CP-violating phase on the wall.
- Left-handed particles and right-handed antiparticles scatter off the wall with different rates.



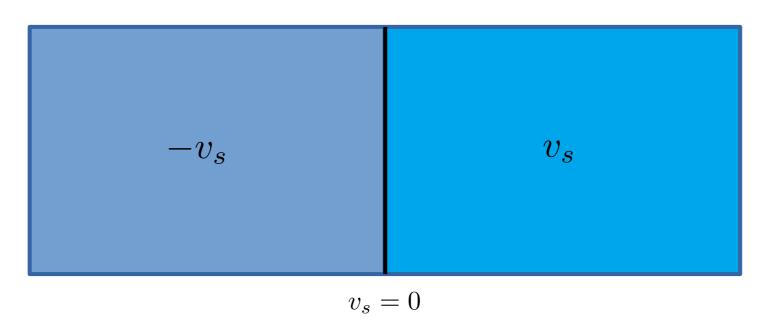
Different Goldstone modes on both domains

- θ and g_i are the Goldstone modes related to $U(1)_Y$ and $SU(2)_L$
- In the early universe different domains can have random values of the Goldstone modes.

$$\langle \Phi_1 \rangle = U \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_1 \end{pmatrix}, \langle \Phi_2 \rangle = U \frac{1}{\sqrt{2}} \begin{pmatrix} v_+ \\ \pm v_2 e^{i\xi} \end{pmatrix},$$

$$U = exp(i\theta) exp[(g_i \sigma_i)/(2v_{sm})].$$

Before EWSB

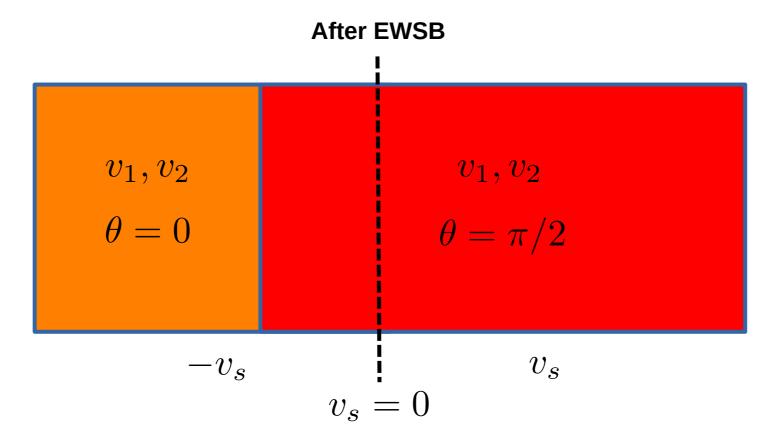


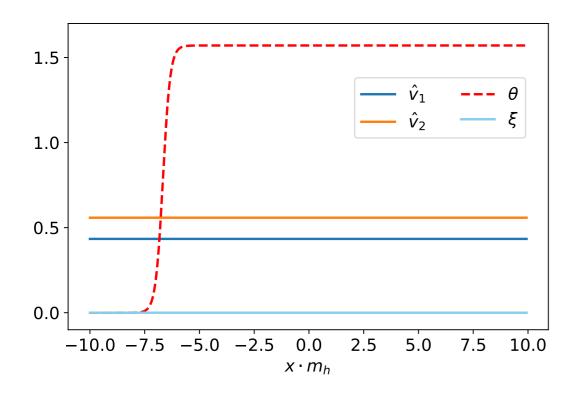
Different Goldstone modes on both domains

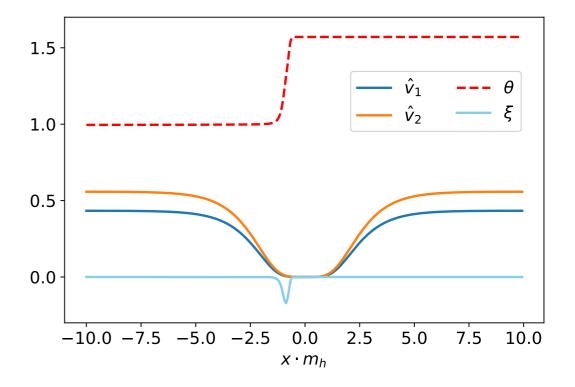
- θ and g_i are the Goldstone modes related to $U(1)_Y$ and $SU(2)_L$
- In the early universe different domains can have random values of the Goldstone modes.

