Reconstructing the general 2HDM charged Higgs boson at the LHC

Mohamed Krab

Department of Physics, National Taiwan University

Based on W.-S. Hou and M. Krab, PRD-L'24

Extended Scalar Sectors From All Angles Workshop CERN, October 21, 2024

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● りへで

Introduction

- Searches for heavy charged Higgs bosons are getting complicated due to the large associated backgrounds.
- $\triangleright\,$ Also flavor observables like $b\to s\gamma$ put stringent bounds on the mass of the charged Higgs boson.

A. Arbey et al., EPJC'18

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへで 1/12

 \triangleright We suggest searching for H^+ with flavor-changing (FC) couplings

General two Higgs doublet model

In the Higgs basis, the general *CP*-conserving 2HDM scalar potential is given by Davidson and Haber, PRD'05; Hou and Kikuchi, EPL'18

$$V(\Phi, \Phi') = \mu_{11}^{2} |\Phi|^{2} + \mu_{22}^{2} |\Phi'|^{2} - (\mu_{12}^{2} \Phi^{\dagger} \Phi' + \text{H.c.}) + \frac{\eta_{1}}{2} |\Phi|^{4} + \frac{\eta_{2}}{2} |\Phi'|^{4} + \eta_{3} |\Phi|^{2} |\Phi'|^{2} + \eta_{4} |\Phi^{\dagger} \Phi'|^{2} + \left[\frac{\eta_{5}}{2} (\Phi^{\dagger} \Phi')^{2} + (\eta_{6} |\Phi|^{2} + \eta_{7} |\Phi'|^{2}) \Phi^{\dagger} \Phi' + \text{H.c.} \right], \quad (1)$$

with

$$\Phi = \begin{pmatrix} G^+ \\ (v+h_1+iG^0)/\sqrt{2} \end{pmatrix}, \qquad \Phi' = \begin{pmatrix} H^+ \\ (h_2+iA)/\sqrt{2} \end{pmatrix}.$$
 (2)

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > ○ Q (2/12

- \triangleright The usual Z_2 symmetry is dropped \implies FCNC at tree-level
- Many parameters and extra processes arise
- \triangleright EWBG, Absence of FCNC (e.g. $t \rightarrow ch_{125}$), ... could be explained
- ▷ Sub-TeV H, A, H^{\pm} bosons may still exist

General Yukawa interaction

Higgs-fermion interactions can be described by

Davidson and Haber, PRD'05

$$\mathcal{L}_{Y} = -\frac{1}{\sqrt{2}} \sum_{f=u,d,\ell} \bar{f}_{i} \left[\left(\lambda_{ij}^{f} s_{\gamma} + \rho_{ij}^{f} c_{\gamma} \right) h + \left(\lambda_{ij}^{f} c_{\gamma} - \rho_{ij}^{f} s_{\gamma} \right) H - i \operatorname{sgn}(Q_{f}) \rho_{ij}^{f} A \right] P_{R} f_{j} - \bar{u}_{i} \left[(V \rho^{d})_{ij} P_{R} - (\rho^{u\dagger} V)_{ij} P_{L} \right] d_{j} H^{+} - \bar{\nu}_{i} \rho_{ij}^{\ell} P_{R} \ell_{j} H^{+} + \operatorname{H.c.}$$
(3)

- $\triangleright \ \lambda^f$ matrices: diagonal, fixed by fermion mass
- $\triangleright
 ho^f$ matrices: non-diagonal (and in general complex) lead to FCNC
- ▷ Alignment ($c_{\gamma} \approx 0$) suppresses FCNC for h but allows FCNC for H and A
- $\triangleright \
 ho_{ij}$ are severely constrained by flavor physics
- ▷ Extra top couplings ρ_{tc} and ρ_{tt} could be $\mathcal{O}(1)$ and can each drive EWBG Fuyuto, Hou, Seneha, PLB'18

 \triangleright For simplicity, we set all $\rho_{ij} = 0$ except ρ_{tc} and ρ_{tt}

Constraints on G2DHM

G2HDM parameter space is subject to the following constraints:

- > Unitarity, perturbativity and vacuum stability
- \triangleright EWPD through oblique parameters S, T and U using the following fit result:

 $S = 0.05 \pm 0.08$, $T = 0.09 \pm 0.07$, $\rho_{ST} = 0.92$, [PDG]

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ≧ の へ ℃ 4/12

Flavor physics and direct searches (next slides)

Flavor constraints

Because of a $|V_{cq}/V_{tq}|$ (q = d, s) (m_t/m_b) enhancement factor, ρ_{ct} (ρ_{bb}) is severely constrained by $B_q - \bar{B}_q$ $(b \rightarrow s\gamma)$.

B. Altunkaynak et al., PLB'15

 \triangleright Constraints on ρ_{tc} are weak due to small m_c . An upper bound on ρ_{tc} was found to be $|\rho_{tc}| \lesssim 1.3 \ (1.7)$ for $m_{H^+} = 300 \ (500)$ GeV.

A. Crivellin et al., PRD'13

 $\triangleright \rho_{tc}$ and ρ_{tt} can still be sizable ($\lesssim O(1)$) under current data

Limit from $t \rightarrow ch$ searches

CMS, arXiv:2407.15172

Hou and MK, PRD-L'24

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ 差 の へ ℃ 6/12

- $|\rho_{tc}| \gtrsim 0.5$ is excluded at 95% CL for $c_{\gamma} = 0.1$
- \triangleright The limit diminishes for $c_{\gamma} < 0.1$ and vanishes for $c_{\gamma} = 0$ (alignment)

Limit from $H^+ \rightarrow t\bar{b}$ searches

LHC searches for $pp \rightarrow \bar{t}bH^+ \rightarrow \bar{t}bt\bar{b}$ strongly constrain ρ_{tt} .

