A model with an extended scalar sector for neutrino, DM and BAU

Shinya KANEMURA OSAKA University

Mayumi Aoki, Kazuki Enomoto, SK, PRD 107 (2023) 11, 115022 Kazuki Enomoto, SK, Sora Taniguchi, arxiv: 2403.13613

> Extended Scalar Sectors from All Angles, Oct 21-25, 2024 at CERN

Motivation to BSM

SM is a good description of the nature around the EW scale, however ….

 Gravity Unification Flavor
 Hierarchy Strong CP

 No principle in the Higgs sector
 Hierarchy Strong CP

 Beyond SM phenomena
 Neutrino Oscillation Dark Matter Baryon Asymmetry of Universe ...

SM must be replaced by a new more fundamental theory

Higgs sector is a probe of new physcs

Higgs sector remains unknown

Multiplet StructureHiggs Potential(Dynamics of EWSB, EWPT, ···)Yukawa Structure(Flavor Physics, CPV, ···)Elementary or Composite? Hierarchy?

SM Higgs sector: no principle

Extension of the Higgs sector

⇒ BSM phenomena may be explained

Tiny neutrino mass Phase Transition (1st Order) CPV sources for baryogenesis DM candidates

. . .

Testable at current and future experiments

New Physics and Multi-Higgs Models

Typical scenarios using TeV scale physics by extended Higgs

- BAU EW Baryogenesis
- Neutrino mass Radiative Seesaw
- Dark Matter WIMP

Can we combine these scenarios into a model?

This is the subject of this talk

Baryogenesis and Higgs

Sakharov Conditions

Kuzmin, Ruvakov, Shaposhnikov (1985)

- 1) B non-conservation
- 2) C and CP violation
- 3) Departure from thermal equilibrium

- Sphaleron transition at high T
 - C violation (SM is a chiral theory) CP in extended Higgs sectors

SM cannot satisfy the condition

Extended Higgs sectors provide new sources of CPV and mechanisms of 1st OPT

Studied in 2HDMs, Singlet extensions, 2HDM+S, Triplet models, …

Rich phenomenology: Testable by experiments (colliders, EDM, flavor, GW, \cdots)

Neutrino mass and Higgs

Neutrino Oscillation \rightarrow Tiny mass (< eV)

Majorana mass

$$\mathcal{L} = \frac{c}{\Lambda} (\phi \overline{\nu_L^c}) (\nu_L \phi)$$

Seesaw Mechanism

$$m_{\nu}^{ij} = y_i y_j \frac{\langle \phi \rangle^2}{M_R} \underset{\text{Right-handed}}{\leftarrow} \underset{\text{Neutrinos}}{\text{Large mass of}}$$

Neutrino mass and Higgs

Neutrino Oscillation \rightarrow Tiny mass (< eV)

Majorana mass

$$\mathcal{L} = \frac{c}{\Lambda} (\phi \overline{\nu_L^c}) (\nu_L \phi)$$

Seesaw Mechanism

$$m_{\nu}^{ij} = y_i y_j \frac{\langle \phi \rangle^2}{M_R} \underset{\text{Right-handed Neutrinos}}{\text{Large mass of }}$$

Alternative Scenario by quantum effects

Physics of specific extended Higgs sectors

Models of neutrino mass with DM

Introducing a discrete Z₂

- Stability of new particle (DM)
- Loop induced masses

Tao-Ma modelTao 1996, Ma, 2006SM+ H' + NR1-loop induced v -massDark matter candidate [H']

Models of neutrino mass with DM

 V_l

Introducing a discrete Z₂

- Stability of new particle (DM)
- Loop induced masses

Tao-Ma modelTao 1996, Ma, 2006SM+ H' + NR1-loop inducedV -massDark matter candidate

Model with higher loop effectsAoki, SK, Seto, 2009 $2HDM + \eta^0 + S^+ + N_R$ ν -masses are 3-loop induced ν -masses are 3-loop induced μ_L DM candidate [η^0] ν_L EW Baryogenesis possible (CPV, 1stOPT)3 Problems can be explained by the TeV scale physics

Model (AKS2009)

