Looking for a SFOEWPT in the RxSM at the HL-LHC and LISA

Johannes Braathen, Sven Heinemeyer and Alain Verduras Schaeidt

Extended Scalar Sectors From All Angles CERN, 24-10-24

Motivation

- Why SFOEWPT? (Strong First Order Electroweak Phase Transition)
 - Explain BAU with EW baryogenesis
- Why BSM models?
 - No SFOEWPT in the SM
- Why Trilinear Higgs Couplings (THC)?
 - We don't know the shape of the Higgs potential
 - PT dynamics are determined by THC
 - Di-Higgs production is sensitive to them

Di-Higgs production as a tool to look for SFOEWPT scenarios in BSM models

Motivation

- THC determine the formation of the barrier
- The computation of the EWPT dynamics is done at the one-loop level
- To capture the same order of BSM contributions in di-Higgs production we need one-loop THC

Extended Scalar Sectors From All Angles 2024

Real singlet extension of the SM (RxSM)

EW doublet:
$$\Phi = \begin{pmatrix} 0 \\ \frac{\phi+v}{\sqrt{2}} \end{pmatrix}$$
 Singlet: $S = s + v_S$

1

1

Potential:

$$V(\Phi,S) = \mu^2 (\Phi^{\dagger}\Phi) + \frac{\lambda}{2} (\Phi^{\dagger}\Phi)^2 + \kappa_{SH} (\Phi^{\dagger}\Phi)S + \frac{\lambda_{SH}}{2} (\Phi^{\dagger}\Phi)S^2 + \frac{M_S}{2}S^2 + \frac{\kappa_S}{3}S^3 + \frac{\lambda_S}{2}S^4$$

Gauge eigenstates:

Mass eigenstates:

 ϕ, S

h, H

Masses & mixing angle:

$$m_h^2 = M_\phi^2 \cos^2(\alpha) + M_s^2 \sin^2(\alpha) + M_{\phi s}^2 \sin(2\alpha)$$
$$m_H^2 = M_\phi^2 \sin^2(\alpha) + M_s^2 \cos^2(\alpha) - M_{\phi s}^2 \sin(2\alpha)$$
$$\tan(2\alpha) = \frac{2M_{\phi s}^2}{M_\phi^2 - M_s^2}.$$

Extended Scalar Sectors From All Angles 2024

Tree level triple Higgs couplings in RxSM

Parameters in scalar sector:

$$m_h^2, m_H^2, v, \alpha, v_S, \kappa_S, \kappa_{SH}, t_{\phi}, t_s$$

$$\lambda_{hhh} = \frac{1}{4v^2 v_S^2} \{ -3v_S \left[\kappa_{SH} v^3 + 3(t_{\phi} - m_h^2 v) v_S \right] c_{\alpha} + 3v_S \left[\kappa_{SH} v^3 - t_{\phi} v_S + m_h^2 v v_S \right] c_{3\alpha} + 2v^2 \left[-6t_S + 3\kappa_{SH} v^2 + 6m_h^2 v_S - 2\kappa_S v_S^2 \right] s_{\alpha}^3 \}$$

$$\begin{split} \lambda_{hhH} = & \frac{1}{4v^2 v_S^2} s_{\alpha} \{ -2v_S \left[\kappa_{SH} v^3 - 3t_{\phi} v_S + (2m_h^2 + m_H^2) v v_S \right] - 2v_S [3\kappa_{SH} v^3 - 3t_{\phi} v_S + (2m_h^2 + m_H^2) v v_S] c_{2\alpha} + v^2 \left[-6t_S + 3\kappa_{SH} v^2 + 2v_S \left(2m_h^2 + m_H^2 - \kappa_S v_S \right) \right] s_{2\alpha} \} \end{split}$$

Renormalization scheme: "OS" scheme

- Masses: m_h^2, m_H^2 Renormalization of two-point functions
- EW VEV: v SM-like electroweak sector
- Singlet VEV: v_S
- Mixing angle: α
- Tadpoles: t_{ϕ}, t_s
- Kappas: κ_S, κ_{SH}

Rotation matrix: [Kanemura, Kikuchi, Yagyu, '15]

OS/Standard scheme

No divergences

$$\hat{\lambda}_{hHH}^{(1)} \stackrel{!}{=} \lambda_{hHH}^{(0)} \quad \hat{\lambda}_{HHH}^{(1)} \stackrel{!}{=} \lambda_{HHH}^{(0)}$$