$$\langle \Phi_1 \rangle = U \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_1 \end{pmatrix}, \langle \Phi_2 \rangle = U \frac{1}{\sqrt{2}} \begin{pmatrix} v_+ \\ \pm v_2 e^{i\xi} \end{pmatrix},$$

$$U = exp(i\theta) exp[(g_i \sigma_i)/(2v_{sm})].$$







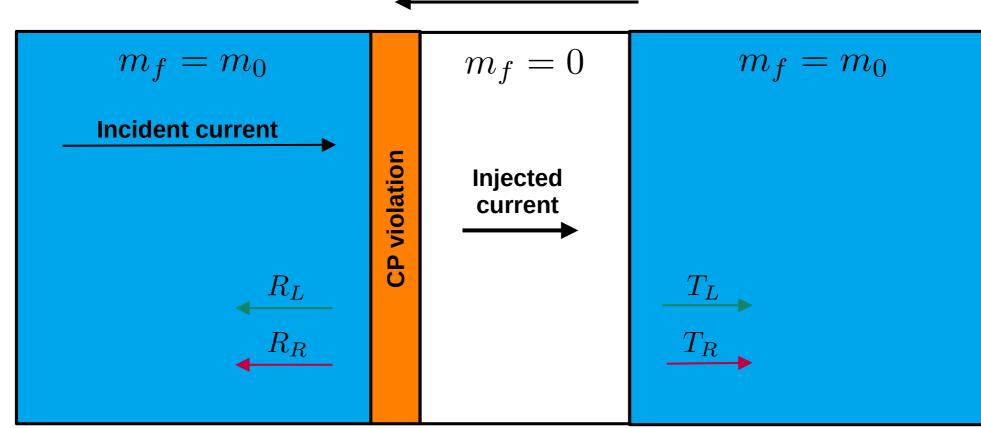
- Different Goldstone modes can induce CP-violating and/or charge breaking vacua located inside the wall.
- E.g. having different θ induces CP-violating vacua localized in the vicinity of the wall.
- For more details see 2110.12550 (Law, Pilaftsis) and 2309.12398 (MYS, Moortgat-Pick).

Fermion scattering off the wall

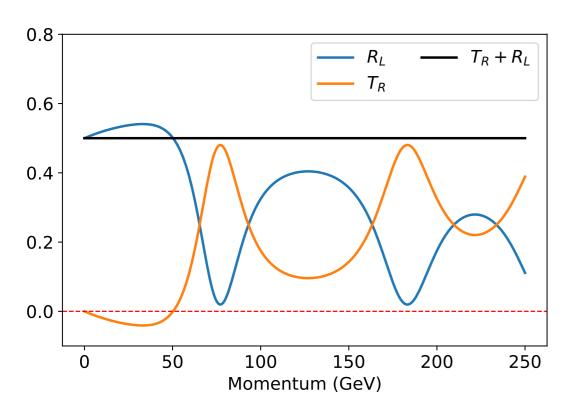
Solve the **Dirac equation** of a fermion in the **background of an x-dependent mass** term:

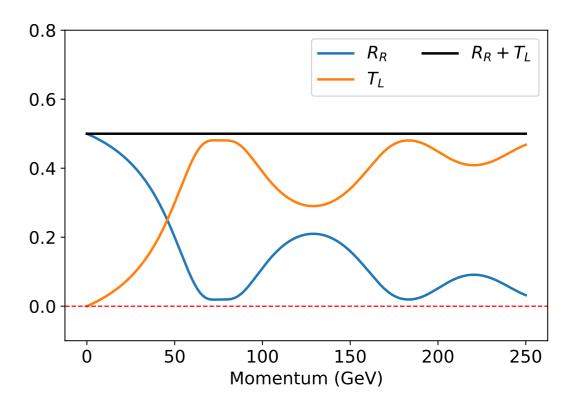
$$i\gamma^{\mu}D_{\mu}\psi + m(x)P_{R}\psi + m^{*}(x)P_{L}\psi = 0$$

$$v_{dw}$$

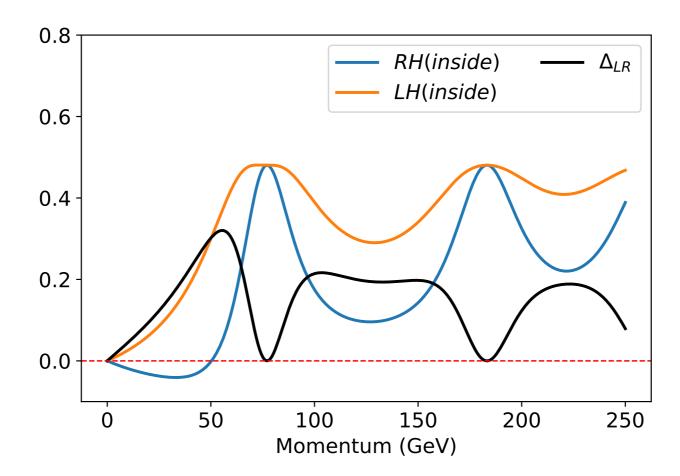


Thin wall approximation (valid for small momenta). Results for top quarks.