M. Aoki, SK, O. Seto, PRL102, 051805 (2009)

	Scalar			Fermion
New Fields	Φ_2	S^+	η	N _{aR}
$SU(2)_L$	2	1	1	1
$U(1)_Y$	+1/2	+1	0	0
Z_2	+	-	-	—

2HDM (Type X) + Z_2 -odd scalars and RN

Neutrino mass at three loop (smallness can be explained from TeV physics)

Dark Matter candidate with the mass mH/2

Strongly 1st OPT can be realized (EWBG)

However, CPV was not analyzed, and BAU was not evaluated

Recent Development of the model

M. Aoki, K. Enomoto, SK, PRD107 (2023)11, 115022

2HDM(Type X) ⇒ general 2HDM

λ₆ ~ 0 (Higgs alignment) (aligned 2HDM)
 FCNC avoided by Yukawa alignment (Pich, Tuzon)
 CPV phases in the Higgs potential and the Yukawa interactions

All current constraints from experimental data satisfied Neutrino oscillation, DM data, LEP, LHC, EDM, LFV, B, …. BAU is evaluated

A benchmark scenario is found, which explain Neutrino, DM and BAU

Model

 $\begin{array}{ll} Z_2\text{-even}) & \Phi_1, \ \Phi_2: ({\bf 2}, \ +1/2) \\ Z_2\text{-odd}) & S^+: ({\bf 1}, \ +1), \ \ \eta: ({\bf 1}, \ 0) \ \text{real scalar} \end{array}$

Aoki, Enomoto, SK 2022

Scalar potential

 $\mathcal{V} = V_{\Phi}(\Phi_1, \Phi_2) + V_{S\eta}(\Phi_1, \Phi_2, S^+, \eta)$

$$M_{\text{neutral}} \propto \begin{pmatrix} H_1 & H_2 & H_3 \\ M_{11} & \text{Re}[\lambda_6] & -\text{Im}[\lambda_6] \\ M_{22} & -\text{Im}[\lambda_5]/2 \\ \Phi_2 & M_{33} \end{pmatrix} \begin{pmatrix} H_1 \\ H_2 \\ H_3 \end{pmatrix}$$
$$\lambda_6 \rightarrow 0 \implies \text{Mixings vanish [Higgs alignment]}_{\text{(Higgs couplings coincide with SM ones)}}$$

Higgs basis

$$\Phi_1 = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}}(v+H_1+iG^0) \end{pmatrix} \qquad \Phi_2 = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}}(H_2+iH_3) \end{pmatrix}$$

3 CPV couplings in the Higgs potential $\lambda_{6} = 0$ (+ Stationary condition) $\Phi_{2} \qquad \lambda_{6} = 0$ (+ Stationary condition) $\Phi_{2} \qquad \lambda_{6} = 0$ (+ Stationary condition) $\mu_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + (\Phi_{1}^{\dagger} \Phi_{2}) \left\{ \frac{\lambda_{5}}{2} \Phi_{1}^{\dagger} \Phi_{2} + \lambda_{6} |\Phi_{1}|^{2} + \lambda_{7} |\Phi_{2}|^{2} \right\}$ $+ \rho_{12} (\Phi_{1}^{\dagger} \Phi_{2}) |S^{+}|^{2} + \frac{\sigma_{12}}{2} (\Phi_{1}^{\dagger} \Phi_{2}) \eta^{2} + 2\kappa (\Phi_{1}^{\dagger} \Phi_{2}) S^{-} \eta$

Yukawa interaction

Both Higgs doublets couple with the SM fermions.

