Dissecting Multi-Higgs Boson Production in New Physics Models

Extended Scalar Sectors From All Angles @ CERN, October 21-26, 2024

Andreas Papaefstathiou

Kennesaw State University, Georgia, USA

KENNESAW STATE UNIVERSITY

Symmetry Breaking

Andreas Papaefstathiou

- \rightarrow Determine shape of this potential by measuring:

- \rightarrow Determine shape of this potential by measuring:

Higgs boson discovery @ LHC, 2012

- → Determine shape of this potential by measuring:

- \rightarrow Determine shape of this potential by measuring:

- → Determine shape of this potential by measuring:

[e.g. **AP**, Sakurai, **arXiv:1508.06524**, Fuks, Kim, Lee, arXiv:1510.07697 & arXiv:1704.04298, AP, Tetlalmatzi-Xolocotzi, Zaro, arXiv:1909.09166, ...]

Andreas Papaefstathiou

SEE LATER!

- → Determine shape of this potential by measuring:

4

• **J** factor of $\mathcal{O}(10^{-3})$ each time you "draw" an extra Higgs boson @ pp colliders.

$\sigma(h) \sim 50 \text{ pb}$

<u>SM</u>, 14 TeV

• **J** factor of $\mathcal{O}(10^{-3})$ each time you "draw" an extra Higgs boson @ pp colliders.

 $\sigma(h) \sim 50 \text{ pb}$ × Ø(1

<u>SM, 14 TeV</u>

$\sigma(hh) \sim 40 \text{ fb}$

• **J** factor of $\mathcal{O}(10^{-3})$ each time you "draw" an extra Higgs boson @ pp colliders.

 $\sigma(h) \sim 50 \text{ pb}$

× 0(1

SM, 14 TeV

<u>SM</u>, 14 TeV

• **J** factor of $\mathcal{O}(10^{-3})$ each time you "draw" an extra Higgs boson @ pp colliders.

SM hhh Boson Production "Fun" Facts

• Cranking up the **pp COM energy** could help!

~ ×60 increase in cross section as pp COM 14 TeV \rightarrow 100 TeV.

SM hhh Boson Production "Fun" Facts

• Cranking up the **pp COM energy** could help!

~ ×60 increase in cross section as pp COM 14 TeV \rightarrow 100 TeV.

SM hhh Boson Production "Fun" Facts

• Cranking up the **pp COM energy** could help!

~ ×60 increase in cross section as pp COM 14 TeV \rightarrow 100 TeV.

THE SECRET iNGREDIENT IS ALWAYS LOVE

Andreas Papaefstathiou

THE SECRET iNGREDIENT IS ALWAYS DEVE NEW PHYSICS

THE SECRET iNGREDIENT IS ALWAYS DEVE NEW PHYSICS

A. **hhh** in SM+<u>2</u> singlet scalar fields, B. **hhh** with anomalous couplings.

Here:

A. hhh in SM+2 singlet scalar fields,

SM + Two Real Singlet Scalars [= TRSM]

- Add two real singlet scalar fields *S*, *X*.
- & impose discrete \mathcal{Z}_2 symmetries: $\mathcal{Z}_2^S : S \to -S, X \to X$

 \Rightarrow TRSM scalar potential:

$$\mathcal{V}(\phi, S, X) = \bullet |\phi|^2 + \Box |\phi|$$
$$+ \Box S^2 X^2$$
$$+ \Box |\phi|^2 S^2 + \Box |\phi|^2 + \Box |\phi|^2$$

- $\mathscr{Z}_{2}^{X}: X \to -X, S \to S$

$|S|^4 + \bullet S^2 + \blacksquare S^4 + \bullet X^2 + \blacksquare X^4$

 $|\phi|^2 X^2$

SM + <u>Two Real Singlet Scalars</u> [= TRSM]

- Go through electroweak symmetry breaking...
- \Rightarrow Get **three** scalar bosons: $h_1, h_2, h_3 \rightarrow h_1 \approx$ SM-like Higgs boson.
- \Rightarrow **hhh** <u>detectable at the LHC</u>!

[AP, Robens, Tetlalmatzi-Xolocotzi, arXiv:2101.00037]

see Gilberto Tetlalmatzi-Xolocotzi's talk!

SM + <u>Two Real Singlet Scalars</u> [= TRSM]

- Go through electroweak symmetry breaking...
- \Rightarrow Get **three** scalar bosons: $h_1, h_2, h_3 \rightarrow h_1 \approx$ SM-like Higgs boson.
- \Rightarrow **hhh** <u>detectable at the LHC</u>!

through:
$$pp \rightarrow h$$

→ "Double-Resonant Enhancement"!

[AP, Robens, Tetlalmatzi-Xolocotzi, arXiv:2101.00037]

see Gilberto Tetlalmatzi-Xolocotzi's talk!

hhh in the TRSM

[Karkout, AP, Postma, Tetlalmatzi-Xolocotzi, van de Vis, du Pree, arXiv:2404.12425]

Viable points with $\sigma > 10 \times \sigma_{SM}(gg \rightarrow hhh)@13.6 \text{ TeV}$

hhh in the TRSM

[Karkout, AP, Postma, Tetlalmatzi-Xolocotzi, van de Vis, du Pree, arXiv:2404.12425]

• Narrow-width ($\Gamma_2 \ll M_2 \& \Gamma_3 \ll M_3$) double-resonant production suggests a "simplified" factorized approach.

• Coming soon! [AP, Tetlalmatzi-Xolocotzi, arXiv:24!?.!?!?]

11

Andreas Papaefstathiou

FO-EWPT and hhh in the TRSM

- related to electro-weak baryogenesis?
- and if so, will this lead to enhanced hhh at the LHC?

• Q: Can there be a First-Order Electroweak Phase Transition in the TRSM,

[Karkout, **AP**, Postma, Tetlalmatzi-Xolocotzi, van de Vis, du Pree, **arXiv:2404.12425**]

FO-EWPT and hhh in the TRSM

- related to electro-weak baryogenesis?
- and if so, will this lead to enhanced hhh at the LHC?

see Osama Karkout's talk!

- FO-EWPT & enhanced hhh are <u>mutually exclusive</u>!
- "barrier" <u>not</u> generated if both new scalars attain a VEV,
- and **non-zero VEVs are necessary** for sufficient mixing!

