A model with an extended scalar sector for neutrino, DM and BAU

Shinya KANEMURA OSAKA University

Mayumi Aoki, Kazuki Enomoto, SK, PRD 107 (2023) 11, 115022 Kazuki Enomoto, SK, Sora Taniguchi, arxiv: 2403.13613

> **Extended Scalar Sectors from All Angles, Oct 21-25, 2024 at CERN**

Motivation to BSM

SM is a good description of the nature around the EW scale, however ….

No principle in the Higgs sector Beyond SM phenomena Neutrino Oscillation Dark Matter Baryon Asymmetry of Universe … Problems Gravity Unification Flavor Hierarchy Strong CP

SM must be replaced by a new more fundamental theory

Higgs sector is a probe of new physcs

Higgs sector remains unknown

Multiplet Structure Higgs Potential (Dynamics of EWSB, EWPT, …) Yukawa Structure (Flavor Physics, CPV, …) Elementary or Composite? Hierarchy?

SM Higgs sector: no principle

Extension of the Higgs sector

⇨ BSM phenomena may be explained

Tiny neutrino mass Phase Transition (1st Order) CPV sources for baryogenesis DM candidates

…

Testable at current and future experiments

New Physics and Multi-Higgs Models

Typical scenarios using TeV scale physics by extended Higgs

- **BAU EW Baryogenesis**
- **Neutrino mass Radiative Seesaw**
- **Dark Matter WIMP**

Can we combine these scenarios into a model?

This is the subject of this talk

Baryogenesis and Higgs

Sakharov Conditions

Kuzmin, Ruvakov, Shaposhnikov (1985)

- 1) B non-conservation
- 2) C and CP violation
- 3)Departure from thermal equilibrium
- **Sphaleron transition at high T**
	- **C violation (SM is a chiral theory) CP in extended Higgs sectors**

EWPT is strongly 1st OPT

SM cannot satisfy the condition

Extended Higgs sectors provide new sources of CPV and mechanisms of 1st OPT

Studied in 2HDMs, Singlet extensions, 2HDM+S, Triplet models, …

5 Rich phenomenology: Testable by experiments (colliders, EDM, flavor, GW, …)

Neutrino mass and Higgs

Neutrino Oscillation → Tiny mass (< eV)

Majorana mass

$$
\mathcal{L} = \frac{c}{\Lambda} (\phi \overline{\nu_L^c})(\nu_L \phi)
$$

Seesaw Mechanism

$$
m_\nu^{ij} = y_i y_j \frac{\langle \phi \rangle^2}{M_R} \substack{\text{Large mass of } \\ \text{Right-handed} \\ \text{Neutrinos}}
$$

Neutrino mass and Higgs

Neutrino Oscillation → Tiny mass (< eV)

Majorana mass

$$
\mathcal{L} = \frac{c}{\Lambda} (\phi \overline{\nu_L^c})(\nu_L \phi)
$$

Seesaw Mechanism

$$
m_\nu^{ij} = y_i y_j \frac{\langle \phi \rangle^2}{M_R}
$$

$$
-{\rm Large\ mass\ of\ Right1}^{\rm large\ mass\ of\ Right1}
$$

$$
{\rm Neutrinos}
$$

Alternative Scenario by quantum effects

Physics of specific extended Higgs sectors

Models of neutrino mass with DM

Introducing a discrete Z₂

- **・ Stability of new particle(DM)**
- **・ Loop induced masses**

Tao-Ma model $SM+H'+N_R$ **1-loop induced ν-mass Dark matter candidate [H']**

Models of neutrino mass with DM

 \mathbf{V}

Introducing a discrete Z₂

- **・ Stability of new particle(DM)**
- **・ Loop induced masses**

Tao-Ma model $SM + H' + N_R$ **1-loop induced ν-mass Dark matter candidate [H'] Tao 1996, Ma, 2006**

Model with higher loop effects 2HDM + η^{0} + S^{+} + N_{R} **ν-masses are 3-loop induced DM candidate [η⁰] EW Baryogenesis possible (CPV, 1stOPT) 3 Problems can be explained by the TeV scale physics Aoki, SK, Seto, 2009**

Model (AKS2009)

M. Aoki, SK, O. Seto, PRL102, 051805 (2009)

2HDM (Type X) + Z ₂-odd scalars and RN

Neutrino mass at three loop (smallness can be explained from TeV physics)

Dark Matter candidate with the mass mH/2

Strongly 1st OPT can be realized (EWBG)