$$\begin{aligned} \mathscr{L}_{Y} &= -\frac{m_{f^{i}}}{v} \overline{f_{L}^{i}} f_{R}^{i} H_{1} + (\underline{y}_{2}^{f})_{ij} \overline{f_{L}^{i}} f_{R}^{j} (H_{2} + iH_{3}) + \text{h.c.} \\ (i, j = 1, 2, 3) & \underbrace{\text{Non-diagonal } y_{2}^{f} \rightarrow \text{FCNC!}}_{\text{SM Yukawa}} \underbrace{\text{Non-diagonal } y_{2}^{f} \rightarrow \text{FCNC!}}_{(u_{2} = 1, 2, 3)} \underbrace{y_{2}^{f} = \frac{1}{v} \begin{pmatrix} m_{f^{1}} & 0 & 0 \\ 0 & m_{f^{2}} & 0 \\ 0 & 0 & m_{f^{3}} \end{pmatrix}}_{\text{SM Yukawa}} \begin{pmatrix} \zeta_{f^{1}} & 0 & 0 \\ 0 & \zeta_{f^{2}} & 0 \\ 0 & 0 & \zeta_{f^{3}} \end{pmatrix}}_{\text{SM Yukawa}} \underbrace{\zeta_{d^{1}}^{i} = \zeta_{d^{2}} = \zeta_{d^{3}} \equiv \zeta_{d}}_{\zeta_{d^{1}} = \zeta_{d^{2}} = \zeta_{d^{3}} \equiv \zeta_{d}}_{\zeta_{d^{1}} = 1, 2, 3} \\ \mathcal{L}_{2}\text{-odd Majorana fermions: } N_{R}^{a} & \frac{1}{2} m_{Na} \overline{(N_{R}^{a})^{c}} N_{R}^{a}}_{\text{Lepton \# violating}} \underbrace{SM Yukawa}_{\mathcal{L}_{f^{1}} \in \mathbb{C}} \underbrace{\zeta_{f^{1}}^{i} \in \mathbb{C}}_{\mathcal{L}_{f^{1}} = 1, 2, 3} \\ \mathcal{L}_{f^{1}} = -h_{i}^{a} \overline{(N_{R}^{a})^{c}} \ell_{R}^{i} S^{+} + \text{h.c.} \\ \text{Lepton flavor violating} \end{aligned}$$

Benchmark scenario (BS) Aoki, Enomoto, SK (2022) Slide

Masses of New particle

$$Z_2 \text{ even: } m_{H^+} = 250 \text{ GeV}, \quad m_{H_2} = 420 \text{ GeV}, \quad m_{H_3} = 250 \text{ GeV}$$
$$Z_2 \text{ odd: } m_S = 400 \text{ GeV}, \quad m_\eta = 63 \text{ GeV}$$
$$(m_{N_1}, m_{N_2}, m_{N_3}) = (3000, 3500, 4000) \text{ GeV}$$

Scalar couplings

$$\begin{split} \mu_2^2 &= (50 \text{ GeV})^2, \quad \mu_s^2 = (320 \text{ GeV})^2, \qquad \mu_{12}^2 = 0 \\ \lambda_2 &= 0.1, \quad \lambda_3 \simeq 1.98, \quad \lambda_4 \simeq 1.88, \quad \lambda_5 \simeq 1.88, \quad \lambda_6 = 0, \quad |\lambda_7| = 0.82, \\ \rho_1 &\simeq 1.90, \quad \sigma_1 = |\sigma_{12}| = 1.1 \times 10^{-3}, \quad \kappa = 2.0, \quad \theta_7 = -0.73, \quad \cdots \end{split}$$

New Yukawa interactions

$$\begin{split} y_t |\zeta_u| &= 0.17, \quad y_b |\zeta_d| = 4.2 \times 10^{-3}, \quad y_e |\zeta_e| = y_\mu |\zeta_\mu| = 2.5 \times 10^{-4}, \\ y_\tau |\zeta_\tau| - 2.5 \times 10^{-3}, \quad \theta_e = \theta_\mu = \theta_\tau = -2.94, \quad \theta_u = \theta_d = 0.245 \\ h_i^{\alpha} &\simeq \begin{pmatrix} 1.0 \ e^{-0.31i} & 0.2 \ e^{0.30i} & 1.0 \ e^{-2.4i} \\ 1.1 \ e^{-1.9i} & 0.21 \ e^{-1.8i} & 1.1 \ e^{2.3i} \\ 0.45 \ e^{2.7i} & 1.3 \ e^{-0.033i} & 0.10 \ e^{0.63i} \end{pmatrix}, \quad \cdots \end{split}$$

provided by Enomoto

Constraints

Experimental constraints

 $\begin{array}{ll} H^{\pm} : (\text{Direct}) \ H^{\pm} \rightarrow tb & \text{ATLAS (2021)} \\ & (\text{Flavor}) \ B_d \rightarrow \mu^+ \mu^- & \text{J. Haller, et al EPJC (2018)} \end{array}$ $H_{2.3} : (\text{Direct}) \ H_{2.3} \rightarrow \tau \overline{\tau} & \text{ATLAS (2020)} \end{array}$

