2HDM with CP-violation Facing EDM and Collider Tests

Ying-nan Mao (Wuhan University of Technology)

Oct. 22, 2024

Talk for "Extended Scalar Sectors From All Angles" conference (CERN); Based on [2003.04178,](https://inspirehep.net/literature/1784468) [2304.04390,](https://inspirehep.net/literature/2650093) and two papers in preparation.

1 Introduction

- CP-violation was first discovered in 1964 through $K_L \to 2\pi$ decay, and is already confirmed in K-, D−, and B−meson sectors now [Particle Data Group, [PRD 110, 030001 \(2024\)\]](https://doi.org/10.1103/PhysRevD.110.030001).
- CP-violation beyond the K(obayashi)-M(askawa) mechanism: a typical type of new physics, and also one of the necessary conditions to understand the baryon asymmetry in the Universe.
- CP-violation beyond the K-M mechanism may arise in different ways:
	- Theoretically, the extended scalar sector is an attractive solution to generate new CP-violation, since it may lead to the mixing between scalars and pseudo-scalars;
	- Experimentally, we may probe it indirectly or directly:
		- Indirect tests: we just probe CP-violation itself but we cannot immediately find its origin, measurements on the Electric Dipole Moments are typical indirect tests;
- Direct tests: when we probe the CP-violation, we know its exact origin (on the other hand, the CP-violated interactions) at the same time, collider measurements are typical direct tests.
- As an extended scalar sector model which is not so complex, 2-Higgs-Doublet-Model was widely studied in the past decades, which becomes a good candidate as an example, to study further and uncover the potentially correlation between EDM and collider tests.
- Overall, if there really exists new CP-violation in the scalar sector in 2HDM, the first signature must arise in EDM tests, while the collider tests can provide a complementary cross-check.

2 Model Set-up

• We begin from the 2HDM with a soft broken Z_2 -symmetry to avoid large $F(\text{layer})-C(\text{hanging})-N(\text{eutal})-$ C(urrent), the scalar potential is then

$$
V(\phi_1, \phi_2) = -\frac{1}{2} \left[m_1^2 \phi_1^{\dagger} \phi_1 + m_2^2 \phi_2^{\dagger} \phi_2 + \left(m_{12}^2 \phi_1^{\dagger} \phi_2 + \text{H.c.} \right) \right] + \left[\frac{\lambda_5}{2} \left(\phi_1^{\dagger} \phi_2 \right)^2 + \text{H.c.} \right] + \frac{1}{2} \left[\lambda_1 \left(\phi_1^{\dagger} \phi_1 \right)^2 + \lambda_2 \left(\phi_2^{\dagger} \phi_2 \right)^2 \right] + \lambda_3 \left(\phi_1^{\dagger} \phi_1 \right) \left(\phi_2^{\dagger} \phi_2 \right) + \lambda_4 \left(\phi_1^{\dagger} \phi_2 \right) \left(\phi_2^{\dagger} \phi_1 \right),
$$

the nonzero m_{12}^2 softly breaks Z_2 -symmetry.

- Scalar doublets: $\phi_1 \equiv (\varphi_1^+, (v_1 + \eta_1 + i\chi_1))$ $(\sqrt{2})^T$, $\phi_2 \equiv (\varphi_2^+, (v_2 + \eta_2 + i\chi_2))$ $\sqrt{2})^T;$
- \circ Here $m_{1,2}^2$ and $\lambda_{1,2,3,4}$ must be real, while m_{12}^2 and λ_5 can be complex \rightarrow CP-violation;
- **○** The vacuum expected value (VEV) for the scalar fields: $\langle \phi_1 \rangle \equiv (0, v_1)^T / \sqrt{\frac{2}{T}}$ $\overline{2}, \langle \phi_2 \rangle \equiv (0, v_2)^T / \sqrt{2}$ 2, and we denote $t_\beta \equiv |v_2/v_1|$;
- \circ m_{12}^2 , λ_5 , and v_2/v_1 can all be complex, but we can always perform a rotation to keep at least one of them real, thus we choose v_2/v_1 real, which leads to the relation: $\text{Im}(m_{12}^2) = v_1v_2\text{Im}(\lambda_5)$.
- Diagonalization: (a) Charged Sector

$$
G^{\pm} = c_{\beta} \varphi_1^{\pm} + s_{\beta} \varphi_2^{\pm}, \quad H^{\pm} = -s_{\beta} \varphi_1^{\pm} + c_{\beta} \varphi_2^{\pm};
$$