Extended Scalar Sectors From All Angles 2024

SFOEWPT: Effective potential

$$V(\phi_i, T) = V_{\text{tree}} + V_{\text{CW}} + V_{\text{T}} + V_{\text{CT}} + V_{\text{daisy}}$$

$$V_{\text{tree}} > \text{Tree level potential}$$

- $V_{\rm CW}$ > One loop Coleman-Weinberg (T=0) [S. Coleman, E. Weinberg, '73]
- $V_{\rm T}$ > One loop thermal potential
- $V_{\rm CT}$ > One loop potential counter term [P. Basler et al., '17]
- $V_{\text{daisy}} > \text{Daisy diagrams}$ resummation term [P. Arnold, O. Espinosa, '93]

Set-up of analysis, including loop corrections

Theoretical constraints

Potential stability Pertubativity [Li, Ramsey-Musolf, Willocq, '19] Unitarity

[Braathen, Goodsell, Krauss, Opferkuch, Staub, '17]

anyH3 [Bahl, Braathen, Gabelmann, Weiglein, '23] anyBSM [Bahl, Braathen, Gabelmann, Radchenko Weiglein, WIP]

HiggsTools [Bahl et al., '22]

HiggsBounds

[Bechtle et al., '20] HiggsSignals [Bechtle et al., '21] Transition Listener [F. Ertas, F. Kahlhoefer, C. Tasillo '21] Cosmo Transitions

[C.L. Wainwright '11]

Di-Higgs cross section calc.

HPAIR

[T. Plehn, M. Spira, P.M. Zerwas, '96] [S.Dawson, S. Dittmaier, M.Spira, '98] [Abouabid et al., '22]

SFOEWPT benchmark plane

We observe a SFOEWPT for values of $\xi_n \gtrsim 1$

Phenomenological constraint to maximise the di-Higgs cross-section

Phenomenological constraint to increase the probability of realising a SFOEWPT

$$\kappa_S = \kappa_{SH}$$

Extended Scalar Sectors From All Angles 2024

9

LO result

SFOEWPT BP result

Low di-Higgs production cross section in the parameter region with SFOEWPT

Extended Scalar Sectors From All Angles 2024

Invariant mass distributions in SFOEWPT

Extended Scalar Sectors From All Angles 2024

Are there other ways of investigating SFOEWPT in the RxSM?

SFOEWPT GW signal

SFOEWPT GW signal

Phenomenological constraint to look for SFOEWPT

 $\kappa_S = \kappa_{SH} = -m_H$

Scanned region

 $v_S \in [45, 80] \text{ GeV}$ $m_H \in [250, 1000] \text{ GeV}$ $\cos \alpha \in [0.97, 1]$

Parameter space observable at LISA in the RxSM!

Extended Scalar Sectors From All Angles 2024

Combining: LISA + HL-LHC

One-loop trilinear Higgs coupling are a portal to SFOEWPT at colliders!

Conclusions

- One loop corrections to the trilinear Higgs couplings have an important effect in the differential di-Higgs cross section distributions for the RxSM and the corrections to κ_{λ} are especially important when we investigate the possibility of a SFOEWPT.
- Differential di-Higgs cross section distributions can be used to investigate SFOEWPT scenarios at the HL-LHC
- The RxSM has a **parameter region with a SFOEWPT** in the early Universe which generates a stochastic background of **gravitational waves observable at LISA**
- Loop corrected trilinear Higgs couplings are a portal to SFOEWPT at the HL-LHC

Thank you for your attention

Search for a heavy Higgs boson decaying into two lighter Higgs bosons in the $\tau\tau$ bb final state at 13 TeV

Considered signal:

NO INTERFERENCE

KAPPA LAMBDA = 1

CMS collaboration 2021: [arxiv: 2106.10361]

One-step phase transition in the non Z2-symmetric RxSM

Two-loop loop dimensionally reduced effective field theory with lattice simulations

Lattice result: [Niemi, Ramsey-Musolf, Xia, '24] [arxiv: 22405.01191]

Two-step phase transition in a Z2-symmetric RxSM

The observable region is sifted but it is still in a similar parameter region

[Lewicki, Merchand, Sagunski, Schicho, Schmitt, '24] [arxiv: 2403.03769

Examples of scalar contributions to $\lambda_{\rm bbh}$ in aligned 2HDM

BSM scalars:

 $\Phi \in \{H, A, H^{\pm}\}$

SFOEWPT result

We observe a SFOEWPT for values of $\xi_n \gtrsim 1$

Higgs Days 2024

Taken from J. Braathen

Renormalization scheme: κ_S, κ_{SH}

Our choice of renormalization conditions:

$$\hat{\lambda}_{hHH}^{(1)} \stackrel{!}{=} \lambda_{hHH}^{(0)} \quad \hat{\lambda}_{HHH}^{(1)} \stackrel{!}{=} \lambda_{HHH}^{(0)}$$

$$\lambda_{hHH}^{(0)} + \delta\lambda_{hHH}^{(1)} + \delta\lambda_{hHH}^{m^{2}} + \delta\lambda_{hHH}^{v} + \delta\lambda_{hHH}^{tad} + \delta\lambda_{hHH}^{wfr} + \delta\kappa_{S}^{CT} \frac{\partial\lambda_{hHH}^{(0)}}{\partial\kappa_{S}} + \delta\kappa_{SH}^{CT} \frac{\partial\lambda_{hHH}^{(0)}}{\partial\kappa_{S}H} = \lambda_{hHH}^{(0)}$$
Tree level Genuine one-loop contribution from renormalization of different parameters and WFR
$$\lambda_{HHH}^{(0)} + \delta\lambda_{HHH}^{(1)} + \delta\lambda_{HHH}^{m^{2}} + \delta\lambda_{HHH}^{v} + \delta\lambda_{HHH}^{tad} + \delta\lambda_{HHH}^{wfr} + \delta\kappa_{S}^{CT} \frac{\partial\lambda_{hHH}^{(0)}}{\partial\kappa_{S}} + \delta\kappa_{SH}^{CT} \frac{\partial\lambda_{hHH}^{(0)}}{\partial\kappa_{S}H} = \lambda_{HHH}^{(0)}$$

26

Renormalization scheme: κ_S, κ_{SH}

$$\delta\kappa_{SH}^{\rm CT} = \frac{\frac{\partial\lambda_{hHH}^{(0)}}{\partial\kappa_S} (\delta\lambda_{HHH}^{(1)} + \sum \delta\lambda_{HHH}^i) - \frac{\partial\lambda_{HHH}^{(0)}}{\partial\kappa_S} (\delta\lambda_{hHH}^{(1)} + \sum \delta\lambda_{hHH}^i)}{\frac{\partial\lambda_{hHH}^{(0)}}{\partial\kappa_{SH}} \frac{\partial\lambda_{HHH}^{(0)}}{\partial\kappa_S} - \frac{\partial\lambda_{hHH}^{(0)}}{\partial\kappa_S} \frac{\partial\lambda_{HHH}^{(0)}}{\partial\kappa_{SH}}}{\frac{\partial\lambda_{HHH}^{(0)}}{\partial\kappa_S} - \frac{\partial\lambda_{HHH}^{(0)}}{\partial\kappa_S} \frac{\partial\lambda_{HHH}^{(0)}}{\partial\kappa_SH}}$$

KUTS 2024

Renormalization scheme: v

Definition of the EW vev:

$$v^2 = \frac{m_W^2}{\pi \alpha_{EM}} \left(1 - \frac{m_W^2}{m_Z^2} \right)$$

The vector boson masses and the fine structure constant are automatically renormalized OS by anyH3

$$\frac{\delta v}{v} = \frac{1}{2} \left(\frac{s_W^2 - c_W^2}{s_W^2} \frac{\operatorname{Re}[\Sigma_{WW}(m_W^2)]}{m_W^2} + \frac{c_W^2}{s_W^2} \frac{\operatorname{Re}[\Sigma_{ZZ}(m_Z^2)]}{m_Z^2} - \frac{d}{dp^2} \Sigma_{\gamma\gamma}(p^2) \Big|_{p^2 = 0} - \frac{2s_W}{c_W} \frac{\Sigma_{\gamma Z}(0)}{m_Z^2} \right)$$

Renormalization scheme: α

[S.Kanemura, Y. Okada, E. Senaha, C.P. Yuan, '04]

[S. Kanemura, M. Kikuchi, K. Yagyu, '15]

KOSY scheme

• Rotate the bare fields and switch to the renormalize fields:

$$\begin{pmatrix} h^{0} \\ H^{0} \end{pmatrix} = \mathbf{R}_{\alpha^{0}}^{\mathrm{T}} \begin{pmatrix} s^{0} \\ \phi^{0} \end{pmatrix} \to \mathbf{R}_{\delta\alpha^{\mathrm{CT}}}^{\mathrm{T}} \mathbf{R}_{\hat{\alpha}}^{\mathrm{T}} \begin{pmatrix} s^{0} \\ \phi^{0} \end{pmatrix} = \mathbf{R}_{\delta\alpha^{\mathrm{CT}}}^{\mathrm{T}} \mathbf{R}_{\hat{\alpha}}^{\mathrm{T}} \sqrt{Z_{\phi,s}} \mathbf{R}_{\hat{\alpha}}^{\mathrm{T}} \begin{pmatrix} \hat{s} \\ \hat{\phi} \end{pmatrix} = \mathbf{R}_{\delta\alpha^{\mathrm{CT}}}^{\mathrm{T}} \mathbf{R}_{\hat{\alpha}}^{\mathrm{T}} \sqrt{Z_{\phi,s}} \mathbf{R}_{\hat{\alpha}} \mathbf{R}_{\hat{\alpha}}^{\mathrm{T}} \begin{pmatrix} \hat{s} \\ \hat{\phi} \end{pmatrix} = \mathbf{R}_{\delta\alpha^{\mathrm{CT}}}^{\mathrm{T}} \mathbf{R}_{\hat{\alpha}}^{\mathrm{T}} \sqrt{Z_{\phi,s}} \mathbf{R}_{\hat{\alpha}} \begin{pmatrix} \hat{h} \\ \hat{H} \end{pmatrix} = \sqrt{\tilde{Z}} \begin{pmatrix} \hat{h} \\ \hat{H} \end{pmatrix} = \sqrt{Z} \begin{pmatrix} \hat{h} \\ \hat{H} \end{pmatrix}$$

