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Overview

o Why study Dark Matter

o Framework

o EFT vs Simplified model

o DM annihilation - gluon and quark channels
o Method of Differential Equations
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Why study Dark Matter ?

e Studies such as the orbital velocity curve of spiral galaxies and the motion of galaxies
within galaxy clusters suggest the presence of 27% Dark Matter(DM) among the total
mass-energy content of the observable universe.
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o Explanation- Modified Gravity or Dark Matter(DM)?
Irregularities in Uranus’ orbit led to Neptune’s discovery but precession of the perihelion
of Mercury could only be explained by General relativity.

o Indirect searches look for excess of events over the background, such as galactic nuclei or
relic density. DM annihilation processes are relevant.

@ Direct searches such as in particle colliders or underground experiments are based on
scattering of DM with SM particles, DM SM — DM SM. Mono-jet processes are relevant.

e e sty ey Dl G | October 25, 2024 322



|
Dark Matter as BSM particle

UV complete approach:
In the Gluphilic Scalar Dark Matter Model (GSDM)U], the interaction Lagrangian is
given by,

Lint = 0uX"0"x —m2|x|> + (Du¢) D*¢ — m3|6> + Xax*xo' &
where x is complex scalar DM which is gauge singlet, ¢ is the colored complex scalar
mediator and D, is the covariant derivative, D, ¢ = 0, ¢ — igs%aGZ(ﬁ.

For the process pp — XX,

The parton level contributions come from channels-

99 = xx*
93 — xx*

where g is gluon and q is quark.
The relic density is can be used to constrain the parameters as,

2
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ov =
x(99) 64m3m2 M|

[1] Rohini M. Godbole et al. arXiv:1506.01408.

e e sty ey Dl G | October 25, 2024 1/22


https://arxiv.org/pdf/1506.01408.pdf

|
EFT vs Exact

For the process pp — xx*j

2.5 P#c'"
20 — 250 Gev
e 450 GeV|

E 15 550 GeV/
w1 o
) X
1.0 7 y*

o5 1/

/
0 0 500 1000 1500 2000
my (GeV) g
(2) V5 =8 TeV g

Figure: Ratio of the full calculation to the EFT approximation, as a function of m

In EFT approach,
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Lepy = IxI*g, gh”

o EFT is valid for mediator masses > 1.5 TeV.

e Since we consider less massive mediators, exact model of GSDM would be appropriate.
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Gluon channel
We consider the DM pair production process,

g(p1)g(p2) — xx*

The amplitude can be expanded as-

_ gab _ (ap)(eapy) ) as as 2
Mggosxxx =6 (61.62 (s/2) e (MLO + 47rMNLO + O(‘”‘s))

Where p? = p3 = 0 and p1.p2 = s/2.
The amplitude in terms of form factors is-

M =5 (Fy (s/2) g™ + F2 piph )
The form factors are related at total amplitude level due to current conservation,
p1,uMH*Y = p2 , MM =0

which implies Fo = —F7.
Hence, the amplitude in terms of form factor F is-

MMV = F % 69 ((s/2) 9" — piph )
Projector -
(g - p;p‘;)
(d-2) (s/2)
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1-Loop contributions

The Feynman diagrams at Leading order are,

g

Leading order 1 loop analytical result for form factor is-

2m2 — s+ ,/s(s — 4m2)
- Z12) 4+ 0e)

2
2m¢

g2
S

F =

(s+ mi log|

There will be UV divergences individually, but overall amplitude is UV finite. No Infrared

Divergences due to massive propagators.
2

m T—7— .
b 1Ti+l€

s 7‘T:_\/ler

Parametrization of dimensionless ratio, 7 =

Why NLO ?
The Leading Order(One-Loop) Corrections suffer from large scale uncertainties ~ 30%,
Next-to-Leading Order (NLO) corrections are necessary to reduce the error.
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The Feynman diagrams at 2-Loop order with maximum number of propagators are,
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Figure: Topmost topologies in gg — xX* , red lines are massless gluons, green lines are massive
mediator and thin black lines are DM particles

o Since k1 and kg are variables, they can be exchanged. Using translation invariance
properties of Feynman integrals, we can shift loop momenta k; — p; + k;. Also
exchanging and replacing p; and p; is possible. Using these, scalar integrals can be
mapped to minimum of 3 integral families.

o IBP reduction of scalar integrals leads to 18 Master Integrals.

o The Integration by Parts (IBP) identities are based on fact that within dimensional
regularisation the integral of a total derivative vanishes as there are no boundary terms,

nes -
Dhey ") (hr + p1)2 = ) (e + p2)? = m3) (ke + pa)? — m3)on

where [; can be loop momenta or external momenta.
o This process is similar to gg — H , Master Integrals available in arXiv:2001.06295
[Charalampos Anastasiou et al.]
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Renormalization

The pole structure at NLO two-loop can be ,

{ I+ {3+ 0)

UV/IR

The Infrared divergences will have a Universal IR structure at NLO asl?]