(b) Neutral Sector

$$
G^0 = c_\beta \chi_1 + s_\beta \chi_2, \quad A = -s_\beta \chi_1 + c_\beta \chi_2,
$$

and for the CP-conserving case, A is a CP-odd mass eigenstate; while for CP-violation case, $(H_1, H_2, H_3)^T = R(\eta_1, \eta_2, A)^T$, with

$$
R = \begin{pmatrix} 1 & & \\ & c_{\alpha_3} & s_{\alpha_3} \\ & & -s_{\alpha_3} & c_{\alpha_3} \end{pmatrix} \begin{pmatrix} c_{\alpha_2} & s_{\alpha_2} \\ & 1 & \\ & & c_{\alpha_2} \end{pmatrix} \begin{pmatrix} c_{\beta+\alpha_1} & s_{\beta+\alpha_1} \\ -s_{\beta+\alpha_1} & c_{\beta+\alpha_1} \\ & & 1 \end{pmatrix};
$$

SM limit: $\alpha_{1,2} \rightarrow 0$.

- Parameter Set (8): $[m_1, m_2, m_{\pm}, \beta, \alpha_1, \alpha_2, \alpha_3, \text{Re}(m_{12}^2)]$;
- Mass relation:

$$
m_3^2 = \frac{c_{\alpha_1+2\beta}(m_1^2 - m_2^2 s_{\alpha_3}^2)/c_{\alpha_3}^2 - m_2^2 s_{\alpha_1+2\beta} t_{\alpha_3}}{c_{\alpha_1+2\beta} s_{\alpha_2} - s_{\alpha_1+2\beta} t_{\alpha_3}}.
$$

- Four Yukawa types:
	- \circ A fermion bilinear couples to only one scalar doublet under given Z_2 -number, and we assume up-type quarks $\bar{u}_i u_i$ always couple to ϕ_2 ;
	- \circ The Z_2 -number for different fields

3 EDM Analysis

- Experimental limits overview:
	- We mainly care about the EDMs of electron (experimentally obtained from paramagnetic atoms, molecules, or ions), neutron, diamagnetic atoms, etc;
	- Electron: current limits from ThO [ACME collaboration, [nature 562, 355 \(2018\)\]](https://doi.org/10.1038/s41586-018-0599-8) and HfF⁺ [T. S. Roussy et. al., [Science 381, 46 \(2023\)\]](10.1126/science.adg4084) @ 90% C.L.

$$
|d_e| < \begin{cases} 1.1 \times 10^{-29} e \cdot \text{cm}, & (\text{ThO});\\ 4.1 \times 10^{-30} e \cdot \text{cm}, & (\text{HfF}^+). \end{cases}
$$

- \circ Neutron: $|d_n| < 1.8 \times 10^{-26} e \cdot \text{cm}$ @ 90% C.L. (nEDM experiment @ PSI) [nEDM collaboration, [PRL 124, 081803 \(2020\)\]](https://doi.org/10.1103/PhysRevLett.124.081803); Mercury (Hg): $|d_{\text{He}}| < 7.4 \times 10^{-30} e \cdot \text{cm}$ @ 95% C.L. [B. Graner *et. al.*, [PRL 116, 161601 \(2016\)\]](10.1103/PhysRevLett.116.161601).
- Still far above the SM predictions, but effective to limit or probe new physics.

• Method overview:

$$
NP \xrightarrow{CPV} \begin{cases} \begin{array}{c} e\text{-}\mathrm{CDM} \xrightarrow{\mathrm{RGE}} e\text{-}\mathrm{q}\:\text{int.} \\ \begin{array}{c} e\text{-}\mathrm{q}\:\text{int.} \\ \begin{array}{c} e\text{-}\mathrm{g}\:\text{int.} \\ \end{array} \end{cases} \xrightarrow{R_{high}} e\text{-}\mathrm{N}\:\text{int.} \end{cases} \xrightarrow{MR} \begin{array}{c} \text{EDMs in paramagnetic} \\ \begin{array}{c} \text{atoms, ions or molecules} \\ \end{array} \end{cases}
$$
\n
$$
NP \xrightarrow{CPV} \begin{cases} \begin{array}{c} q\text{EDM} \\ \text{Weiuberg } \mathcal{O} \text{ (}GG\tilde{G} \text{)} \end{array} \xrightarrow{RGE} \begin{array}{c} q\text{CEDM} \\ \text{Weinberg } \mathcal{O} \text{ (}GG\tilde{G} \text{)} \end{array} \begin{cases} \begin{array}{c} \text{CDSR} \\ \text{Lattice} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \text{CDSR} \\ \text{CEDM} \end{array} \end{cases} \end{cases}
$$
\n
$$
NP \xrightarrow{CPV} \begin{cases} \begin{array}{c} \begin{array}{c} \text{C} & \text{C} \\ \text{C} & \text{C} \end{array} \\ \begin{array}{c} \text{C} & \text{C} \end{array} \end{cases} \xrightarrow{R} \begin{array}{c} \begin{array}{c} \text{C} & \text{C} \\ \text{C} & \text{C} \end{array} \\ \begin{array}{c} \text{C} & \text{C} \end{array} \\ \begin{array}{c} \begin{array}{c} \text{C} & \text{C} \\ \text{C} & \text{C} \end{array} \\ \begin{array}{c} \text{C} & \text{C} \end{array} \end{cases} \end{cases}
$$
\