 \blacksquare Removing the \mathcal{I}_2 restrictions might help!

• Q: Can there be a First-Order Electroweak Phase Transition in the TRSM,

[Karkout, **AP**, Postma, Tetlalmatzi-Xolocotzi, van de Vis, du Pree, arXiv:2404.12425]

 $\mathcal{V}(\phi)$

Tunneling!

φ

Andreas Papaefstathiou

- <u>Add</u> higher-dimensional operators to the SM Lagrangian!
 - \rightarrow Capture effects of new particles at Scales \gg Collision Energies.

$$\begin{split} {}^{\mathrm{SM}\to} & \mathscr{L}_{h^n} \supset -\mu^2 \left| \phi \right|^2 - \lambda \left| \phi \right|^4 - \left(y_t \bar{Q}_L \phi^c t_R + y_b \bar{Q}_L \phi b_R + \mathrm{h.c.} \right) \\ & + \frac{c_H}{2\Lambda^2} (\partial^\mu \left| \phi \right|^2)^2 - \frac{c_6}{\Lambda^2} \lambda_{\mathrm{SM}} \left| \phi \right|^6 + \frac{\alpha_s c_g}{4\pi\Lambda^2} \left| \phi \right|^2 G^a_{\mu\nu} G^{\mu\nu}_a \\ & - \left(\frac{c_t}{\Lambda^2} y_t \left| \phi \right|^2 \bar{Q}_L \phi^c t_R + \frac{c_b}{\Lambda^2} y_b \left| \phi \right|^2 \bar{Q}_L \phi b_R + \mathrm{h.c.} \right) \end{split}$$

For 1-loop computations see: **smeft@nlo**: [Degrande, Durieux, Maltoni, Mimasu, Vryonidou, Zhang, arXiv:2008.11743]

• e.g. <u>Add</u> **D=6** operators **relevant to multi-Higgs boson production**, of the form

[see e.g. Goertz, AP, Yang, Zurita, arXiv:1410.3471 for $pp \rightarrow hh$ study in this framework]

D=6-Inspired Anomalous Couplings [AP, Tetlalmatzi-Xolocotzi, arXiv:2312.13562]

• Go through EWSB...

 \Rightarrow in terms of the <u>physical scalar Higgs</u> boson *h*:

$$\begin{aligned} \mathscr{L}_{\mathrm{D=6}} &\supset -\frac{m_{h}^{2}}{2v} \left(1+c_{6}\right) h^{3} - \frac{m_{h}^{2}}{8v^{2}} \left(1+6c_{6}\right) h^{4} \\ &+ \frac{\alpha_{s}c_{g}}{4\pi} \left(\frac{h}{v} + \frac{h^{2}}{2v^{2}}\right) G_{\mu\nu}^{a} G_{a}^{\mu\nu} \\ &- \left[\frac{m_{t}}{v} \left(1+c_{t}\right) \bar{t}_{L} t_{R} h + \frac{m_{b}}{v} \left(1+c_{b}\right) \bar{b}_{L} b_{R} h + \mathrm{h.c.}\right] \\ &- \left[\frac{m_{t}}{v^{2}} \left(\frac{3c_{t}}{2}\right) \bar{t}_{L} t_{R} h^{2} + \frac{m_{b}}{v^{2}} \left(\frac{3c_{b}}{2}\right) \bar{b}_{L} b_{R} h^{2} + \mathrm{h.c.} \\ &- \left[\frac{m_{t}}{v^{3}} \left(\frac{c_{t}}{2}\right) \bar{t}_{L} t_{R} h^{3} + \frac{m_{b}}{v^{3}} \left(\frac{c_{b}}{2}\right) \bar{b}_{L} b_{R} h^{3} + \mathrm{h.c.}\right], \end{aligned}$$

• Go through EWSB...

 \Rightarrow in terms of the <u>physical scalar Higgs</u> boson *h*:

$$\frac{m_h^2}{2v} (1+c_6) h^3 - \frac{m_h^2}{8v^2} (1+6c_6) h^4$$

$$+ \frac{\alpha_s c_g}{4\pi} \left(\frac{h}{v} + \frac{h^2}{2v^2}\right) G_{\mu\nu}^a G_a^{\mu\nu}$$

$$- \left[\frac{m_t}{v} (1+c_t) \bar{t}_L t_R h + \frac{m_b}{v} (1+c_b) \bar{b}_L b_R h + \text{h.c.}\right]$$

$$- \left[\frac{m_t}{v^2} \left(\frac{3c_t}{2}\right) \bar{t}_L t_R h^2 + \frac{m_b}{v^2} \left(\frac{3c_b}{2}\right) \bar{b}_L b_R h^2 + \text{h.c.}\right]$$

$$- \left[\frac{m_t}{v^3} \left(\frac{c_t}{2}\right) \bar{t}_L t_R h^3 + \frac{m_b}{v^3} \left(\frac{c_b}{2}\right) \bar{b}_L b_R h^3 + \text{h.c.}\right],$$

[AP, Tetlalmatzi-Xolocotzi, arXiv:2312.13562]

• Go through EWSB...

 \Rightarrow in terms of the <u>physical scalar Higgs</u> boson *h*:

[AP, Tetlalmatzi-Xolocotzi, arXiv:2312.13562]

• Go through EWSB...

g

g

Y

 \Rightarrow in terms of the <u>physical scalar Higgs</u> boson *h*:

$$\begin{aligned} \mathscr{L}_{D=6} \supset -\frac{m_{h}^{2}}{2v} \left(1+c_{6}\right) h^{3} - \frac{m_{h}^{2}}{8v^{2}} \left(1+6c_{6}\right) h^{4} \\ + \frac{\alpha_{s}c_{g}}{4\pi} \left(\frac{h}{v} + \frac{h^{2}}{2v^{2}}\right) G_{\mu\nu}^{a} G_{a}^{\mu\nu} \\ \hline \left[-\left[\frac{m_{t}}{v} \left(1+c_{t}\right) \bar{t}_{L} t_{R} h + \frac{m_{b}}{v} \left(1+c_{b}\right) \bar{b}_{L} b_{R} h + \text{h.c.}\right] \\ - \left[\frac{m_{t}}{v^{2}} \left(\frac{3c_{t}}{2}\right) \bar{t}_{L} t_{R} h^{2} + \frac{m_{b}}{v^{2}} \left(\frac{3c_{b}}{2}\right) \bar{b}_{L} b_{R} h^{2} + \text{h.c.}\right] \\ - \left[\frac{m_{t}}{v^{3}} \left(\frac{c_{t}}{2}\right) \bar{t}_{L} t_{R} h^{3} + \frac{m_{b}}{v^{3}} \left(\frac{c_{b}}{2}\right) \bar{b}_{L} b_{R} h^{3} + \text{h.c.}\right], \end{aligned}$$