- CP violating mass term induces a difference in the reflection and transmission rates of left and right-handed particles.
- For small momenta, the transmission coefficients can become negative, while the reflection rate grows. Klein paradox for chiral particles?



• Difference between **left-handed particle** and **right-handed antiparticle** current inside the wall is non-zero due to **CP-violation on the outer wall**.

Excess flux of **left handed particles** over **right handed antiparticles** entering the wall:

$$J_{L} = \int \frac{d^{3}p}{(2\pi)^{3}} f(p) \Delta_{LR}(p) \qquad f(p) = \frac{|p_{x}|}{E} \frac{1}{1 + exp(\frac{\gamma}{T}(E - v_{d}\sqrt{p_{x}^{2} - m_{t}^{2}}))}$$

Ignoring diffusion effects (in the limit where the region of EWSR is big enough for a sphaleron), the baryon asymmetry normalized to entropy is:

$$rac{n_b}{s}=rac{6N_F}{T^3}rac{\Gamma_s}{v_D}J_LL_{DW}(rac{V_{BG}}{V}) \qquad \Gamma_s=\kappa lpha_W^4T^4 \qquad$$
 Sphaleron rate inside the wall

For top quarks with mass $m_t = 172 \text{ GeV}$ at

$$v_{\rm D} = 0.9$$

$$L_{DW} = 0.05 \text{ GeV}^{-1} \approx 5 m_h$$

$$V_{BG}/V = 0.1$$

$$m_1 = v_2 \xi = 0.15 \text{ GeV}$$

 $\Delta \theta = 0.1$

$$\frac{n_b}{s} = 4.28 \times 10^{-11}$$

Experimental observation $\approx 9 \times 10^{-11}$

Advantages of the mechanism

- Can generate enough Baryogenesis (at least in this simplified scenario).
- Does not need a first order EW phase transition (even a crossover would be fine).
- Can evade EDM constraints by using CP-violating effects generated by having different Goldstone modes.
- Works also in case of EW symmetry nonrestoration.

Disadvantages of the mechanism

- Requires a domain wall network that needs to be annihilated (fine tuning of model parameters?)
- The amount of CP-violation generated by having different Goldstone modes is arbitrary and can have different signs for different regions.
- Need for other more reliable ways to generate the CP-violation (e.g. a CPviolating vacuum phase before the neutral one?)

Summary and conclusions

- 1) **Domain wall baryogenesis** ingredients can be achieved in the **N2HDM**.
- 2) Singlet Higgs field leads to EW symmetry restoration in the vicinity of the wall.
- 3) Regions with **different Goldstone modes** can generate **CP-violating VEVs in the vicinity of the wall** leading to a **chiral asymmetry for fermions inside the wall**.
- 4) **Preliminary results** following an approach similar to **2404.13035** (Brandenberger and Schröder) show a baryogenesis comparable with the experimentally observed values.

Outlook

A precise calculation of the baryogenesis rate taking into account diffusion, finite temperature
effects on the profile of the scalar fields and a bias term to annihilate the singlet domain walls.

Thank you

Contact

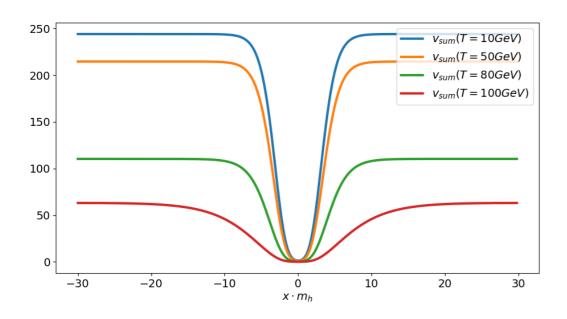
Deutsches Elektronen-Synchrotron DESY Mohamed Younes Sassi