 $H_{2,3} \rightarrow t\bar{t}$ ATLAS (2018)

- S^{\pm} : (Direct) $S^{\pm} \rightarrow H^{\pm}\eta \rightarrow tb\eta$ (from $Z^*, \gamma^* \rightarrow S^+S^-$) Weak constraints (Flavor) Lepton flavor violating processes (Next slides)
- N_R^{α} : (Direct) too heavy and weak constraints ($m_{N^{\alpha}}$ = 3-4 TeV)

(Flavor) Lepton flavor violating processes (Next slides)

 η : Dark matter in the model

(DM searches) 3 Pages later

CP-violating phases : (EDM) 2 Pages later

We checked that all of these constraints can be avoided in the BS

Lepton flavor violation

$\begin{split} m_S &= 400 \text{ GeV}, \\ M_N &= \{3000, 3500, 4000\} \text{ GeV} \end{split} \qquad h_i^{\alpha} \simeq \begin{pmatrix} 1.0 \ e^{-0.31i} & 0.2 \ e^{0.30i} & 1.0 \ e^{-2.4i} \\ 1.1 \ e^{-1.9i} & 0.21 \ e^{-1.8i} & 1.1 \ e^{2.3i} \\ 0.45 \ e^{2.7i} & 1.3 \ e^{-0.033i} & 0.10 \ e^{0.63i} \end{pmatrix} \end{split}$

 $\blacksquare \ell \to \ell' \gamma$

Processes	BR	Upper limits
$\mu ightarrow e\gamma$	1.4×10^{-14}	4.2×10^{-13}
$\tau \to e \gamma$	$5.3 imes 10^{-10}$	$3.3 imes 10^{-8}$
$\tau ightarrow \mu \gamma$	1.1×10^{-11}	4.4×10^{-8}

Processes	BR	Upper limits
$\mu ightarrow 3e$	$1.0 imes10^{-13}$	$1.0 imes 10^{-12}$
$\tau \rightarrow 3e$	6.2×10^{-10}	2.7×10^{-8}
$ au o 3\mu$	2.4×10^{-11}	2.1×10^{-8}
$\tau \to e \mu \overline{e}$	5.1×10^{-12}	1.8×10^{-8}
$\tau \to \mu \mu \overline{e}$	1.1×10^{-12}	1.7×10^{-8}
$\tau \to e e \overline{\mu}$	4.5×10^{-13}	$1.5 imes 10^{-8}$
$\tau \to e \mu \overline{\mu}$	$9.6 imes 10^{-11}$	2.7×10^{-8}

Electric dipole moment (EDM)

electron EDM (eEDM) $|d_e| < 4.0 \times 10^{-30}$ e cm Roussy, et al (2022)

eEDM can be small by destructive interference SK, Kubota, Yagyu (2020)

neutron EDM (nEDM) $|d_n| < 1.8 \times 10^{-26}$ e cm

chromo EDM Barr, Zee (1990) Weinberg ope. Weinberg (1989) 4 fermi interaction Khatsimovsky, Khriplovich, Yelkhovsky (1988)

Electroweak baryogenesis (EWBG)

The Sakharov conditions <u>Sakharov (1967)</u>

1. <i>B</i> -violation	 Sphaleron transition
2 . <i>C</i> and <i>CP</i> violation	 CPV phases : $\lambda_7, ho_{12}, \sigma_{12}, \zeta_u, \zeta_d, \zeta_\ell$
 Departure from thermal equilibrium 	 Strongly 1st order electroweak phase transition