[AP, Tetlalmatzi-Xolocotzi, arXiv:2312.13562]

D=6-Inspired Anomalous Couplings [AP, Tetlalmatzi-Xolocotzi, arXiv:2312.13562]

• A slightly more "general" picture is obtained by "**dissociating**" the operators as:

$$\begin{aligned} \mathscr{L}_{\text{Pheno}} &\supset -\frac{m_h^2}{2\nu} \left(1 + d_3\right) h^3 - \frac{m_h^2}{8\nu^2} \left(1 + d_4\right) h^4 \\ &+ \frac{\alpha_s}{4\pi} \left(c_{g1} \frac{h}{\nu} + c_{g2} \frac{h^2}{2\nu^2} \right) G_{\mu\nu}^a G_{\mu\nu}^{\mu\nu} \\ &- \left[\frac{m_t}{\nu} \left(1 + c_{t1}\right) \bar{t}_L t_R h + \frac{m_b}{\nu} \left(1 + c_{b1}\right) \bar{b}_L b_R h + \text{h.c.} \right] \\ &- \left[\frac{m_t}{\nu^2} \left(\frac{3c_{t2}}{2} \right) \bar{t}_L t_R h^2 + \frac{m_b}{\nu^2} \left(\frac{3c_{b2}}{2} \right) \bar{b}_L b_R h^2 + \text{h.c.} \right] \\ &- \left[\frac{m_t}{\nu^3} \left(\frac{c_{t3}}{2} \right) \bar{t}_L t_R h^3 + \frac{m_b}{\nu^3} \left(\frac{c_{b3}}{2} \right) \bar{b}_L b_R h^3 + \text{h.c.} \right], \end{aligned}$$

Note: This can be also be motivated via the <u>Electro-weak Chiral Lagrangian</u>, [see e.g. Buchalla, Catá, Krause arXiv:1307.5017]

Recover D=6 by setting:

$$d_3 = c_6,$$

$$d_4 = 6c_6,$$

$$c_{g1} = c_{g2} = c_g,$$

$$c_{f1} = c_{f2} = c_{f3} = c_f.$$

Andreas Papaefstathiou

16

D=6-Inspired Anomalous Couplings [AP, Tetlalmatzi-Xolocotzi, arXiv:2312.13562]

• A slightly more "general" picture is obtained by "**dissociating**" the operators as:

$$\begin{aligned} \mathscr{L}_{\text{Pheno}} \supset &-\frac{m_{h}^{2}}{2v} \left(1+d_{3}\right) h^{3} - \frac{m_{h}^{2}}{8v^{2}} \left(1+d_{4}\right) h^{4} \\ &+ \frac{\alpha_{s}}{4\pi} \left(\underbrace{c_{g}}_{b} \underbrace{h}_{v}^{h} + \underbrace{c_{g2}}_{2v^{2}} \underbrace{h^{2}}_{2v^{2}} \right) G_{\mu\nu}^{a} G_{a}^{\mu\nu} \quad \text{instead of } c_{g} \\ &- \left[\frac{m_{t}}{v} \left(1+c_{t1}\right) \bar{t}_{L} t_{R} h + \frac{m_{b}}{v} \left(1+c_{b1}\right) \bar{b}_{L} b_{R} h + \text{h.c.} \right] \\ &- \left[\frac{m_{t}}{v^{2}} \left(\frac{3c_{t2}}{2} \right) \bar{t}_{L} t_{R} h^{2} + \frac{m_{b}}{v^{2}} \left(\frac{3c_{b2}}{2} \right) \bar{b}_{L} b_{R} h^{2} + \text{h.c.} \right] \\ &- \left[\frac{m_{t}}{v^{3}} \left(\frac{c_{t3}}{2} \right) \bar{t}_{L} t_{R} h^{3} + \frac{m_{b}}{v^{3}} \left(\frac{c_{b3}}{2} \right) \bar{b}_{L} b_{R} h^{3} + \text{h.c.} \right], \end{aligned}$$

Note: This can be also be motivated via the <u>Electro-weak Chiral Lagrangian</u>, [see e.g. Buchalla, Catá, Krause arXiv:1307.5017]

Recover D=6 by setting: $d_3 = c_6,$ $d_4 = 6c_6,$ $c_{g1} = c_{g2} = c_g,$ $c_{f1} = c_{f2} = c_{f3} = c_f.$

Andreas Papaefstathiou

16

D=6-Inspired Anomalous Couplings [AP, Tetlalmatzi-Xolocotzi, arXiv:2312.13562]

• A slightly more "general" picture is obtained by "**dissociating**" the operators as:

$$\begin{aligned} \mathscr{L}_{Pheno} \supset &-\frac{m_{h}^{2}}{2v} \left(1+d_{3}\right) h^{3} - \frac{m_{h}^{2}}{8v^{2}} \left(1+d_{4}\right) h^{4} \\ &+ \frac{\alpha_{s}}{4\pi} \left(c_{g1} \frac{h}{v} + c_{g2} \frac{h^{2}}{2v^{2}}\right) G_{\mu\nu}^{a} G_{a}^{\mu\nu} \\ &- \left[\frac{m_{t}}{v} \left(1+c_{t1}\right) \bar{t}_{L} t_{R} h + \frac{m_{b}}{v} \left(1+c_{b1}\right) \bar{b}_{L} b_{R} h + \text{h.c.}\right] \\ &- \left[\frac{m_{t}}{v^{2}} \left(\frac{3c_{t2}}{2}\right) \bar{t}_{L} t_{R} h^{2} + \frac{m_{b}}{v^{2}} \left(\frac{3c_{b2}}{2}\right) \bar{b}_{L} b_{R} h^{2} + \text{h.c.}\right] \\ &- \left[\frac{m_{t}}{v^{3}} \left(\frac{c_{t3}}{2}\right) \bar{t}_{L} t_{R} h^{3} + \frac{m_{b}}{v^{3}} \left(\frac{c_{b3}}{2}\right) \bar{b}_{L} b_{R} h^{3} + \text{h.c.}\right], \quad \text{instead of } c_{t} \end{aligned}$$