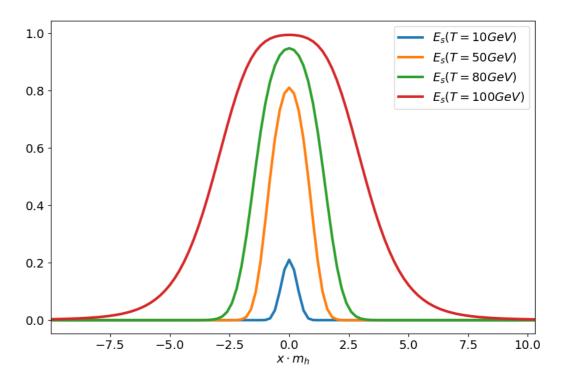
mohamed.younes.sassi@desy.de

www.desy.de

Backup

Temperature effects





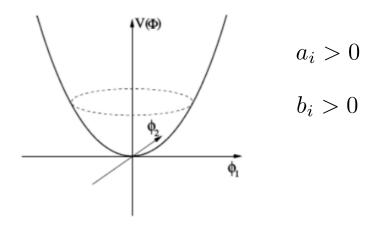
Sphaleron Suppresion

Explanation

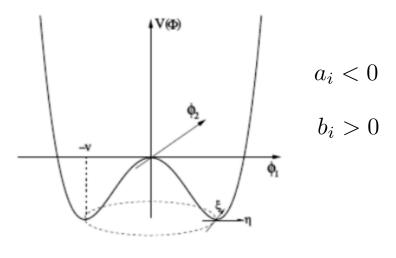
• For potentials of the form:

$$V = a_i \phi_i^2 + b_i \phi_i^4 + c_{ij} \phi_i \phi_j$$

- When c_{ij} terms vanish, the phase of the potential (symmetric or broken) is determined by the <u>sign</u> of the mass term a_i multiplying the quadratic field terms.
- For positive **a**_i the potential is in the **symmetric phase**.
- For negatif a_i the potential is in the broken phase.



Symmetric phase



Broken phase

Conditions for electroweak symmetry restoration inside the wall

1. Need the effective mass terms to be positive inside the wall.

Define the change in the effective mass across the wall:

$$\Delta_1 = \lambda_{345}(v_2^2(0) - v_2^2(\pm \infty)) - \frac{\lambda_7}{2}v_s^2(\pm \infty) > 0$$

$$\Delta_2 = \lambda_{345}(v_1^2(0) - v_1^2(\pm \infty)) - \frac{\lambda_8}{2}v_s^2(\pm \infty) > 0$$

2. The change in the effective mass across the wall needs to happen in a large enough space D in order for the doublet fields to converge to a very small value inside the wall.

Relevant quantity influencing D is the width of the singlet wall γ_s :

$$\delta_s \propto (\sqrt{\lambda_6} v_s)^{-1}$$

• Neglecting contributions from terms proportional to λ_{345} , the dimensionless quantities $B_{1,2} = \lambda_{7,8} / \lambda_6$ provide a good parameter for the amount of symmetry restoration inside the wall.

Verifying the different behaviors of the doublet fields inside the singlet wall

- Relevant potential parameters are: m_{11} , m_{22} , m_{12} , λ_{345} , λ_6 , λ_7 , λ_8 and v_s .
- Relevant physical parameters are then: m_{h1} , m_{h2} , m_{h3} , α_1 , α_2 , α_3 , ν_s and m_{12} .
- \rightarrow Perform a random parameter scan using **ScannerS** (20000 points) varying the **CP-even Higgs masses**, **mixing angles**, v_s and m_{12} .
- All points satisfy theoretical constraints of boundedness from below, vacuum stability and perturbative unitarity.
- All points satisfy the experimental constraints of flavor physics, electroweak precision measurements S,T and U.
- Also require Z'₂ symmetry restoration in the early universe.
- The results are expressed in terms of:

$$r_{1,2} = \frac{v_{1,2}(0)}{v_{1,2}(\pm \infty)}$$

Ratio of the VEVs inside and outside the wall

Scan Parameters

 $m_{h1} = 125.09 \text{ GeV}$ $150 \text{ GeV} < m_{h2} < 400 \text{ GeV}$ $500 \text{ GeV} < m_{h3} < 1100 \text{ GeV}$