Strongly 1st EWPT (EWPT = ElectroWeak Phase Transition)

Non-decoupling effect by
$$H_{2,3}$$
, H^{\pm} , S^{\pm}
 $m_{H^+}^2 = \mu_2^2 + \frac{1}{2}\lambda_3 v^2$, $m_{H_{2,3}}^2 = \mu_2^2 + \frac{1}{2}(\lambda_3 + \lambda_4 \pm \lambda_5)v^2$, $m_S^2 = \mu_S^2 + \frac{1}{2}\rho_1 v^2$
 $m_{H^+} = 250 \text{ GeV}$, $m_{H_2} = 420 \text{ GeV}$, $m_{H_3} = 250 \text{ GeV}$, $m_S = 400 \text{ GeV}$
 $\lambda_3 \simeq 1.98$, $\lambda_4 \simeq 1.88$, $\lambda_5 \simeq 1.88$, $\rho_1 \simeq 1.90$

We evaluated one-loop effective potential in Landau gauge Coleman, Weinberg (1973) Dolan, Jackiw (1974)

$$(T = 0) \frac{\text{Kanemura, et al (2003) Kanemura, et al (2004)}}{\Delta R \equiv \lambda_{hhh} / \lambda_{hhh}^{SM} - 1 = 38 \%} \qquad (T \neq 0) \text{ thermal resummation } \frac{\text{Parwani (1992)}}{v_n / T_n = 1.74 > 1}$$

Electroweak baryogenesis

Other parameters are the same with those in the BS

How to test the BS

EDM measurements

One order improvement is expected in future ACME experiment ACME(2018)

Flavor experiments

- $B \to X_s \gamma$ or $B_d^0 \to \mu^+ \mu^-$ in Belle-II experiments E. Kou, et al [Bell-II], arXiv:1808.10567 [hep-ex]
- CP violation in $B \to X_s \gamma (\Delta A_{CP})$ Benz, Lee, Neubert, Paz (2011); Watanuki et al [Belle] (2019)
- Lepton flavor violating decays $\mu \to e\gamma$ MEG-II $\mu \to 3e$, $\tau \to 3e$ Belle-II

Collider experiments

- $gg \to H_2, H_3; gg \to H^{\pm}tb; q\overline{q} \to H_{2,3}H^{\pm}$
- $\blacksquare \ q\overline{q} \to S^+S^-; \ e^+e^- \to S^+S^-; \ e^+e^- \to NN$ M. Aoki, SK, O. Seto (2009)

Aiko, SK, Kikuchi, Mawatari, Sakurai, Yagyu (2021); SK, Takeuchi, Yaqyu (2021)

■ Higgs triple coupling $\Delta R = \frac{\Delta \lambda_{hhh}}{\lambda_{hhh}^{SM}} = 38 \%$ Sensitivity @ ILC ($\sqrt{s} = 500 \text{ GeV}$) $\Delta R = 27 \%$ K. Fujii, et al. arXiv:1506.05992 [hep-ph]

■ Azimuthal angle distribution of $H_{2,3} \rightarrow \tau \overline{\tau}$ at e^+e^- collider

SK, M. Kubota, K. Yagyu, JHEP (2021)

Dark matter direct detection

Observation of gravitational waves

Back to the original model AKS2009

FCNC by softly broken Z₂

Smaller number of parameters

Type-X 2HDM + new Z2 odd $(N_R^{\alpha}, S^{\pm}, \eta)$ M. Aoki, K. Enomoto, SK, S. Taniguchi 2024

$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	Z_2	\tilde{Z}_2 (Softly broken)
3	2	1/6	+	+
3	1	2/3	+	_
3	1	-1/3	+	-
1	2	-1/2	+	+
1	1	-1	+	+
1	2	1/2	+	+
1	2	1/2	+	-
1	1	0	—	+
1	1	1	—	+
1	1	0	—	+
~ (1	$)^3$	× ($\left(\frac{m_l}{2}\right)^2 \times \frac{v^2}{2}$
J ($16\pi^2$	2	\sim (v' n
	$\begin{array}{c} 3\\ 3\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Lagrangian