Note: This can be also be motivated via the <u>Electro-weak Chiral Lagrangian</u>, [see e.g. Buchalla, Catá, Krause arXiv:1307.5017]

D=6-Inspired Anomalous Couplings

• Further modify to match more closely LHC experiments' definitions:

$$\begin{aligned} \mathscr{S}_{\text{PhenoExp}} \supset -\lambda_{\text{SM}} v \left(1+d_{3}\right) h^{3} - \frac{\lambda_{\text{SM}}}{4} \left(1+d_{4}\right) \\ + \frac{\alpha_{s}}{12\pi} \left(c_{g1}\frac{h}{v} - c_{g2}\frac{h^{2}}{2v^{2}}\right) G_{\mu\nu}^{a} G_{a}^{\mu} \\ - \left[\frac{m_{t}}{v} \left(1+c_{t1}\right) \bar{t}_{L} t_{R} h + \frac{m_{b}}{v} \left(1+c_{t1}\right) \\ - \left[\frac{m_{t}}{v^{2}} c_{t2} \bar{t}_{L} t_{R} h^{2} + \frac{m_{b}}{v^{2}} c_{b2} \bar{b}_{L} b_{R} h^{2} - \left[\frac{m_{t}}{v^{3}} \left(\frac{c_{t3}}{2}\right) \bar{t}_{L} t_{R} h^{3} + \frac{m_{b}}{v^{3}} \left(\frac{c_{b3}}{2}\right) \\ - \left[\frac{m_{t}}{v^{3}} \left(\frac{c_{t3}}{2}\right) \bar{t}_{L} t_{R} h^{3} + \frac{m_{b}}{v^{3}} \left(\frac{c_{b3}}{2}\right) \\ - \left[\frac{m_{t}}{v^{3}} \left(\frac{c_{t3}}{2}\right) \bar{t}_{L} t_{R} h^{3} + \frac{m_{b}}{v^{3}} \left(\frac{c_{b3}}{2}\right) \\ - \left[\frac{m_{t}}{v^{3}} \left(\frac{c_{t3}}{2}\right) \bar{t}_{L} t_{R} h^{3} + \frac{m_{b}}{v^{3}} \left(\frac{c_{b3}}{2}\right) \\ - \left[\frac{m_{t}}{v^{3}} \left(\frac{c_{t3}}{2}\right) \bar{t}_{L} t_{R} h^{3} + \frac{m_{b}}{v^{3}} \left(\frac{c_{b3}}{2}\right) \\ - \left[\frac{m_{t}}{v^{3}} \left(\frac{c_{t3}}{2}\right) \bar{t}_{L} t_{R} h^{3} + \frac{m_{b}}{v^{3}} \left(\frac{c_{b3}}{2}\right) \\ - \left[\frac{m_{t}}{v^{3}} \left(\frac{c_{t3}}{2}\right) \bar{t}_{L} t_{R} h^{3} + \frac{m_{b}}{v^{3}} \left(\frac{c_{b3}}{2}\right) \\ - \left[\frac{m_{t}}{v^{3}} \left(\frac{c_{t3}}{2}\right) \bar{t}_{L} t_{R} h^{3} + \frac{m_{b}}{v^{3}} \left(\frac{c_{b3}}{2}\right) \\ - \left[\frac{m_{t}}{v^{3}} \left(\frac{c_{t3}}{2}\right) \bar{t}_{L} t_{R} h^{3} + \frac{m_{b}}{v^{3}} \left(\frac{c_{b3}}{2}\right) \\ - \left[\frac{m_{t}}{v^{3}} \left(\frac{c_{t3}}{2}\right) \bar{t}_{L} t_{R} h^{3} + \frac{m_{b}}{v^{3}} \left(\frac{c_{b3}}{2}\right) \\ - \left[\frac{m_{t}}{v^{3}} \left(\frac{c_{t3}}{2}\right) \bar{t}_{L} t_{R} h^{3} + \frac{m_{b}}{v^{3}} \left(\frac{c_{b3}}{2}\right) \right] \\ - \left[\frac{m_{t}}{v^{3}} \left(\frac{c_{t3}}{2}\right) \bar{t}_{L} t_{R} h^{3} + \frac{m_{b}}{v^{3}} \left(\frac{c_{b3}}{2}\right) \right] \\ - \left[\frac{m_{t}}{v^{3}} \left(\frac{c_{t3}}{2}\right) \bar{t}_{L} t_{R} h^{3} + \frac{m_{b}}{v^{3}} \left(\frac{c_{b3}}{2}\right) \right] \\ - \left[\frac{m_{t}}{v^{3}} \left(\frac{c_{t3}}{2}\right) \bar{t}_{L} t_{R} h^{3} + \frac{m_{b}}{v^{3}} \left(\frac{c_{b3}}{2}\right) \right] \\ - \left[\frac{m_{t}}{v^{3}} \left(\frac{c_{t3}}{2}\right) \bar{t}_{L} t_{R} h^{3} + \frac{m_{t}}{v^{3}} \left(\frac{c_{t3}}{2}\right) \right] \\ - \left[\frac{m_{t}}{v^{3}} \left(\frac{c_{t3}}{2}\right) \bar{t}_{L} t_{R} h^{3} + \frac{m_{t}}{v^{3}} \left(\frac{c_{t3}}{2}\right) \right] \\ - \left[\frac{m_{t}}{v^{3}} \left(\frac{c_{t3}}{2}\right) \bar{t}_{L} t_{R} h^{3} + \frac{m_{t}}{v^{3}} \left(\frac{c_{t3}}{2}\right) \right] \\ - \left[\frac{m_{t}}{v^{3}} \left(\frac{c_{t3}}{2}\right) \left(\frac{c_{t3}}{2}\right) \right] \\ - \left[\frac{m_{t}}$$

[AP, Tetlalmatzi-Xolocotzi, arXiv:2312.13562]

 \mathcal{V} $(c_{b1}) \bar{b}_L b_R h + \text{h.c.}$ + h.c. $\frac{5}{2} \left| \bar{b}_L b_R h^3 + \text{h.c.} \right|,$ Defined: $\lambda_{\rm SM} = m_h^2/2v^2$.