$$0.7 < \alpha_1 < 1.1$$

-0.6 < $\alpha_2 <$ -0.6
 $0.5 < \alpha_3 < 1.57$

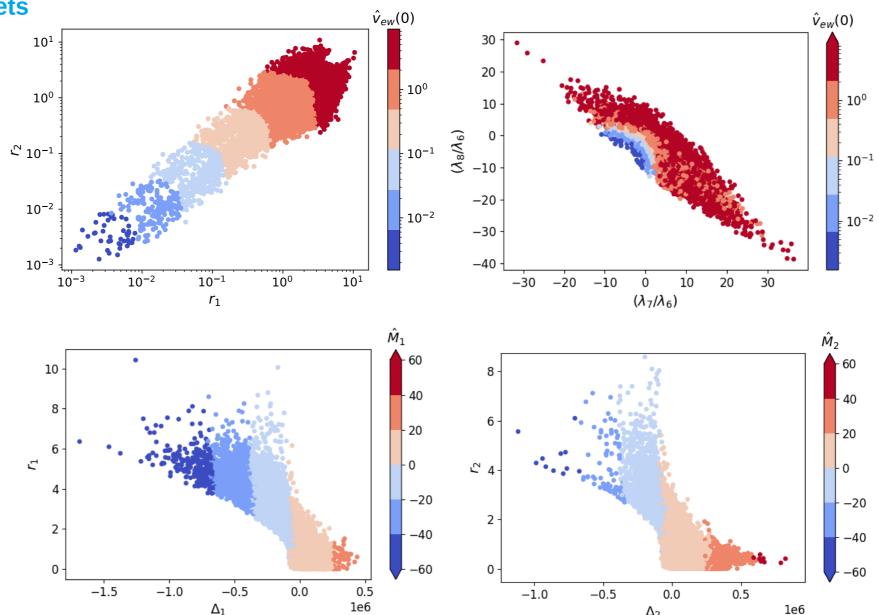
 $200 \; \text{GeV} < v_s < 3000 \; \text{GeV} \\ 75000 \; \text{GeV}^2 < m_{12} < 200000 \; \text{GeV}^2$

$$\hat{v}_{ew}(0) = \frac{\sqrt{v_1^2(0) + v_2^2(0)}}{v_{sm}}$$

Measure of electroweak symmetry restoration

Different effects of the singlet domain wall on the VEVs of the Higgs doublets

- The results of the scan show that r₁ and r₂ can range from nearly 0.001 to 10.
- Ratios smaller than 1
 possible mainly when λ₇
 and λ₈ negative.
- Negative $\Delta_{1,2}$ mainly lead to ratios bigger than 1.
- Positive $\Delta_{1,2}$ mainly lead to ratios smaller than 1.
- Some anomalous points where the opposite behavior happens. Mainly due to m₁₂≠0.

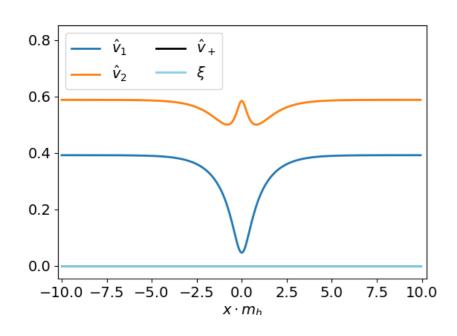


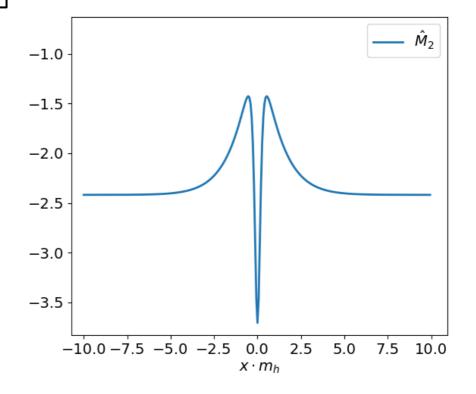
Some parameter points have $r_i < 1$ even for $\Delta_i < 0$ (and the opposite).

This is because the contribution of λ_{345} to the effective mass can be big for $x \approx 0$.