2N, 2
Mg _ee_WEE(GTC + ?B)MLO

M mp2

—s 1o}
Myy = —(—)"(6Za, Mo +8Zm, ~——Mro + §Zx Mro)
o omg

[2] Catani & Seymour.,A General Algorithm for Calculating Jet Cross Sections in NLO QCD arXiv:9605323.
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https://arxiv.org/pdf/hep-ph/9605323.pdf

Result: The finite part of virtual contributions

1
7o = BN G- e+ D
+ 2072 (=2 + )w(—11 + 28z + 62%)) + 138240(1 — x) (3(x + 2*) — IN?(z + 20%)) HPL({—4}. )
—1+ =)%2(1 + 2)HPL({—2},z)*
20(1 — o) (N22(23 + 3122) — 27(r + %)) HPL({4}.1)
0NZ(—1+ x)%2(1 + =)HPL({-3,1}, )
—92160N?(=1 + x)%x(1 + x) HPL({2.
320N2(—1 + x)2(1 + =)HPL({3,
—1+2)%2(1 + 2)HPL({—2. —1}.x) log(x) + 92160N%(—1 + )%r(1 + r)HPL({—2. 1} ) log(x)
(=1 + #)%2(1 + 2)HPL({2, -1}, =) log(x)
— 1440zHPL({3}, 2) (—((1 + 2)(—32 + 88N%(—1 + x)? + 59z — 3227))
— 5760(1 JeHPL({—3},2) (—((—27 + 20N?)(—1 + 22))
— 115208 (=1 + 2)*(1 + 2) log(1 — 2)%((—1 + 2)* — xlog(x)*)+
240(1 — 2)HPL({—2},2) (—((—1 + 2)(—9(—1 — 9z + 9% + &) + SN*(—6 + (—15 + 27" )z
—12(—1 + 2%)(—27 + 2082 + 48N log(1 — x)) log(x) + 48 (N 22) + 201 +2?)) log(x)?)
— BOHPL({2}.2) (3((—1 +2)(1 4 2)°(3 + 2(—16 + 32))
+ 32V (1 — a)a (4 (—1 + 2?) — Blog(x)(20(—1 + &%) + (3 + 112?) log(«))))
—16N3(1 — ) (630(—1 + 2)*(1 + x) — 22" 2(—19 + 5527) — 307> (=1 + 2)*(2 + 2(7 + 22))
— 15log() (—2(24 + (57 + 72(6 — 14a?) + 3 (—18 + 2(—13 + 42)))) log()
+ (21 — 192%) log(2)* + 12(—1+ 2)(9 + 2(4 — 72(1 + x) + 2(—16 + 3x))
— 3602(7(—1+ 2%) + 2(=7 + 1527) log(x))¢(3))
+ 180(1 — 2)(1 + =) log(1 — x) (log(x) ((1 + x)(
+ 32N%(1 — ) (6(—1+ 2)* + log(x) (4 + 2(—2 + =)o — rlog()(11 + 4 log())) + 36x¢(3))) +
30 ((36 + (930 + 6477 (—1 + 2)(1 + 2?) + 32(—435 + 2(—139 + 32(T1 + x))))) log(x)?
+ 20(1 + x)(86 4 2(—215 + 134r)) log(xr)® + 8(—1 + x)x(1 + 2) log()*
— 482(1 + )49 + (—103 + 492))((3)
+ 2log(x) (3 + 36(—1 + 2)3(1 + (10 + =)) log(1 + =)
+ 2(336 — 272(1 + 2)(32 + £(—69 + 32r)) — 32(33T + £(=337 + 2(112 + 1))}

(‘zk] + ) (3375 — 68102 + 15(454 — 225x)a* + 192 (= + 2%))

+ 2(—16 + 32)) — 40(—1 + x)x log(x))

+768(—1 +z)(1 +B)g(3)))))

For comparison with EFT amplitudes, the small and large mass expansions are carried out through
PolyLogTools [C. Duhr et al arXiv:1904.07279]
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Quark Channel

We consider the DM pair production process,

a(p1)d(p2) = xx*
The amplitude can be expanded as-
Mag—sxxx = (p2) ' u(p1)
2

as
= Gz (Mro+

e
—Mnro + O(aﬁ))
4m
Where p% = pg = m§ and p1.p2 = s/2 — mg.
Choosing an ansatz for projector such that it results in trace and satisfy the projector
condition, we get,
1
P = 5
(Trace[p, p, — mZ1])

The form factor is given by,

a(p1) v(p2)

1
F = m Trace [(p1¢2 - mgl) F]
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The Feynman diagrams at 2-Loop order with maximum number of propagators are,

o Since p u(p1) = 0(p2)p, =0, it can be shown that the amplitude vanishes for massless
quarks.

o Also, the quark leg with two vertices and a quark propagator lead to trace over odd
number of vy matrices in form factor. Hence, a massless quark leg would give zero
contribution.

o Only 1 Integral Family is sufficient and there are 20 Master Integrals after IBP reduction.

o From literature the Master Integrals are obtained from “Top-induced contributions to
H — bb and H — cc at (a2)” [Roberto Mondini et al arXiv:2006.03563]
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Results - Quark Channel
Since this is a leading order amplitude, it must be finite and devoid of any divergences. Our

result is finite. Parametrization of scaleless ratios,

_s _(-w?? o mi (1-w?)ia?
m? w2 T omy (1 22)2w?