Obtain **CMS-like** parametrization by:

$$c_{\lambda} = (1+d_3),$$

 $k_t = c_{t1},$
 $c_2 = c_{t2},$
 $c_g = c_{g1},$
 $c_{gg} = c_{2g}.$

And **ATLAS-like** parametrization by:

 $c_{hhh} = (1+d_3),$ $c_{ggh} = 2c_{g1}/3,$ $c_{gghh} = -c_{g2}/3.$

Andreas Papaefstathiou

 $) h^4$

Monte Carlo Implementation of Anomalous Couplings • We have implemented a MadGraph5_aMC@NLO "loop" model for $\mathscr{L}_{PhenoExp}$.

• Includes Loop X Tree Level interference between diagrams.

[see: Hirschi, <u>https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/LoopInducedTimesTree</u>]

• Model available at <u>https://gitlab.com/apapaefs/multihiggs_loop_sm</u>. [includes necessary patch for MG5_aMC].

Model Validation [AP, Tetlalmatzi-Xolocotzi, arXiv:2312.13562]

"EFT" limit, in the $t\bar{t} \rightarrow hhh$ process:

• Most couplings validated vs. a HERWIG 7 $pp \rightarrow hh$ implementation, e.g.:

• "New" non-trivial coupling that appears, $\propto c_{t3}t\bar{t}h^3$ has been validated via an

 c_{g1}

C_g2

C_{t1}

 c_{b1}

*Ct*2

 C_{b2}

C_{t3}

 C_{b3}

 d_4

0.5

0.0

-0.5

0.5

0.5

hhh Cross Sections @ 13.6 TeV

[AP, Tetlalmatzi-Xolocotzi, arXiv:2312.13562]

- Cross section as a multiple of the SM.
- n.b.: $\sigma_{\rm SM} \sim 0.04$ fb at LO@13.6 TeV.
- Each 2D panel shown: all other coefficients set to zero!

hhh Cross Sections @ 13.6 TeV

[AP, Tetlalmatzi-Xolocotzi, arXiv:2312.13562]

- Cross section as a multiple of the SM.
- n.b.: $\sigma_{\rm SM} \sim 0.04$ fb at LO@13.6 TeV.
- Each 2D panel shown: all other coefficients set to zero!

- **Projected constraints for other coefficients:**

Percentage uncertainties						
	HL-LHC	Ref.				
$\delta(d_3)$	50	5	[145] (table 12)			
$\delta(c_{g1})$	2.3	0.49	[145] (table 3)			
$\delta(c_{g2})$	5	1	[140] (Figure 12, right)			
$\delta(c_{t1})$	3.3	1.0	[145] (table 3)			
$\delta(c_{t2})$	30	10	[140] (Figure 12, right)			
$\delta(c_{b1})$	3.6	0.43	[145] (table 3)			
$\delta(c_{b2})$	30	10	assumed same as c_{t2}			

• Other processes constrain (at LO) all coefficients except $\{c_{t3}, d_4\}$ (\rightarrow only in hhh).

For details, see: [**AP**, Tetlalmatzi-Xolocotzi, arXiv:2312.13562] +!

- **Projected constraints for other coefficients:**

Percentage uncertainties								
	HL-LHC FCC-hh Ref.							
$\delta(d_3)$	50	5	[145] (table 12)					
$\delta(c_{g1})$	2.3	0.49	[145] (table 3)					
$\delta(c_{g2})$	5	1	[140] (Figure 12, right)					
$\delta(c_{t1})$	3.3	1.0	$\begin{bmatrix} 145 \end{bmatrix} (table 3)$					
$\delta(c_{t2})$	30	10	[140] (Figure 12, right)					
$\delta(c_{b1})$	3.6	0.43	$\begin{bmatrix} 145 \end{bmatrix} (table 3)$					
$\delta(c_{b2})$	30	10	assumed same as c_{t2}					

• Other processes constrain (at LO) all coefficients except $\{c_{t3}, d_4\}$ (\rightarrow only in hhh).

For details, see: [**AP**, Tetlalmatzi-Xolocotzi, arXiv:2312.13562] +!

• Focusing on a model with **non-zero**: $\{c_{t2}, d_3, c_{t3}, d_4\}$:

[AP, Tetlalmatzi-Xolocotzi, arXiv:2312.13562]

constrained by $pp \rightarrow hh$

[AP, Tetlalmatzi-Xolocotzi, arXiv:2312.13562]

constrained by $pp \rightarrow hh$

Constraints [AP, Tetlalmatzi-Xolocotzi, arXiv:2312.13562] C_{t2}, d_3, c_{t3}, d_4 :

g

6

- Focusing on a model with only $\{c_{t2}, d_3, c_{t3}, d_4\}$,
- Using the hhh \rightarrow 6 b-jet final state, and marginalizing over { c_{t2}, d_3 } within projected constraints:

- Anomalous Couplings Constraints [AP, Tetlalmatzi-Xolocotzi, arXiv:2312.13562] • Focusing on a model with only $\{c_{t2}, d_3, c_{t3}, d_4\}$,
- Using the hhh \rightarrow 6 b-jet final state, and marginalizing over $\{c_{t2}, d_3\}$ within projected constraints:

	HL-LHC 68%	HL-LHC 95%	FCC-hh 68%	FCC-hh 95%
d_4	[-6.6, 12.4]	[-10.0, 21.3]	[-3.9, 10.5]	[-10.6, 18.8]
c_{t3}	[-0.6, 1.1]	[-0.9, 3.6]	[-0.1, 0.3]	[-0.4, 0.6]

 $l_4 \sim O(10)$

 $C_{t3} \sim O(0.1 - 1)$

Summary & Outlook

- Multi-Higgs production processes \rightarrow crucial rôle in understanding EWSB.
 - ▶ e.g. hhh production → Higgs quartic self-coupling.
- <u>SM</u> hhh \rightarrow hopeless at the LHC,
- <u>BUT: Enhanced in models with extended scalar sectors or anomalous</u> interactions. Could we see hints of hhh at the LHC?
 - ► TRSM (two singlets) → through double-resonant process. Related to baryogenesis?
 - Anomalous coupling picture \rightarrow an agnostic framework for h/hh/hhh.

MG5_aMC model: <u>https://gitlab.com/apapaefs/multihiggs</u> loop sm

Questions merit investigation @ LHC & future colliders!