This behavior occurs for λ_8 positive and a thin domain wall, making the contribution from λ_8 to the effective mass localized at x=0.

$$M_{eff,2} = \frac{m_{22}^2}{2} + \lambda_{345}v_1^2(x) + \frac{\lambda_8}{2}v_s^2(x)$$

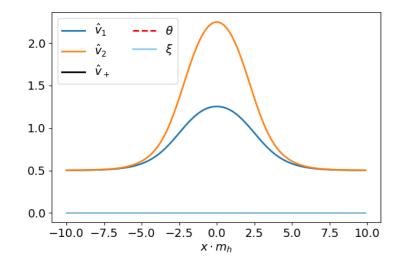


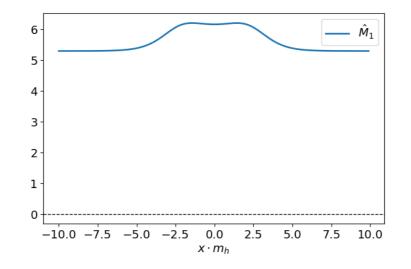


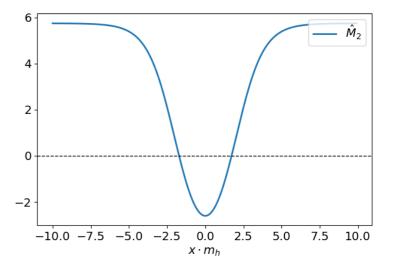
 $v_2(x=0)$ inside the wall is smaller than outside the wall. But Δ_2 is negative!

m₁₂ anomalies

- Because $m_{12}\neq 0$, some parameter points will not have the minima of the 2HDM potential at x=0 ($v_s=0$) at the origin ($v_{1,2}=0$) even though the effective masses are **positive and** higher inside the wall.
- The minima of the Higgs doublets at x=0 will then converge to those non-zero vevs.

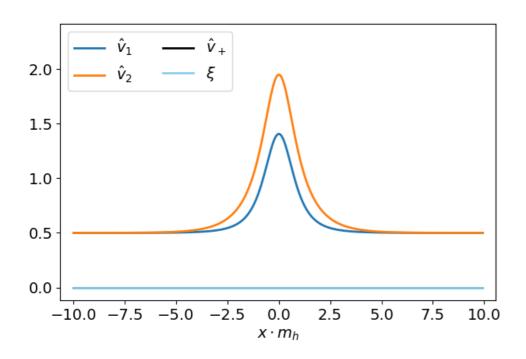






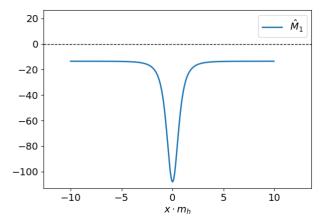
Same behavior for parameter points with $\Delta_2 > 0$ but $r_2 > 1$.

Also opposite behavior occures: VEVs are bigger inside the wall:

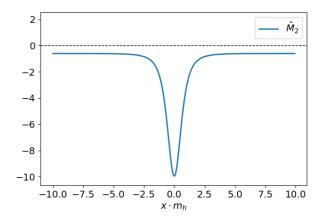


- This occurs when the effective mass terms become more negative inside the wall.
- Occurs in particular when λ_7 and λ_8 are positive (v_s vanishing inside the wall induces a <u>negative contribution</u>).
- Most particles get reflected off the wall.

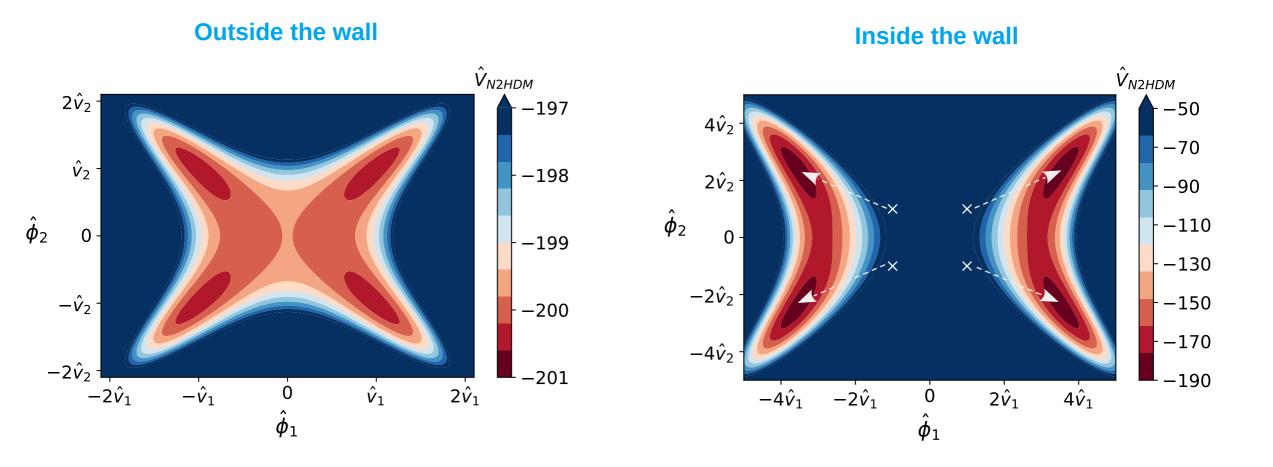
$$M_1 = \frac{m_{11}^2}{2} + \lambda_{345}v_2^2(x) + \frac{\lambda_7}{2}v_s^2(x)$$