Hou and MK, PRD-L'24

- \triangleright Limits are interpreted assuming $\mathcal{B}(H^+ \to t \bar{b}) = 100\%$
- ▷ Constraints from LHC searches for $pp \rightarrow H/A \rightarrow t\bar{t}$ and $pp \rightarrow t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$ are relatively weaker
- $\triangleright \rho_{tt}$ is safe from constraints from SM Higgs properties $(s_{\gamma} = 1)$

Search for G2HDM neutral Higgs bosons

With $t \to ch$ alignment-suppressed, it is natural to pursue $cq \to tH/tA \to tt\bar{c}/tt\bar{t}$ (same-sign top/triple top), which is controlled by $s_{\gamma} \simeq 1$.

CMS, PLB'24; Jaffel's talk

ATLAS, JHEP'23; Saka's talk (日)

√ < ^{(~} 8/12

э

Searching for H^+ with FC couplings

In G2HDM, where $\bar{c}bH^+$ couples with strength $\rho_{tc}V_{tb}$, $cg \rightarrow bH^+$ and $bg \rightarrow cH^-$ are not CKM-suppressed, compared to 2HDM-II.

Ghosh, Hou, Modak, PRL'20

Hou and MK, PRD-L'24

 $c\bar{b} \rightarrow H^+ \rightarrow W^+H$, which goes through the same $\bar{c}bH^+$ coupling of $\rho_{tc}V_{tb}$, is suggested as a new avenue for discovering H^+ at the LHC.

Hou and MK, arXiv:2409.18474

Signal vs. Background Signal ($\rho_{tc} = 0.4, \rho_{tt} = 0.6$): $pp \rightarrow cH^- \rightarrow c\bar{t}b \rightarrow cW^- (\rightarrow \ell^- \bar{\nu}_\ell)\bar{b}b$ BKG: $t\bar{t} + jets$, Wt + jets, single top (tj), $t\bar{t}h$, $t\bar{t}Z$

BP	η_2	η_3	η_4	η_5	η_7	m_{H^+}	m_A	m_H	μ_{22}^2/v^2
1	1.40	0.62	0.53	1.06	-0.79	300	272	372	1.18
2	0.93	1.06	0.14	-0.36	-0.22	350	371	340	1.49
3	1.36	1.16	0.81	0.70	-0.36	400	404	454	2.06
4	0.61	1.83	1.30	-0.30	0.68	450	501	482	2.46
5	0.71	0.69	1.52	-0.93	0.24	500	569	517	3.78

Simulation: MadGraph5_aMC@NLO ($\sqrt{s} = 14 \text{ TeV}$) + Pythia + Delphes

$$\begin{array}{l} \triangleright \ \ N_{j} \geq 2 \ \& \ N_{j} \leq 4 \ \text{with} \ \ P_{T}^{j} \geq 20 \ \text{GeV} \\ \triangleright \ \ \text{At least two b-tagged ($N_{b} \geq 2$)} \\ \triangleright \ \ N_{\ell} = 1, \ \ P_{T}^{\ell} \geq 30, \ \ E_{T}^{miss} > 20 \ \text{GeV} \\ \triangleright \ \ \ H_{T} > 300(400) \ \text{GeV for BP1(2-5)} \\ \triangleright \ \ M_{T}^{H^{+}} \in [m_{H^{+}} - 50, m_{H^{+}} + 50] \end{array}$$

BP	$t\bar{t} + 2j$	Wt + 2j	tj + 1j	tīh	tīZ	Signal
1	3143.2	699.2	228.1	1.5	0.9	14.9
2	2237.9	548.3	185.8	1.4	0.8	11.9
3	2782.1	816.5	222.5	1.9	1.1	13.8
4	2438.2	752.2	157.5	2.0	1.4	9.8
5	1894.8	605.5	108.1	1.7	1.0	6.4

<ロト<日ト<日ト<三ト<三ト<三ト<三ト<三ト<10/12

Significance

We estimate our signal sensitivity using $\mathcal{Z} = \sqrt{2[(S+B)\ln(1+S/B) - S]}$ G. Cowan *et al.*, EPJC'11

▷ Evidence could emerge at 300 fb⁻¹, with discovery potential at 600 fb⁻¹. ▷ Larger ρ_{tc} , ρ_{tt} values could yield $Z \sim 5\sigma$ (or even higher) at 300 fb⁻¹.

Conclusion

- ▷ Charged Higgs bosons are actively searched for at the LHC.
- \triangleright However, it might be difficult to detect at the LHC via $bg \rightarrow tH^-$.
- ▷ In G2HDM, $bg \rightarrow cH^-$ is induced by the FC top-charm coupling ρ_{tc} without CKM-suppression, and has relatively large cross section.
- $ightarrow bg \rightarrow cH^- \rightarrow c\bar{t}b$ is suggested, where the recoiling c could provide both a tag, and a discriminant to suppress the background.

Thank you!

Conclusion

- ▷ Charged Higgs bosons are actively searched for at the LHC.
- \triangleright However, it might be difficult to detect at the LHC via $bg \rightarrow tH^-$.
- ▷ In G2HDM, $bg \rightarrow cH^-$ is induced by the FC top-charm coupling ρ_{tc} without CKM-suppression, and has relatively large cross section.
- $ightarrow bg \rightarrow cH^- \rightarrow c\bar{t}b$ is suggested, where the recoiling c could provide both a tag, and a discriminant to suppress the background.

Thank you!

◆□ → ◆ □ → ◆ Ξ → ◆ Ξ → ○ Q ○ 12/12