25

Summary & Outlook

- Multi-Higgs production processes \rightarrow crucial rôle in understanding EWSB.
 - ▶ e.g. hhh production → Higgs quartic self-coupling.
- <u>SM</u> hhh \rightarrow hopeless at the LHC,
- <u>BUT</u>: Enhanced in models with extended scalar sectors or anomalous interactions. Could we see hints of hhh at the LHC?
 - ► TRSM (two singlets) → through double-resonant process. Related to baryogenesis?
 - Anomalous coupling picture \rightarrow an agnostic framework for h/hh/hhh.

MG5_aMC model: <u>https://gitlab.com/apapaefs/multihiggs</u> loop sm

Questions merit investigation @ LHC & future colliders!

25

Appendices

TRSM Monte Carlo Event Generation

- We have implemented a MadGraph5_aMC@NLO (MG5_aMC) "loop" model for the TRSM:
 - MG5_aMC input parameters: the three mixing angles, two masses / widths and all the scalar couplings (only 7 are independent in **TRSM**).
 - Comes with a **Python script** that:
 - allows conversion of M_2 , $M_3 + \underline{\text{three}}$ mixing angles $+ \underline{\text{two}}$ VEVs to the MG5_aMC model input,
 - calculates several single-production cross sections, branching ratios, widths,
 - and writes associated MG5_aMC parameter card (param_card.dat) automatically.
 - **Get it at:** <u>https://gitlab.com/apapaefs/twosinglet</u>.

[<u>AP</u>, Tania Robens, Gilberto Tetlalmatzi-Xolocotzi, arXiv:2101.00037]

hhh with Anomalous Couplings

g

ller

لفحقحف

Ð

hhh: Final states

[<u>AP</u>, Sakurai, 1508.06524]

Assume: K-factor = 2.

[Maltoni, Vryonidou, Zaro, 1408.6542]

 $N_{20ab^{-1}}$ 222078328 7297→ Fuks, Kim, Lee, 1510.07697, Fuks, Kim, Lee, 1704.04298. 182411281041→Kilian, Sun, Yan, Zhao, Zhao, 1702.03554. 799 263→ <u>AP</u>, Sakurai, 1508.06524, Chen, Yan, Zhao, Zhao, Zhong, 1510.04013, Fuks, Kim, Lee,

1510.07697.

The 6b final state, analysis [AP, Gilberto Tetlalmatzi-Xolocotzi, Marco Zaro, arXiv:1909.09166]

- What can we learn about the anomalous couplings via **hhh** at 13.6 TeV?
- Begin by using the 6 **b-jet final state**!
- 1. Require 6 tagged b-jets.

The 6b final state, analysis [<u>AP</u>, Gilberto Tetlalmatzi-Xolocotzi, Marco Zaro, arXiv:1909.09166]

- What can we learn about the anomalous couplings via **hhh** at 13.6 TeV?
- Begin by using the 6 **b-jet final state**!
- 1. Require 6 tagged b-jets.
- 2. Consider pairings of the b-jets.

The 6b final state, analysis [<u>AP</u>, Gilberto Tetlalmatzi-Xolocotzi, Marco Zaro, arXiv:1909.09166]

- What can we learn about the anomalous couplings via **hhh** at 13.6 TeV?
- Begin by using the 6 **b-jet final state**!
- 1. Require 6 tagged b-jets.
- 2. Consider pairings of the b-jets.

The 6b final state, analysis [<u>AP</u>, Gilberto Tetlalmatzi-Xolocotzi, Marco Zaro, arXiv:1909.09166]

- What can we learn about the anomalous couplings via **hhh** at 13.6 TeV?
- Begin by using the 6 **b-jet final state**!
- 1. Require 6 tagged b-jets.
- 2. Consider pairings of the b-jets.

3. For each pairing construct:

$$\chi^2 = \sum_{\substack{qr \in \text{pairings } I}} (M_{qr} - m_h^2)^2$$

≡ sum of squared differences from Higgs mass (~125 GeV)

The 6b final state, analysis [AP, Gilberto Tetlalmatzi-Xolocotzi, Marco Zaro, arXiv:1909.09166]

- What can we learn about the anomalous couplings via **hhh** at 13.6 TeV?
- Begin by using the 6 **b-jet final state**!
- 1. Require 6 tagged b-jets.
- 2. Consider pairings of the b-jets.

 \Rightarrow 4. Pairing that gives minimum χ^2_1 determines "reconstructed Higgs boson".

 \min

3. For each pairing construct:

$$\chi^2 = \sum_{\substack{qr \in \text{pairings } I}} (M_{qr} - m_h^2)^2$$

≡ sum of squared differences from Higgs mass (~125 GeV)

h_r^{\imath} \rightarrow Higgs boson candidates

] GeV,
$$i = 1, 2, 3$$

< 8, 8, 11 GeV the three terms in χ^{2}_{min} . < [3.5, 3.5, 3.5], (i, j) = [(1, 2), (1, 3), (2, 3)]

signal/backgrounds after analysis

Process	σ_{GEN} (pb)	$\sigma_{\rm NLO} imes { m BR}$ (pb)	$\boldsymbol{\varepsilon}_{ ext{analysis}}$	$N_{20}^{\rm cuts}$
hhh (SM)	$2.88 imes 10^{-3}$	1.06×10^{-3}	0.0131	278
$\overline{\text{QCD}(b\bar{b})(b\bar{b})(b\bar{b})}$	26.15	52.30	2.6×10^{-5}	2711
$q\bar{q} \rightarrow hZZ \rightarrow h(b\bar{b})(b\bar{b})$	$8.77 imes10^{-4}$	$4.99 imes10^{-4}$	$1.8 imes10^{-4}$	~ 2
$q\bar{q} \rightarrow ZZZ \rightarrow (b\bar{b})(b\bar{b})$	$7.95 imes10^{-4}$	$7.95 imes10^{-4}$	$1.2 imes 10^{-5}$	< 1
$ggF hZZ \rightarrow h(b\bar{b})(b\bar{b})$	$1.08 imes10^{-4}$	$1.23 imes10^{-4}$	$\mathcal{O}(10^{-3})$	~ 2
$ggFZZZ \rightarrow (b\bar{b})(b\bar{b})$	1.36×10^{-5}	$2.73 imes 10^{-5}$	2×10^{-5}	$\ll 1$
$h(b\bar{b})(b\bar{b})$	1.46×10^{-2}	1.66×10^{-2}	$5.4 imes10^{-4}$	179
$hh(b\bar{b})$	$1.40 imes10^{-4}$	9.11×10^{-5}	$2.8 imes10^{-4}$	~ 1
$hhZ \rightarrow hh(b\bar{b})$	4.99×10^{-3}	1.61×10^{-3}	$7.2 imes10^{-4}$	23
$hZ(b\bar{b}) \rightarrow h(b\bar{b})(b\bar{b})$	9.08×10^{-3}	1.03×10^{-2}	$1.4 imes10^{-4}$	29
$ZZ(b\bar{b}) \rightarrow (b\bar{b})(b\bar{b})(b\bar{b})$	$2.87 imes10^{-2}$	$5.74 imes 10^{-2}$	1×10^{-5}	11
$\underline{Z(b\bar{b})(b\bar{b})} \rightarrow (b\bar{b})(b\bar{b})(b\bar{b})$	0.93	1.87	3×10^{-5}	1121
\sum backgrounds				2.8 imes