• Equate the fields renormalization matrices:

$$\sqrt{\tilde{Z}} = \mathbf{R}_{\delta\alpha^{\mathrm{CT}}}^{\mathrm{T}} \mathbf{R}_{\hat{\alpha}}^{\mathrm{T}} \sqrt{Z_{\phi,s}} \mathbf{R}_{\hat{\alpha}} = \begin{pmatrix} 1 + \frac{\delta Z_{hh}}{2} & \delta C_{hH} - \delta\alpha^{\mathrm{CT}} \\ \delta C_{Hh} + \delta\alpha^{\mathrm{CT}} & 1 + \frac{\delta Z_{HH}}{2} \end{pmatrix} = \sqrt{Z}$$

$$\delta \alpha = \frac{1}{2(m_H^2 - m_h^2)} \operatorname{Re}[\Sigma_{hH}(m_h^2) + \Sigma_{hH}(m_H^2) - 2\delta D_{hH}^2]$$

Renormalization scheme: t_{ϕ}, t_s

SFOEWPT: Veff def

The CW potential is given in the $\overline{\mathrm{MS}}$ renormalisation scheme by

$$V_{\rm CW}(\phi_i) = \sum_j \frac{n_j}{64\pi^2} (-1)^{2s_j} m_j^4(\phi_i) \left[\ln\left(\frac{|m_j(\phi_i)^2|}{\mu^2}\right) - c_j \right],$$

UV-finite counterterm contribution $V_{\rm CT}$, given by

$$V_{\rm CT} = \sum_{i} \frac{\partial V_0}{\partial p_i} \delta p_i + \sum_{k} (\phi_k + v_k) \delta T_k ,$$

 $\partial_{\phi_i} V_{\mathrm{CT}}(\phi) \Big|_{\langle \phi \rangle_{T=0}} = -\partial_{\phi_i} V_{\mathrm{CW}}(\phi) \Big|_{\langle \phi \rangle_{T=0}} \Big| \partial_{\phi_i} \partial_{\phi_j} V_{\mathrm{CT}}(\phi) \Big|_{\langle \phi \rangle_{T=0}} = -\partial_{\phi_i} \partial_{\phi_j} V_{\mathrm{CW}}(\phi) \Big|_{\langle \phi \rangle_{T=0}}$

Renormalization scheme: vs

It was shown in [arxiv: 1305.1548] that such an additional CT of the VEV can contain at most UV-finite contributions if the Lagrangian contains a rigid symmetry with respect to the field which corresponds to the VEV. In the RxSM, this is precisely the case for the $SU(2)_L$ gauge singlet S. Consequently, in the standard tadpole scheme δv_S is UV-finite and in this case, we choose to set the finite part of the CT to zero.

$$\delta v_S^{\overline{MS}}|_{fin} = 0. \tag{49}$$

Renormalization scheme: Q dependence

No Q dependence in the OS results

Computed with anyH3 [Bahl, Braathen, Gabelmann, Weiglein, '23]

Alain Verduras Schaeidt

Higgs Days 2024

SFOEWPT: Veff def

$$V_T(\phi_i, T) = \sum_j \frac{n_j T^4}{2\pi^2} J_{\pm} \left(\frac{m_j^2(\phi_i)}{T^2}\right)$$

$$J_{\pm}\left(\frac{m_j^2(\phi_i)}{T^2}\right) = \mp \int_0^\infty dx \, x^2 \, \log\left[1 \pm \exp\left(-\sqrt{x^2 + \frac{m_j^2(\phi_i)}{T^2}}\right)\right]$$

$$V_{\text{daisy}}(\phi_i, T) = -\sum_i \frac{T}{12\pi} \text{Tr} \left[\left(m_i^2(\phi_i) + \Pi_i^2 \right)^{\frac{3}{2}} - \left(m_i^2(\phi_i) \right)^{\frac{3}{2}} \right]$$