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Properties of renormalization schemes

Consider some bare parameter: N Sx

)\0 =A+0NA = ()\m — Cﬁn) + (Cﬁn + 5)\@)
A N N~
RN ~AyY

“renormalized coupling” “renormalization constant”

(finite expansion parameter) (contains UV-divergencies) . .
Freedom in choice of

renormalization scheme!

Desirable properties:

@ simplification of calculation
< smart value of dt can lead to cancellation of terms

@ gauge independence
— gauge dependent value of dt might render relations between
parameters and observables gauge dependent: 0, = Pi(\y, ..., An)

. - On = Pa(A1, - ., An)
@ perturbative stability

< heuristically measured, e.g., via “reduction of scale dependence”
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The general THDM: Motivation

The SM describes most of Nature extremely well!
— why study SM extensions at all?

Some phenomena not explained by the SM:
@ gravitation
@ matter-antimatter asymmetry of the universe
@ dark matter

@ neutrino masses

Why study the general THDM? [icc &ranco, Lavours, Silva, Haber, O'Neil
@ one of the simplest SM extensions
@ doublet extensions automatically preserve custodial symmetry
@ why the “general” one?

> contains different “types” as limits in parameter space
> sources for CP violation
> can be viewed as “effective” theory for the MSSM scalar sector
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The general THDM: Lagrangian
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Field content of the SM, except for the scalar sector:

_ o1 (%) . 93 (x)
e <J§(V1 +h(x)+ m(x))) e <¢1§(V2 )+ "X2(X>)> |

This yields the classical Lagrangian
£THDM — £SM + £SM + £THDM + £THDM

class Fermion Gauge Higgs Yukawa*

Higgs sector

ﬁaglg)sl\l = (Duq)l)T(Duq)l) + (D/L¢2)T(DM®2) - VTHDM’

with Higgs potential
VrHDM = m%ldﬂd)l + m§2¢£¢2 - (méq)l{q)z + h.C.)

1 - 1
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The general THDM: Lagrangian

Field content of the SM, except for the scalar sector:

¢7+ (x) i ¢+(X)
Pib) = <1(V1 i)+ m(x))) e <¢1§(V2 )+ "Xz(X”) |

V2

This yields the classical Lagrangian
£THDM — £SM + £SM + £THDM + £THDM

class Fermion Gauge Higgs Yukawa*

Higgs sector

Lz = (D 1)1(D"01) + (D, ®2) (D 2) — Ve,

with Higgs potential
VrHDM = m%ldﬂd)l + m§2¢£¢2 - (méq)l{q)z + h.C.)

1 1
(P[0 + 20o(9102)° + A (@]01)(@h22) + A (@] 02) (P 1)

1
+ 5A5(<|>}<1>2)2 + (ed] Dy + )\ PID) DIy + hoc. —  source of
CP violation
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The general THDM: transition to the Higgs basis

Chang|ng the baSIS in fleld space Via [Branco, Lavoura, Silva, Gunion, Haber]

2 .
1 vi VQe"‘S
Ha=" Usp®s, U= ( Zis )
pet Jv2 g\ e

yields the new doublets

=G"(x)
—_—
Hl(X) _ 1 VI¢T(X) + V2(D;—(X)
N %( v+ 3 4 vih(x) + vaho(x) +i(vixa(x) + vaxa(x)) |
=2 = Ni(x) = Go(x)
— H*(x)
—_—
Ha(x) = —=L V163 (x) = v2o (x) .
Vit | 5 (viha(x) = vahi(x) +i(vixa(x) — vaxa(x)) )
= Na(x) = N3(x)
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The general THDM: transition to the Higgs basis

Redefining the parameters

i3y = miy ¢} + mysh — Re{mie”} s, 3y = m31s5 + maych + Re{mi,e Y5,
iy = %(m% — m3p)s25 + Re{miye” }epp + ilm{miye},
X1 = Arch + dash + Lhasssdy + 2525[cRe{Nse™} + s3Re{A7e”}],
Xz = )\153 + /\zqg + %/\345522,3 - 252‘3[§§Re{Aﬁe"‘s} + cf,Re{)qe"‘s}],
A3 = As + 1525( M + A2 — 2hass) — s2pcsRe{(Ns — A7)e ),
Xa = A+ 252501 + A2 — 2)45) — s23025Re{(A6 — A7)e},
s = %522,@()\1 + A2 — 2Xas) + Re{Ase?} + icysTm{Ase} — spscosRe{(As — A7)e} — isysIm{(Ne — A7)e”®},