process	σ_{GEN} (pb)	$\sigma_{\rm GEN} \times \mathscr{P}(6 b - jet)$
$(b\bar{b})(b\bar{b})(c\bar{c})(b\bar{b})(c\bar{c})(c\bar{c})(c\bar{c})(c\bar{c})(c\bar{c})(b\bar{b})(b\bar{b})(jj)(b\bar{b})(jj)(jj)(ji)(ji)(ji)$	76.8 75.6 22.5 1.32×10^4 9.79×19^5 1.37×10^6	$\begin{array}{c} 0.768\\ 0.00756\\ 22.5\times10^{-5}\\ 1.32\\ 0.00979\\ 1.37\times10^{-6} \end{array}$

c.f. $\sigma_{\text{GEN}}(6b) = 26.15 \text{ pb}$

Reducible backgrounds

-jets) (pb)

⇒ Assuming perfect b-tagging + identical analysis efficiency to QCD 6b:

 \rightarrow ~10% contribution from reducible backgrounds.

for P(b-tagging) = 0.8:

 \rightarrow ~30% contribution.

TRSM hhh \rightarrow 6b analysis details

Introduce two observables: $\chi^{2,(4)} = \sum \left(M_{qr} - M_1 \right)^2$

invariant mass of the pairing *qr*.

 $qr \in I$ $\chi^{2,(6)} = \sum \left(M_{qr} - M_1 \right)^2$ $qr \in J$

 \rightarrow constructed from different pairings of 4 and 6 b-tagged jets, M_{ar} is the

TRSM hhh -> 6b analysis details

Label	(M_2, M_3)	$< P_{T,b}$	$\chi^{2,(4)} <$	$\chi^{2,(6)} <$	$m_{4b}^{\mathrm{inv}} <$	$m_{6b}^{\mathrm{inv}} <$
	[GeV]	$[\mathrm{GeV}]$	$[\mathrm{GeV}^2]$	$[{ m GeV}^2]$	[GeV]	[GeV]
\mathbf{A}	(255, 504)	34.0	10	20	_	525
В	(263, 455)	34.0	10	20	450	470
\mathbf{C}	(287, 502)	34.0	10	50	454	525
D	(290, 454)	27.25	25	20	369	475
${f E}$	(320, 503)	27.25	10	20	403	525
\mathbf{F}	(264, 504)	34.0	10	40	454	525
\mathbf{G}	(280, 455)	26.5	25	20	335	475
\mathbf{H}	(300, 475)	26.5	15	20	352	500
Ι	(310, 500)	26.5	15	20	386	525
\mathbf{J}	(280, 500)	34.0	10	40	454	525

Table 3. The optimised selection cuts for each of the benchmark points within **BP3** shown in table 2. The cuts not shown above are common for all points, as follows: $|\eta|_b < 2.35$, $\Delta m_{\min, \text{med, max}} < [15, 14, 20] \text{ GeV}, p_T(h_1^i) > [50, 50, 0] \text{ GeV}, \Delta R(h_1^i, h_1^j) < 3.5$ and $\Delta R_{bb}(h_1) < 3.5$. For some of the points a m_{4b}^{inv} cut is not given, as this was found to not have an impact when combined with the m_{6b}^{inv} cut.

TRSM hhh → 6b analysis details (Signal vs Bkg)

Label	(M_2, M_3)	$\varepsilon_{\mathrm{Sig.}}$	$S _{300 fb^{-1}}$	$arepsilon_{ m Bkg.}$	$\mathbf{B}\big _{300 \mathrm{fb}^{-1}}$	$\mathrm{sig} _{\mathrm{300 fb}^{-1}}$	$sig _{3000 fb^{-1}}$
	[GeV]					(syst.)	(syst.)
Α	(255, 504)	0.025	14.12	8.50×10^{-4}	19.16	2.92(2.63)	9.23~(5.07)
Β	(263, 455)	0.019	17.03	3.60×10^{-5}	8.12	4.78(4.50)	15.10(10.14)
\mathbf{C}	(287, 502)	0.030	20.71	9.13×10^{-5}	20.60	4.01 (3.56)	12.68(6.67)
D	(290, 454)	0.044	37.32	1.96×10^{-4}	44.19	$5.02 \ (4.03)$	15.86(6.25)
${f E}$	(320, 503)	0.051	31.74	2.73×10^{-4}	61.55	3.76(2.87)	11.88(4.18)
${f F}$	(264, 504)	0.028	18.18	9.13×10^{-5}	20.60	$3.56\ (3.18)$	11.27 (5.98)
\mathbf{G}	(280, 455)	0.044	38.70	1.96×10^{-4}	44.19	5.18(4.16)	$16.39\ (6.45)$
\mathbf{H}	(300, 475)	0.054	41.27	2.95×10^{-4}	66.46	4.64(3.47)	14.68(4.94)
Ι	(310, 500)	0.063	41.43	3.97×10^{-4}	89.59	4.09(2.88)	12.94 (3.87)
\mathbf{J}	(280, 500)	0.029	20.67	9.14×10^{-5}	20.60	4.00(3.56)	$12.65 \ (6.66)$

Table 4. The resulting selection efficiencies, $\varepsilon_{\text{Sig.}}$ and $\varepsilon_{\text{Bkg.}}$, number of events, *S* and *B* for the signal and background, respectively, and statistical significances for the sets of cuts presented in table 3. A *b*-tagging efficiency of 0.7 has been assumed. The number of signal and background events are provided at an integrated luminosity of 300 fb⁻¹. Results for 3000 fb⁻¹ are obtained via simple extrapolation. The significance is given at both values of the integrated luminosity excluding (including) systematic errors in the background according to Eq. (5.1) (or Eq. (5.2) with $\sigma_b = 0.1 \times B$).