$$M_2 = \frac{m_{22}^2}{2} + \lambda_{345}v_1^2(x) + \frac{\lambda_8}{2}v_s^2(x)$$



• The **effective mass terms** get **smaller inside the wall**, leading the **doublet minima** of the potential to "stretch".

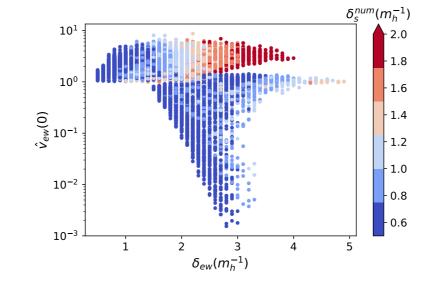


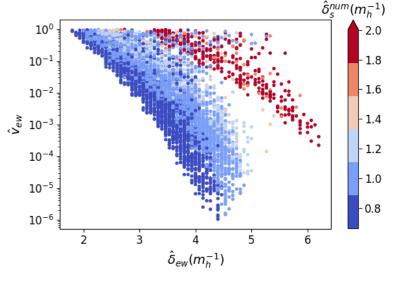
Width of the wall:

- For a model with only a real scalar singlet, the width of the wall is given by $\delta_s = (\frac{\sqrt{\lambda_6}}{2}v_s)^{-1}$
- In the case of the **N2HDM**, the **backreaction of the doublet fields** can substantially change the width of the singlet wall → **Need to evaluate the width numerically.**
- $\delta_s = (\frac{\sqrt{\lambda_6}}{2}v_s)^{-1}$ Is a good approximation in case of Higgs doublet decoupling or when $v_{1,2}(0) = 0$ inside the wall.

What about the width of doublet profiles in the vicinity of the wall?

- Only possible to evaluate it numerically in a complex models such as the N2HDM.
- Proportional to the width of the singlet wall \mathbf{Y}_s .
- Increases with smaller v_{ew}(0).
 Electroweak symmetry restoring parameters usually have a large width.





Results from another scan with negative $\lambda_{7.8}$

Focus on scenarios that lead to electroweak symmetry breaking in a large region around the wall:

- Smaller $v_{\text{ew}}(0)$ can be obtained for large positive $\Delta_{1,2}$ and a large region where the effective mass term changes across the wall.
- When neglecting λ_{345} , $\Delta_{1,2}$ x D proportional to $\lambda_{7,8}/\lambda_6$
- Large ratios $\lambda_{7,8}/\lambda_6$ lead to very small $v_{1,2}(0)$ in a large region around the wall.
- Using the mass basis for the couplings:

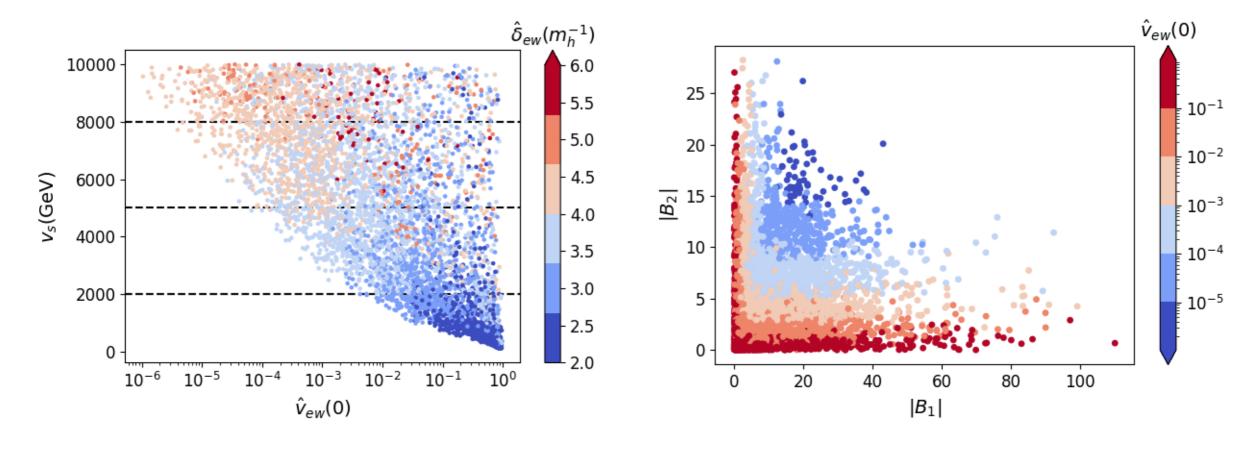
$$R = \begin{pmatrix} c_{\alpha_1} c_{\alpha_2} & s_{\alpha_1} c_{\alpha_2} & s_{\alpha_2} \\ -(c_{\alpha_1} s_{\alpha_2} s_{\alpha_3} + s_{\alpha_1} c_{\alpha_3}) & c_{\alpha_1} c_{\alpha_3} - s_{\alpha_1} s_{\alpha_2} s_{\alpha_3} & c_{\alpha_2} s_{\alpha_3} \\ -c_{\alpha_1} s_{\alpha_2} c_{\alpha_3} + s_{\alpha_1} s_{\alpha_3} & -(c_{\alpha_1} s_{\alpha_3} + s_{\alpha_1} s_{\alpha_2} c_{\alpha_3}) & c_{\alpha_2} c_{\alpha_3} \end{pmatrix}$$

CP-even Higgs Mixing angles

$$\lambda_6 = \frac{m_{h_1}^2 R_{13}^2 + m_{h_2}^2 R_{23}^2 + m_{h_3}^2 R_{33}^2}{v_s^2} \qquad \lambda_7 = \frac{R_{13} R_{11} m_{h_1}^2 + R_{23} R_{21} m_{h_2}^2 + R_{33} R_{31} m_{h_3}^2}{v_1 v_s} \qquad \lambda_8 = \frac{R_{13} R_{12} m_{h_1}^2 + R_{23} R_{22} m_{h_2}^2 + R_{33} R_{32} m_{h_3}^2}{v_2 v_s}$$

- Look for large v_s
- Look for parameter points with small λ_6 . For example small masses.

Parameter scan for small masses and large v_s



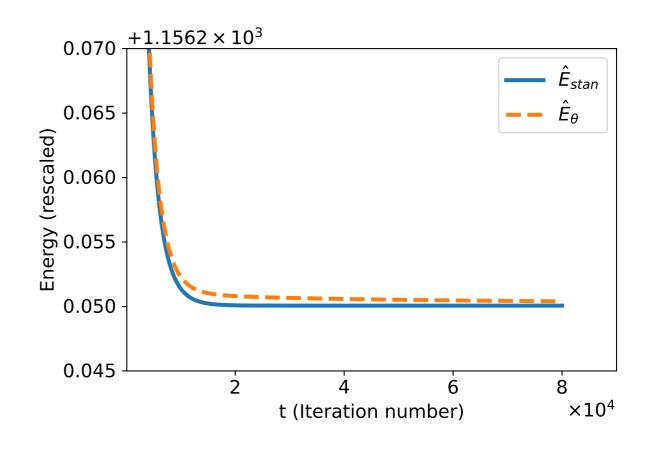
• Parameter points with larger v_s can lead to electroweak symmetry restoration in a large region around the wall

From EOM of the Goldstone mode $\theta(x)$

$$\frac{d\theta}{dx} = \frac{-v_2^2}{v_1^2 + v_2^2 + v_+^2} \frac{d\xi}{dx}$$

Pilaftsis, Law (2021)

- Solution with **CP-violation** has **higher energy** than the **standard solution**.
- CP-violating solution of the doublet fields will **decay** to the standard solution.



Energy functional of a CP-violating field configuration:

$$\mathcal{E}(x) = V_{N2HDM}(x) + \frac{1}{2}v_1^2(x)\left(\frac{d\theta}{dx}\right)^2 + \frac{1}{2}v_2^2(x)\left[\left(\frac{d\theta}{dx}\right)^2 + 2\frac{d\theta}{dx}\frac{d\xi}{dx}\right] + \frac{1}{2}v_+^2(x)\left(\frac{d\theta}{dx}\right)^2.$$

Minimized for small v_1 and v_2 in the region where θ varies.

- The energy is smaller for parmeter points where v_1 and v_2 are minimal.
- In those parameter points, the CP-violating field configuration is longer lived.