- Current limits and future tests: electron
	- For Type I and IV models: no cancellation behavior →very strict constraint $|\alpha_2| \lesssim \mathcal{O}(10^{-3})$;
	- For Type II and III models: cancellation behavior thus $|\alpha_2| \sim \mathcal{O}(0.1)$ is still allowed for $t_\beta \sim 1$, whose exact location depends weakly on the mass scale of the heavy scalar sector; [\[PRD 102, 075029 \(2020\),](10.1103/PhysRevD.102.075029) with Kingman Cheung, Adil Jueid, and Stefano Moretti.]
	- \circ Consistent with the results in earlier literatures [S. Inoue *et.al.*, [PRD 89, 115023 \(2014\);](doi.org/10.1103/PhysRevD.89.115023) Y.-N. Mao et.al., [PRD 90, 115024 \(2014\);](doi.org/10.1103/PhysRevD.90.115024) L. Bian et.al., [PRL 115, 021801 \(2015\);](doi.org/10.1103/PhysRevLett.115.021801) D. Fontes et.al., [JHEP](#page-0-0) [06, 060 \(2015\);](#page-0-0) etc.]
	- \circ Another cancellation region $t_\beta \sim \mathcal{O}(10)$, see also [S. Inoue *et.al.*, [PRD 89, 115023 \(2014\);](doi.org/10.1103/PhysRevD.89.115023) W. Altmannshofer et.al., [PRD 102, 115042 \(2020\);](doi.org/10.1103/PhysRevD.102.115042) etc.]
	- \circ For the large t_β case above, large $|\alpha_2|$ is disfavored, due to the limit from Hg EDM [Preliminary, Y.-N. Mao, in preparation.]
- \circ Currently using merely electron EDM results, we cannot set useful limit on α_2 and hence the CP -angle, since we mainly choose the cancellation region; the result from $Hff⁺$ is similar with that from ThO;
- For future tests, when both HfF⁺ and ThO experiments are reaching better accuracy, we have the chance to set limit directly on $|\alpha_2|$: the physical reason is that the contributions from $e - N$ interaction are different: $d_e^i = d_e + k_i C$ where C is the coefficient of \bar{e} (i γ^5) $e\bar{N}N$ term

 $k_{\text{ThO}} \approx 1.8 \times 10^{-21} \text{ TeV}^2 \cdot e \cdot \text{cm}, \qquad k_{\text{Hff}} \approx 1.1 \times 10^{-21} \text{ TeV}^2 \cdot e \cdot \text{cm}.$

[L. V. Skripnikov, [JCP 145, 214310 \(2016\),](doi.org/10.1063/1.4968229) and also private discussions.]

- \circ Such a different will lead us directly to the limit on $|\alpha_2|$: if both EDMs' measurements reach the accuracy $\sim 10^{-31} e \cdot$ cm and still no nonzero signal appears, we will have $|\alpha_2| \lesssim 0.02$ [Preliminary, Y.-N. Mao, in preparation.]
- Current limits and future tests: neutron
- \circ Following the benchmarks above: we choose Type II and III models and $t_\beta \sim 1$ cancellation region;
- \circ It sets limit on $|\alpha_2|: |\alpha_2^{\text{II}}| \lesssim 0.1$, and $|\alpha_2^{\text{III}}| \lesssim 0.6$ (LHC Higgs data will set further limit $|\alpha_2^{\text{III}}| \lesssim 0.3$)
- o Future limit: if the accuracy for d_n reach $10^{-27} e$ cm, we will have $|\alpha_2^{\text{II}}| \lesssim 4 \times 10^{-3}$, and $|\alpha_2^{\text{III}}| \lesssim 2 \times 10^{-2}$, else a nonzero d_n must arise [\[PRD 102, 075029 \(2020\),](10.1103/PhysRevD.102.075029) with Kingman Cheung, Adil Jueid, and Stefano Moretti.]
- The role of diamagnetic atoms: mercury (Hg) as an example
	- \circ We just now mentioned that we gave up another cancellation region $t_\beta \sim \mathcal{O}(10)$, due to Hg EDM.
	- For the Hg EDM, we have two main types of contributions:
		- (a) CP-violated $N N$ interaction, with large relative uncertainty;
		- (b) CP-violated $e N$ interaction, with its relative uncertainty ~ $(20\% 30\%)$.
	- \circ In the $t_\beta \sim 1$ region, two contributions are comparable and the result is consistent with zero within $(1-2)\sigma$, such large theoretical uncertainty made it difficult to set further limit;
- \circ In the $t_{\beta} \sim \mathcal{O}(10)$ region, $e N$ interaction contributes dominantly, which has small theoretical uncertainty and can further set $|\alpha_2| \lesssim \mathcal{O}(10^{-3})$. [Preliminary, Y.-N. Mao, in preparation.]
- EDM Summary
	- \circ Currently we still have parameter region $(t_\beta \sim 1)$ with $|\alpha_2| \sim \mathcal{O}(0.1)$, which may lead to some significance at future colliders;
	- Future measurements for eEDM can set further limit due to different e−N interactions in different materials (mainly ThO and $H f +$, which are easier to get better accuracy);
	- Future measurements for nEDM can also set further limit with an order's improvement.