TRSM BP3 Definition

Parameter

M_1
M_2
M_3
$ heta_{hS}$

- v_S
- v_X
- κ_1
- κ_2

 κ_3

Value
$125.09 \mathrm{GeV}$
[125, 500] GeV
[255, 650] GeV
-0.129
0.226
-0.899
$140 \mathrm{GeV}$
$100 \mathrm{GeV}$
0.966
0.094
0.239

TRSM BP3 Benchmark Point Info

Label	(M_2,M_3)	Γ_2	Γ_3	$BR_{2 \rightarrow 11}$	$BR_{3 \rightarrow 11}$	$BR_{3 \rightarrow 12}$
		[GeV]	[GeV]	[GeV]		
Α	(255, 504)	0.086	11	0.55	0.16	0.49
В	(263, 455)	0.12	7.6	0.64	0.17	0.47
\mathbf{C}	(287, 502)	0.21	11	0.70	0.16	0.47
\mathbf{D}	(290, 454)	0.22	7.0	0.70	0.19	0.42
${f E}$	(320, 503)	0.32	10	0.71	0.18	0.45
\mathbf{F}	(264, 504)	0.13	11	0.64	0.16	0.48
\mathbf{G}	(280, 455)	0.18	7.4	0.69	0.18	0.44
\mathbf{H}	(300, 475)	0.25	8.4	0.70	0.18	0.43
Ι	(310, 500)	0.29	10	0.71	0.17	0.45
J	(280, 500)	0.18	10.6	0.69	0.16	0.47

Table 5. The total widths and new scalar branching ratios for the parameter points considered in the analysis. For the SM-like h_1 , we have $M_1 = 125 \text{ GeV}$ and $\Gamma_1 = 3.8 \text{ MeV}$ for all points considered. The other input parameters are specified in table 1. The on-shell channel $h_3 \rightarrow h_2 h_2$ is kinematically forbidden for all points considered here.

hhh in the TRSM [14 TeV]

• Focus on a particular family of benchmark points: "Benchmark Plane 3" = "BP3" in [Robens, Stefaniak, Wittbrodt, arXiv:1908.08554].

Label	(M_2, M_3)	$\sigma(pp \to h_1 h_1 h_1$
	$[\mathrm{GeV}]$	[fb]
A	(255, 504)	32.40
\mathbf{B}	(263, 455)	50.36
\mathbf{C}	(287, 502)	39.61
\mathbf{D}	(290, 454)	49.00
\mathbf{E}	(320, 503)	35.88
\mathbf{F}	(264, 504)	37.67
\mathbf{G}	(280, 455)	51.00
\mathbf{H}	(300, 475)	43.92
Ι	(310, 500)	37.90
J	(280, 500)	40.26

• In BP3: All params fixed <u>except</u> $M_2, M_3!$

Cross section can be much higher than in the SM! 😳 \rightarrow c.f. SM: $\sigma \sim 0.1$ fb @ 14 TeV.

[**AP**, Robens, Tetlalmatzi-Xolocotzi, arXiv:2101.00037]

hhh in the TRSM "BP3" [14 TeV]

- Search for **hhh** via: $pp \rightarrow (b\bar{b})(b\bar{b})(b\bar{b}) \rightarrow 6$ **b-jets**.
- About **20**% of the **hhh** final state!
- Significances large, even when including systematic uncert.:

	Label	$\operatorname{sig} _{300 \text{fb}}^{-1}$	$\operatorname{sig} _{3000 \text{fb}}^{-1}$
		(SYSU.)	(SySt.)
	\mathbf{A}	$2.92\ (2.63)$	$9.23\ (5.07)$
[AP, Robens, Tetlalmatzi-	Β	4.78(4.50)	15.10(10.14)
Xolocotzi, arXiv:2101.00037]	\mathbf{C}	4.01 (3.56)	12.68(6.67)
	D	$5.02 \ (4.03)$	15.86(6.25)
	${f E}$	3.76(2.87)	11.88(4.18)
	\mathbf{F}	3.56(3.18)	11.27 (5.98)
	\mathbf{G}	5.18(4.16)	16.39(6.45)
	\mathbf{H}	4.64(3.47)	14.68(4.94)
	Ι	4.09(2.88)	12.94(3.87)
	\mathbf{J}	4.00(3.56)	$12.65 \ (6.66)$
		40	

hhh in the TRSM "BP3" [14 TeV]

- hhh will (probably?) not be a discovery channel,

41

• but could be **important in determining the parameters of the model**, if scalars are discovered!

Could help solve the "inverse problem" in

[**AP**, Robens, Tetlalmatzi-Xolocotzi, arXiv:2101.00037]

Monte Carlo Implementation of Anomalous Couplings

- Get the MG5_aMC model at: https://gitlab.com/apapaefs/multihiggs_loop_sm.
- [A <u>patch</u> to **MG5_aMC** to enable **Loop** X **Tree** is included].
- Can generate events either at:
 - SM^2 + interference of [SM × One-Insertion diagrams], i.e.: $|\mathscr{M}|^2 = |\mathscr{M}_{SM}|^2 + 2\text{Re}\{\mathscr{M}_{SM}^*\mathscr{M}_{1-\text{ins.}}\} \propto 1 + c_i$

or

• SM^2 + interference of [SM × One <u>or</u> Two insertion diagrams] + [One Insertion]^2, i.e.: $|\mathcal{M}|^{2} = |\mathcal{M}_{SM}|^{2} + 2\operatorname{Re}\{\mathcal{M}_{SM}^{*}\mathcal{M}_{1-\operatorname{ins.}}\} + 2\operatorname{Re}\{\mathcal{M}_{SM}^{*}\mathcal{M}_{2-\operatorname{ins.}}\} + |\mathcal{M}_{1-\operatorname{ins.}}|^{2}$ $\propto 1 + c_i + c_j c_k + c_\ell^2$