Xo = — 15250\ 3 — Xas? — Auascas — iIm{Ase®}] + cocspRe{Ase™} + spszpRe{Are} + ic3Im{Aee™} + is3Im{Are},
X7 = - %SQ,q[/\lsé - >\2c§ + A3a5Co8 + flm{)\sez"d}] + s;gs;,ch{A(,e"J} + c;;C3Jch{)\7e"°'} + isﬁlm{)\sef‘s} + icglm{he”}A,
. is V;
with Asas := Az + Ag + RefAse??}, tan 3 = \72
1

yields Higgs potential of the form
Viriowm = Ay HY Hy + Az HY Ha — (A2,H] Hy + h.c.)

1+ 1+ ~ ~
+ 5Al(HI/-/l)2 + E,\Z(H;/-/z)z + Aa(HIH) (H Ha) + Ma(H] Ho)(H Hy)

I~ < o
+ 5As(Hif-/z)?Jr(A(,/-/IHl+,\7HZU-/2)I-/1*H2+h.c.
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The general THDM: physical parametrization

Expanding to second order in the component fields yields

=ty, =tp, =tng
V’f‘zl-%DM = — (—m}v— %Xl v Ny — (Re{m?,}v — %Re{xs}ﬁ) Na — (—Im{m2,}v + %Illl{X@}V3) N3
Ny
H~ 1 N
+ (H+~, G+) Mcharged < G~ ) + 5 (va N2 N3 GO) Mneutral Ni
Go
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The general THDM: physical parametrization

Expanding to second order in the component fields yields

=ty =tn, =tng
V’f‘zl-%DM = — (—m}v— %Xl v Ny — (Re{m?,}v — %Re{xs}ﬁ) Na — (—Im{m2,}v + %Im{xﬁ}f) N3
Ny
H- 1 N>
+ (H+~, G+) Mcharged < G~ ) + 5 (va N2 N3 GO) Mneutral N3
Go
with =M,
/_/~%
my+ havi (b, + itny)
Mharged = s
g 1 . t,
= (tw, — itny) -
Tav® —tw,) L(Re{Xe}v? — tn,) —L(m{Ae}v? + tn,) 0
" L(Re{Ae}v? —tn,) M2, + 1(N4 + Re{As})v? ~m{s}v? W
neutral = ~ ~ ~ ~
T LB + ty) ~Lim{As}v? Mz, + 10— Re{As})v? —22
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The general THDM: physical parametrization

Perform rotation in field space

Ny H c1c e -5, 0 H

NQ . h _ | c1ses3 —s1.3 s1S83 + 163 s3 0 h _ .

N3 - R4><4 Ao = C15C3 + 5153 S15C3 — €153 ©C3 0 A(] CJ = COS(@JLSJ = Sm(ej)'
Go Go 0 0 0 1/ \G
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The general THDM: physical parametrization

Perform rotation in field space

Ny H c1c e -5, 0 H

NQ . C15253 — 51C3  S15253 + C1C3 253 0 h _ .

N3 - R4><4 Ao = C15C3 + 5153 S15C3 — €153 ©C3 0 A(] CJ = COS(&JLSJ = Sm(ej)'
Go Go 0 0 0 1) \6G

Demanding diagonal mass matrix (up to tadpole contributions)

! .
(R:;Fx4MncutralR4><4)(3X3) = dlag{MI%I) M}2)7 M/io}v

implies 6 independent conditions.
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The general THDM: physical parametrization

Perform rotation in field space

Ny H c1c e -5, 0 H

NQ . h _ C15253 — 51C3  S15253 + C1C3 253 0 h _ .

N3 - R4><4 Ao = C15C3 + 5153 S15C3 — €153 ©C3 0 A(] CJ = COS(&JLSJ = Sm(ej)'
Go Go 0 0 0 1) \6G

Demanding diagonal mass matrix (up to tadpole contributions)
(RYxaMucusraRaxa) ¥ = diag{MF, MZ, M3},
implies 6 independent conditions.
— Use them to trade old parameters [pegrande, 2014]
A1, Aay Ref{ s}, Tm{As}, Re{ X6}, Im{ X6},
for masses and mixing angles

My, My, Ma,,01,0-,03
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Renormalization

Parameters:
tn0 =ty + 6tN17
91’0 =01 + 61,
Mo = Mg + M,

M3 o = M+ + MG,

Fields:

Gy\ (14367
Hy )\ 30Zyg+

Goss 1+ 1627
hg %(32})(;
Hy |~ | Y6Zug

Ao,B 16Znc

transformation

tn, 0 = t, + 51‘/\/2,

020 = 62 + 605,
Mo = Mi; + M,
220 = Ao + 02,
Mo = A7 + A7,

1
50ZcH+

Gi
1+ 36z ) \HY)’

10Zcn 10Zau
1+ %(52}, %52}11—1

%(SZH}, 14+ %52}1

16Zx 16Zan

tn;,0 = th; + Otps,

030 = 63 + 363,
M3,0 = M3, + M3,
230 = A3+ 60Xz,
20Zga Go
16Z,a h
16Zua ’
1+30Zs,/ \Ao
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Renormalization conditions

Tadpoles:

Choose ty;, = 0 at tree-level (<~ minimizes classical potential at H = h = Ay = 0)
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Renormalization conditions

Tadpoles:

Choose ty;, = 0 at tree-level (<~ minimizes classical potential at H = h = Ay = 0)
At _hlgher orders: . oty C1Cy  C15253 — S1C3 C152C3 + 5183 Oty
(usmg h as an example, with 5th | = | sie sisss+caics sisecs —ass | | Stw, )

Ota, S 283 e Otn,

ooy = Mo e h() ¢ L Lo
- ot =—i o~ (L) +

— contributions of tadpole subdiagrams can be omitted
(3

e Y 0N

e, T e,
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Renormalization conditions

Tadpoles:

Choose ty;, = 0 at tree-level (<~ minimizes classical potential at H = h = Ay = 0)
At higher orders: St .

. ) Sty C1Cy  C15283 — S1C3 C152C3 + 5183 Oty
(using h as an example, with <m> = (s‘o sies+ac ssc CwSi) (»‘m.) )

Ota, S 283 e Otn,

ooy = Mo e h() ¢ L Lo
- ot =—i o~ (L) +

— contributions of tadpole subdiagrams can be omitted

@y @y

N
+ +
o, RN o, >®\

P, . P,

P10y
rlL
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Renormalization conditions

Different tadpole schemes: =ty
—_—
Von D — (—inv — )M
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Renormalization conditions

Different tadpole schemes: =ty
—_—
Von D — (—inv — )M

Trade tadpole parameter for

@ potential parameter: Parameter-renormalized tadpole scheme (PRTS)[Denner,1993]
< perturbatively stable, but gauge dependent

] Fleischer-Jegerlehner tadpole scheme (FJTS) [Fleischer, Jegerlehner, 2001]
— gauge independent, but worse perturbative stability

@ hybrid scheme: Gauge-Invariant Vacuum expectation value Scheme (GIVS) [Dittmaier, Rzehak,2022]
— best of both worlds
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Renormalization conditions

Different tadpole schemes:

=ty
—_—
) — —
Von D — (—inv — M) Ny
Trade tadpole parameter for

@ potential parameter: Parameter-renormalized tadpole scheme (PRTS)[Denner,1993]
< perturbatively stable, but gauge dependent

] Fleischer-Jegerlehner tadpole scheme (FJTS) [Fleischer, Jegerlehner, 2001]
— gauge independent, but worse perturbative stability

@ hybrid scheme: Gauge-Invariant Vacuum expectation value Scheme (GIVS) [Dittmaier, Rzehak,2022]
— best of both worlds

Conditions for remaining RCs:

—~ _hih
RelZ =0,
Masses and fields — on-shell conditions: R (p)|P2:mij
1 —~ _hih;
lim, , » ———Rely ’(p) = 1.
P ﬁmhj P2 _ m%j R

Rest — (modified) minimal subtraction.

10 / 14
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Trilinear Higgs self-coupling: computation

Goal:

Compute and compare running of Apspy at 1L in three different tadpole schemes!
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Trilinear Higgs self-coupling: computation

Goal:

Compute and compare running of Apspy at 1L in three different tadpole schemes!