32w (w? + 1) 2z (w? (2% — 422 + 1) — 2w? (32% — 822 +3) + 2% — 422 +1)
MLO =9t ) 4 3
9Imy (w2 —1)% (22 + 1)

G(0,w) (=6G(0, -1, 2) + 6G(0,0, 2) — 6G (0,1, 2) + 7?) + }

Where G(al,a2,..,x) are Multiple Polylogarithms.

October 25, 2024 13 /22

N (oo form factors for Dark Matber §



Method of Differential Equations
o The master integrals are solved using Canonical form of Differential Equations!3].
o Every Master Integral I; is differentiated w.r.t. scaleless ratios.

@ Since the MIs form a complete basis, using IBP identities 0;Z; are expressed in terms of
MIs.

o The differential equations take the following form,

ain(K/a Y, 2, 6) = Azx] (’{7 Y,z C)I] (K’a Y,z 6)

where xis k = =% |y = -ty and z = %
™ e e

e This gives us coupled partial differential eqns which are solved to obtain analytical
results in terms of special functions such as Multiple Polylogs.

o Particularly after converting the Differential Equations to canonical form, we can
iteratively integrate and obtain I(x) for different orders of e,

(d+ eA@n)(>_ T (an).!) = 0

j=0
[3] Johannes M. Henn arXiv:1304.1806.
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https://arxiv.org/pdf/1304.1806.pdf

Summary
o Methodology of Loop calculations
e 2-Loop Virtual corrections for gluon channel.

o Leading order 2-Loop contribution for quark channel.

‘What Next ?
o Computing Real corrections and NLO cross section.
o Constraints on DM parameters from relic density data.

e Compute NLO for Mono-jet case and constrain the parameters from Collider Data.
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Thank You!
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Backup slides 1

At NLO DM-jet cross section is given by,
1 1
0= [ [ e gyt [[ana 5a@)6 (09 = x000) 46109 = o)
70 T0/21

1 1
[ [ e fy(a) [ daa £a(@2)(68 (99 3 99)

Since 4/ </
|M[? = |(a*Mp + o3> M, + a2 Mp)|?

Collinear divergence, 6 — 0
falhy = Sy —
(k+p2)? (k2+p3 +2k.p2) k0 .p3 —[kl|p2| cos 0
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Backup slides II

o There will be IR divergences which are cancelled by divergences due to phase space
integrals.

3p1 d3py 454 2
2 ) — Pg)|Ms;
-+ [ & e E e, ) 5 0+ e = 3D PPN

o It can be soft where p; — 0, collinear where § — 0 or both.

o They are necessary for finite predictions as KLN theorem guarantees infrared
divergences cancel at the same order for partonic cross sections.
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Gluon propagator counter term-

_ g3

5
g 12

{2022 + Anf)phpY + (12m?2 — (53 + 8 + nf)p.p)g""” }

Phi propagator counter term-

25ij
Omy = —gST(Smi) ,Mass renormalisation
2 5ij
0p = 9s (4p.p) ,Wavefunction renormalisation

3
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Modifications in strong coupling constant o
For the case of gluon propagator, the additional diagrams are-

Zg4 is the coupling renormalization constant. For DM+QCD it is given by,

2
9% (11Cq — 4TRNf — QTRNd,) 2 4
T (4m)? 6 1—q T OWR)

MS
Zgbm =1
This corresponds to 3 functions at 1-Loop as,

1 (11C, — 4TRN; — TrN,)
(4m)2 3

Bpm =

The running in « is given by,

a(iir)

R (47r)a<ﬂR>mog( )

o

o

I
"
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Results I

The pole structure at two loop can be

{ I+ 3+ 0
UV/IR
Since this is a Next-to-leading order amplitude, we expect divergences.

o The Infrared divergences will have Universal IR structure at NLO asl3]

2N,
)Mo

—s
Amp2

e e, 2B
Mg = —g2( ) e TE (?'*‘

s d
Myy = —(—5)" (2 6Zg MLo + 6Zm—MLo)
w 8m¢,

where

B
0Zg = —93

e A combination of UV renormalization and IR subtraction should make the amplitude
finite.
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Results 11

CoEpsinv — — m (—24(z + DaHPL({—3}, 2) + 12(z + 1)a log(z)HPL({—2}, 2)
+1822¢(3) 4 7a® — 72? — 42? log3(2) + 622 log(1 — ) log? () + 22 log? ()
— 623 1log(1 — z) + 622 log(1 — z) + w222 log(x) — 10z2 log(z) + 18x¢(3)
— 7z — 4z log3 () 4 6z log(1 — z) log? () + 2 log?(z) + 6z log(1 — )

+ 2z log(z) + 4z log(z) — 6log(1 — z) + 6log(z) + 7)

UV — 2 (m(lzofigg) - 1) _Am (log(z) ((22 — 1) log(z) + 6z) — 3 (22 — 1))
or = eps eps(z — 1)3(x + 1)
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Plot of ag vs u-
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