4 Collider Analysis

- 5 scalars in total: H_1 (125 GeV, light); $H_{2,3,\pm}$ (\geq 700 GeV, heavy).
- For H_1 : we choose $t\bar{t}H_1$ associated production at LHC, until 3 ab⁻¹ luminosity
	- We checked a lot of observables, and the best one is the distribution of the azimuthal angle between leptons from $t\bar{t}$: we name it as $\Delta \phi_{\ell^+\ell^-}$;
	- \circ For the largest allowed $|\alpha_2| \simeq 0.3$, the final significance can reach about 2.4 σ (in the paper we used $|\alpha_2| = 0.27$, the result is similar);
	- It is not quite significant, since the distributions are close between SM and CP-violation case.
- For $H_{2,3}$: we tried but LHC significance is quite small
	- ∘ We choose CLIC with $\sqrt{s} = 3 \text{ TeV}$ and 5 ab^{-1} luminosity ($\sqrt{s} = 1.5 \text{ TeV}$ and 2.5 ab^{-1} luminosity case shows also quite small significance);
- ∘ We choose the process $W^+W^-\rightarrow H_{2/3}\rightarrow t(\rightarrow b\ell^+\nu)\bar{t}(\rightarrow b\ell^-\nu);$
- \circ The VBF vertex can be used to confirm the CP-even component in H, and we can use the final $\Delta\phi_{\ell^+\ell^-}$ distribution to probe the CP-odd component in H;
- In 2HDM, the discovery for CP-violation at $3(5)\sigma$ level corresponds to $|\alpha_2| \gtrsim 0.12(0.18)$; [\[2304.04390,](https://arxiv.org/abs/2304.04390) with Kingman Cheung, Stefano Moretti, and Rui Zhang.]
- Our latest update considered the beam polarisation with $P_+ = 0$ and $P_- = -0.8(+0.8)$ for 80%(20%) luminosity, but the final result is similar to that in the case without beam polarisation.
- For H_{\pm} : choose $e^+e^-/\mu^+\mu^- \to b\bar{b}H^+(\to W^+H_1)\ell^-\nu$, $b\bar{b}H^-(\to W^-H_1)\ell^+\nu$, for the CP-asymmetry
	- Quite small results at LHC and CLIC with $\sqrt{s} = 1.5$ TeV;
	- We try to find the CP-asymmetry through the interference between signal and background:

$$
\mathcal{M}_{\pm} = \mathcal{M}_b + \mathcal{M}_s e^{\pm i \delta_W} e^{i \delta_S} \longrightarrow \mathcal{A} = \frac{|\mathcal{M}_+|^2 - |\mathcal{M}_-|^2}{|\mathcal{M}_+|^2 + |\mathcal{M}_-|^2} \propto \sin \delta_W \sin \delta_S
$$

- \circ δ_W: CP-violation (weak) phase in $H^{\pm}W^{\mp}H_1$ -vertex, ~ π/2.
- \circ δ_S : Strong phase crossing charged Higgs threshold: $\frac{1}{p^2 m_{\pm}^2 im_{\pm} \Gamma_{\pm}}$. [Preliminary, with Qianxi Li and Kechen Wang, in preparation.]

5 Summary

- In 2HDM with soft Z_2 -symmetry, CP-violation can arise due to mixing between scalars and the pseudoscalar, α_2 is a key parameter measuring the CP-violation;
- CP-violation can appear in $H_i f \bar{f}$ couplings or $H^{\pm} W^{\mp} H_i$ couplings;
- We analyze the EDMs in 2HDM for different materials:
	- \circ Currently large $\alpha_2 \sim \mathcal{O}(0.1)$ still allowed, with $t_\beta \sim 1$;
	- \circ The large t_β does not allow large $\alpha_2 \sim \mathcal{O}(0.1)$ due to Hg EDM;
	- \circ Future limits on α_2 from both eEDM and nEDM measurements.
- We have performed the collider analysis for CP-violation in neutral Higgs sector, at LHC and CLIC, while the work for charged Higgs is still in preparation;
- If CP-violation exists in 2HDM, the first signal must be EDM.