Steps of the computation:
@ implementation of different tadpole schemes
» including two different (but equivalent) instances of the FJTS
@ parameter input-value conversion between different schemes

» different RSs furnish different relations between observables and parameters
— extracted input values must be adjusted
» this also yields a naive estimate for perturbative stability

@ compute running of the relevant input parameters in different schemes

@ insert properly converted running parameters in results for Appp
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Trilinear Higgs self-coupling: preliminary results

Parameter region:
For all parameters except the running ones:
take type 1 symmetric limit and go into “low mass” benchmark scenario

Running of mixing angles and couplings:

Running angles in the PRTS Running couplings in the PRTS
LS — s
Re(i7)

Im(A7)

00 ’ T a0 o

"
50 100 500 1000 "
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Trilinear Higgs self-coupling: preliminary results

Running of NLO contributions to Appp:

Re[A_hhh]
501+
|
l
|
200 400 600 800
\
|
|
\
-sof- |
\
\ — PRTS
\ FITS
ool | Givs
sl \
-200
sl
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Summary and Outlook

Summary:
@ implementation of the general THDM
@ renormalization in different schemes

@ NLO calculation of App, and study of its running

Work in progress:
@ finishing up the Appp analysis

@ performing similar computation for decay H — hh

14 / 14
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Backup slides
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Perturbation theory in a nutshell

Starting point: Lagrangian £(v, 1) of some QFT model

14 / 14



Perturbation theory in a nutshell

Starting point: Lagrangian £(v, 1) of some QFT model

Goal: compute predictions for processes involving particles associated with :

<7ps+17 L) 7Pn‘5‘pl7 ce 7ps>

14 / 14



Perturbation theory in a nutshell

Starting point: Lagrangian £(v, 1) of some QFT model

Goal: compute predictions for processes involving particles associated with :

<7ps+17 ceey 7Pn‘5‘pl7 s 7Ps>

< most prominent strategy: perturbation theory! In a nutshell:

Lehmann-Symanzik
Zimmermann
T
(=Ps+1-- s —PalS|p1s-- -, ps) = <ﬁ> <H(Pj2— "/’J?)/d“xje””'x’) G(x1;- -, %n)
Jj=1

2_ g2
Pj 7Mj
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< most prominent strategy: perturbation theory! In a nutshell:

Lehmann-Symanzik
Zimmermann

\L . n n
(=Psttsee s —Pal S|Pty ps) = | —= < (P} — M?) d4XjeiijJ>G(Xh.“7X")
+ () (oo [ Jetu )
G O T () .- taCdeoli [ d*xci] o)
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Gell-Mann-
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Perturbation theory in a nutshell

Starting point: Lagrangian £(v, 1) of some QFT model
Goal: compute predictions for processes involving particles associated with :
<7Ps+17 ceey 7Pn‘5‘pl7 s 7ps>

< most prominent strategy: perturbation theory! In a nutshell:

Lehmann-Symanzik-
Z\v’ﬂ mermann

(=Pstts-os—PalSlp1, ... ps) = (ﬁ><H (P} = M) /d“we’”f*f) G(x1,-- -+ Xn)

Jj=1

2_ g2
Pj 7Mj

order—bytf)rdlerH _ (1 + i/d4><£1 + . )
expansion
/_L
(O T{tr(xa) ... n(xn)expi / d*xL1]}|0)
= (0| T{expli [ d*xL1] }|0)

Gell-Mann-
Low
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Perturbation theory in a nutshell

Starting point: Lagrangian £(v, 1) of some QFT model
Goal: compute predictions for processes involving particles associated with :
<7Ps+17 ceey 7Pn‘5‘pl7 s 7ps>

< most prominent strategy: perturbation theory! In a nutshell:

Lehmann-Symanzik-
Z\v’ﬂ mermann

N
—i ipix
(=Pss1---»—PalSlPL, - ps) = (ﬁ) <H(pj2— l\/lf)/d“Xje ”“) G(x1, .-, Xn)
T g
by = (1 i)
<0|T{w1(x1)...m(xn)exp[i/d4xcl}}|o> x X oa X
G(x,..., n) = - =
Gayeeoxn) (0| T{expli [ d*xL1] }|0) * >®/. *
T T *
Gell-Mann- Wick,
Low Feynman
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Perturbation theory in a nutshell

Starting point: Lagrangian L(v, 1) of some QFT model
Goal: compute predictions for processes involving particles associated with :
<7Ps+17 ceey 7Pn‘5‘pl7 s 7ps>

< most prominent strategy: perturbation theory! In a nutshell:

Lehmann-Symanzik-
Zimmermann

N
—1 ipix:
(=Pss1---»—PalSlPL, - ps) = (ﬁ) <H(pf—l\/lj-2)/d4Xje ”“) G(x1, .-, Xn)
Jj=1 pi=M?
by = (1 i)
<0|T{w1(x1)...m(xn)exp[i/d4xcl}}|o> x X oa X
G(x,. .., ) = : =
Gayeeoxn) (0| T{expli [ d*xL1] }|0) * >®/. *
T T *
Gell-Mann- Wick,
Low

Feynman < rules can be read off £
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A Y.
Example: Lo 3—?1[)3 = " _< Y
v



Renormalization

A v
Example: L£L> 3—?w3 = " 7< 2 o
(0]

— Green function:

X3 X2
G(x1,x2,x3) = Xl'—< + X1F-<< + .. ~<>\0+C1AUv+C2+--~>
X2 X3
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Renormalization

A v
Example: LD 3—?1213 = v { W

P

— Green function:

X3 X2
G(Xl,XQ,X?,): xl._< -+ X1.—< + ... 0~ ()\0+C1AU\/+C2+...>
X2 X3

Common bookkeeping:

“renormalized coupling” “renormalization constant”

(finite expansion parameter) (contains UV-divergencies)
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Renormalization

A v
Example: LD 3—?1213 = v { W

P

— Green function:

X3 X2
G(Xl,XQ,X3): xl._< -+ X1.—< + ...~ ()\0+C1AU\/+C2+...>
X2 X3

Common bookkeeping:

Ao = A+ 0
- N
“renormalized coupling” “renormalization constant”
(finite expansion parameter) (contains UV-divergencies)
X3 X3 X0
= x1H< + X10—~/~/. —+ x1>_.<: + ... N(/\+5>\+61AU\/+C2+4..)
%o \.Xz %3

1
=finite
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Renormalization

P
Example: LD —we‘ = » { 2 o

P

— Green function:

X3 X2
G(Xl,XQ,X3)— xl._< -+ X1.—< + ...~ ()\0+C1AU\/+C2+...>
X2 X3

Common bookkeeping:

MN=A+6A = (Am—Cﬁll)+(Cﬁll+ 5>‘WS )
o - 7R/—’
=—aluyv
“renormalized coupling” “renormalization constant”
(finite expansion parameter) (contains UV-divergencies)
X3 X2
= X1H< + le\ + x1>_.<: + ... N(/\+5>\+61AU\/+C2+4..)
—————
& " Lfinite
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Properties of renormalization schemes

Note: choice of RS is in principal unphysical!
However: in practice it influences properties of perturbative calculations!
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d4e

| =

} 7 4 D 8 0 X
'
-2
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Properties of renormalization schemes

Note: choice of RS is in principal unphysical!
However: in practice it influences properties of perturbative calculations!

—h 7 rigorous tools to fully analyze perturbative
T5(x)

! SN “convergence behavior” in realistic QFT models
/ < no rigorous bounds on remaining uncertainty
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— PMS, reduction of scale dependence, ...
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Properties of renormalization schemes

Note: choice of RS is in principal unphysical!
However: in practice it influences properties of perturbative calculations!

—sin(x)
T
T5()

— sin(3r2)
Tep(3712)
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< no rigorous bounds on remaining uncertainty

But: 3 some heuristic measures used in practice

— PMS, reduction of scale dependence, ...

= desirable property: perturbative stability
— study dependence on unphysical renormalization scale
1R, which effectively parametrizes curve in space of RSs

Other desirable properties of RSs:
@ gauge independence

@ simplification of calculation
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Tools used in the calculation

Mathematica packages for

@ implementing the model:
FeynRules

@ performing the renormalization transformation:
MoGRe

@ generating the diagrams and computing, simplifying,
manipulating the corresponding expressions:
FeynArts, FormCalc

o dealing with appearing loop integrals:
FeynCalc, PackageX
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Input parameters

me = 0.510998 950 00 MeV, m,, = 105.658 3755 MeV, m, = 1776.86 MeV,
my =01GeV,  m.=0.986GeV, m=172.5GeV,

mq = 0.1GeV, mg = 0.1GeV, mp = 4.18 GeV,
My = 80.377 GeV, Mz = 91.1876 GeV, M}, = 125 GeV,
e? 1
a(0) = as(Mz) = 0.118,

47~ 137.035999139’
sin iy = 0.22650, sin 625 = 0.00361, sin 8353y = 0.04053,
Scxm = 1.196.

o MH+Mh+MA0+2MH+
B 5

MR
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