However, CPV was not analyzed, and BAU was not evaluated

Recent Development of the model

M. Aoki, K. Enomoto, SK, PRD107 (2023)11, 115022

2HDM(Type X) ⇨ general 2HDM

 λ ⁶ \sim 0 (Higgs alignment) (aligned 2HDM) **FCNC avoided by Yukawa alignment (Pich, Tuzon) CPV phases in the Higgs potential and the Yukawa interactions**

All current constraints from experimental data satisfied Neutrino oscillation, DM data, LEP, LHC, EDM, LFV, B, …. BAU is evaluated

A benchmark scenario is found, which explain Neutrino, DM and BAU

Model

 Z_2 -even) Φ_1 , Φ_2 : (2, + 1/2) Z_2 -odd) $S^+ : (1, +1), \eta : (1, 0)$ real scalar Aoki, Enomoto, SK 2022

Scalar potential

 $\mathcal{V} = V_{\Phi}(\Phi_1, \Phi_2) + V_{\text{Sn}}(\Phi_1, \Phi_2, S^+, \eta)$ H_1 H_2 H_3 $M_{\rm neutral} \propto \begin{pmatrix} M_{11} & \text{Re}[\lambda_6] & -\text{Im}[\lambda_6] & H_1 \ & M_{22} & -\text{Im}[\lambda_5]/2 & H_2 \ & & \Phi_{2} & M_{22} & H_1 \end{pmatrix}$

Higgs basis
\n
$$
\Phi_1 = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}}(v + H_1 + iG^0) \end{pmatrix} \qquad \Phi_2 = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}}(H_2 + iH_3) \end{pmatrix}
$$

Mixings vanish [Higgs alignment] $\lambda_6 \rightarrow 0$ (Higgs couplings coincide with SM ones)

3 CPV couplings in the Higgs potential $\lambda_6=0$ $\chi_6 = 0$

(+ Stationary condition)
 $\gamma_{CPV} = \text{Im} \left[\mu_{12}^2 \Phi_1^{\dagger} \Phi_2 + (\Phi_1^{\dagger} \Phi_2) \left\{ \frac{\lambda_5}{2} \Phi_1^{\dagger} \Phi_2 + \lambda_6 |\Phi_1|^2 + \lambda_7 |\Phi_2|^2 \right\} \right]$ $+\rho_{12}(\Phi_1^{\dagger}\Phi_2)|S^+|^2+\frac{\sigma_{12}}{2}(\Phi_1^{\dagger}\Phi_2)\eta^2+2\kappa(\Phi_1^{\dagger}\Phi_2)S^-\eta$

Yukawa interaction

Both Higgs doublets couple with the SM fermions.

$$
\mathcal{L}_{Y} = -\frac{m_{f}i}{v} \overrightarrow{f_{L}} f_{R}^{i} H_{1} + (y_{2}^{f})_{ij} \overrightarrow{f_{L}} f_{R}^{j} (H_{2} + iH_{3}) + h.c.
$$
\n(i,j = 1,2,3)\n
$$
\text{SM Yukawa} \qquad \text{Non-diagonal } y_{2}^{f} \qquad \text{FCNC!}
$$
\n
$$
y_{2}^{f} = \frac{1}{v} \begin{pmatrix} m_{f} & 0 & 0 \\ 0 & m_{f} & 0 \\ 0 & 0 & m_{f} \end{pmatrix} \begin{pmatrix} \zeta_{f} & 0 & 0 \\ 0 & \zeta_{f} & 0 \\ 0 & 0 & \zeta_{f} \end{pmatrix}
$$
\nFor quarks, $\zeta_{u} = \zeta_{u} = \zeta_{u} \equiv \zeta_{u}$ and $\zeta_{u} = \zeta_{u} \equiv \zeta_{u}$

Summary of the model **New particles**: $(Z_2$ -even) H^{\pm} , H_2 , H_3 $(Z_2$ -odd) S^{\pm} , η , N_R^a **Alignment**: $\lambda_6 = 0$ & $(y_2^f)_{ij} \propto m_{fi} \zeta_{fi} \delta_{ij}$ $(H₁$ is the SM Higgs) (No FCNC) **CP-violation**: λ_7 , ρ_{12} , σ_{12} & ζ_u , ζ_d , ζ_v , ζ_u , ζ_e , h_i^{α}

Benchmark scenario (BS) Aoki, Enomoto, SK (2022) Slide

Masses of New particle

Z₂ even:
$$
m_{H^+} = 250 \text{ GeV}
$$
, $m_{H_2} = 420 \text{ GeV}$, $m_{H_3} = 250 \text{ GeV}$
\nZ₂ odd: $m_S = 400 \text{ GeV}$, $m_{\eta} = 63 \text{ GeV}$
\n $(m_{N_1}, m_{N_2}, m_{N_3}) = (3000, 3500, 4000) \text{ GeV}$