Higgs potential

Stationary condition

Im
$$\left[\mu_{12}^2\right] - \frac{1}{2}$$
 Im $[\lambda_5]v_1v_2 = 0$
 μ_{12}^2 and λ_5 are related

Additional Yukawa coupling with RHN

Type-X 2HDM + new Z2 odd $(N_R^{\alpha}, S^{\pm}, \eta)$

$$\mathcal{L} \supset -h_i^{\alpha} (N_R^{\alpha})^c l_R^i S^+ + \text{h.c.} \qquad \alpha = 1,2,3, \qquad i = 1,2,3, \qquad h_i^{\alpha} \text{are } 3 \times 3 \text{ matrix}$$
CPV

Electric dipole moment in our model

In the model, new CPV contribution from

$$\mathcal{L} \supset -h_i^{lpha} (N_R^{lpha})^c l_R^i S^+ + ext{h.c.}$$

By destructive interference Electron EDM can satisfy electron EDM

Benchmark scenario is found: K. Enomoto, SK, S. Taniguchi, arxiv:2403.13613

How about the UV theory?

The model (AKS2009) can satisfy all experimental results, and explain Neutrino, Dark Matter, Baryogenesis by TeV scale physics

1st OPT. \rightarrow Landau Pole Λ at 10-100TeV

What is the world above Λ ?

Higgs as mesons

 $M_{ij} = T_i T_j$

An idea: New gauge theory with confinement. Higgs is a realization as a meson formed by the fundamental representation

Minimal SUSY Fat Higgs models by Murayama et al 2004, and many references

SK, T. Shindo, T. Yamada 2014

Landau pole and new physics

Minimal SUSY Fat Higgs models, Minimal model for confinement (Nc=2, $N_f=3$) by Murayama et al 2004 \rightarrow 3 pairs of SU(2)_H fundamental rep. T_i (i=1-6) **Higgs as Meson** SU(2) H gauge theory SK, Shindou, Yamada 2014 $T_i T_i$ M_{ii} Field \mathbb{Z}_2 $SU(2)_L$ Z_2 Field $SU(2)_L$ $(1)_{Y}$ 11 20 ++1/2Super-fields 2 H_{u} + T_2 MSSM Higgs doublets 2-1/2 H_d ++1/2 T_3 + Φ_u 2+1/2_ **Extra Higgs doublets** T_4 /2+ Φ_d 2-1/2_ Ω^+ T_5 +1/2+1____ Charged Higgs singlets Additional Ω^{-} -1 T_6 -1/2Z₂-even Higgs singlets N, N_{Φ}, N_{Ω} 1 0 +Z₂-odd Higgs singlets 1 0 ζ, η _ Intrilligator, Seiberg Superpotential $W_{eff} = \lambda \{ N(H_uH_d + v_0^2) + N_{\Phi}(\Phi_u\Phi_d + v_{\Phi}^2) + N_{\Omega}(\Omega^+\Omega^- + v_{\Omega}^2) \}$ $- NN_{\Phi}N_{\Omega} - N_{\Omega}\zeta\eta + \zeta H_{d}\Phi_{u} + \eta H_{u}\Phi_{d} - \Omega^{+}H_{d}\Phi_{d} - \Omega^{-}H_{u}\Phi_{u} \}$

The low energy theory is 4HDM+Singlets but with a common λ !

SK, Shindou, Yamada 2014

 $W_{\text{eff}}^N = \frac{\kappa}{2} N \nu_R^c \nu_R^c + \left(y_N^i \right) \nu_R^c L_i \Phi_u + \left(h_N^i \right) \nu_R E_i^c \Omega^- + \frac{M}{2} \nu_R^c \iota$

All particle contents are prepared from the $SU(2)_H$ gauge theory Multiplet structure may be explained by the UV theory

Summary

- Higgs sector remains to be determined yet.
- Extended Higgs sector is used to explain physics of Neutrino, Dark Matter, Baryogenesis.
- A model which can explain neutrino, DM, BAU is revisited (AKS2009), and BAU was evaluated.
- Discussed viable benchmark scenarios
- The model is testable using various future experiments