Scalar couplings

$$
\mu_2^2 = (50 \text{ GeV})^2
$$
, $\mu_s^2 = (320 \text{ GeV})^2$, $\mu_{12}^2 = 0$
\n $\lambda_2 = 0.1$, $\lambda_3 \approx 1.98$, $\lambda_4 \approx 1.88$, $\lambda_5 \approx 1.88$, $\lambda_6 = 0$, $|\lambda_7| = 0.82$,
\n $\rho_1 \approx 1.90$, $\sigma_1 = |\sigma_{12}| = 1.1 \times 10^{-3}$, $\kappa = 2.0$, $\theta_7 = -0.73$, ...

New Yukawa interactions

$$
y_t |\zeta_u| = 0.17, \quad y_b |\zeta_d| = 4.2 \times 10^{-3}, \quad y_e |\zeta_e| = y_\mu |\zeta_\mu| = 2.5 \times 10^{-4},
$$

\n
$$
y_\tau |\zeta_\tau| - 2.5 \times 10^{-3}, \quad \theta_e = \theta_\mu = \theta_\tau = -2.94, \quad \theta_u = \theta_d = 0.245
$$

\n
$$
h_{\ i}^{\alpha} \simeq \begin{pmatrix} 1.0 \, e^{-0.31i} & 0.2 \, e^{0.30i} & 1.0 \, e^{-2.4i} \\ 1.1 \, e^{-1.9i} & 0.21 \, e^{-1.8i} & 1.1 \, e^{2.3i} \\ 0.45 \, e^{2.7i} & 1.3 \, e^{-0.033i} & 0.10 \, e^{0.63i} \end{pmatrix}, \quad \cdots
$$

provided by Enomoto

Constraints

Experimental constraints

 H^{\pm} : (Direct) $H^{\pm} \rightarrow tb$ **ATLAS (2021)** (Flavor) $B_d \rightarrow \mu^+\mu^-$ J. Haller, et al EPJC (2018) $H_{2,3}$: (Direct) $H_{2,3} \rightarrow \tau \bar{\tau}$ ATLAS (2020)

 $H_{2,3} \rightarrow t\bar{t}$ ATLAS (2018)

 S^{\pm} : (Direct) $S^{\pm} \to H^{\pm} \eta \to t b \eta$ (from $Z^*, \gamma^* \to S^+ S^-$) Weak constraints (Flavor) Lepton flavor violating processes (Next slides)

 N_R^{α} : (Direct) too heavy and weak constraints ($m_{N^{\alpha}} = 3$ -4 TeV)

(Flavor) Lepton flavor violating processes (Next slides)

 η : Dark matter in the model

(DM searches) 3 Pages later

CP-violating phases : (EDM) 2 Pages later

We checked that all of these constraints can be avoided in the BS

Lepton flavor violation

 $\blacksquare \ell \to \ell' \gamma$

Electric dipole moment (EDM)

electron EDM (eEDM) $|d_e| < 4.0 \times 10^{-30}$ e cm Roussy, et al (2022)

eEDM can be small by destructive interference SK, Kubota, Yagyu (2020)

neutron EDM (nEDM) $|d_n| < 1.8 \times 10^{-26}$ e cm

chromo EDM **Barr, Zee (1990)** In the BS, $|d_n| \sim 10^{-30}$ e cm Weinberg ope. Weinberg (1989) 4 fermi interaction Khatsimovsky, Khriplovich, Yelkhovsky (1988)

Electroweak baryogenesis (EWBG)

The Sakharov conditions Sakharov (1967)

Strongly 1st EWPT (EWPT = ElectroWeak Phase Transition)

$$
\begin{aligned}\n\text{Non-decoupling effect by } H_{2,3}, \ H^{\pm}, \ S^{\pm} \\
m_{H^+}^2 &= \mu_2^2 + \frac{1}{2} \lambda_3 v^2, \quad m_{H_{2,3}}^2 = \mu_2^2 + \frac{1}{2} (\lambda_3 + \lambda_4 \pm \lambda_5) v^2, \quad m_S^2 = \mu_S^2 + \frac{1}{2} \rho_1 v^2 \\
m_{H^+} &= 250 \text{ GeV}, \quad m_{H_2} = 420 \text{ GeV}, \quad m_{H_3} = 250 \text{ GeV}, \quad m_S = 400 \text{ GeV} \\
\lambda_3 &\simeq 1.98, \quad \lambda_4 \simeq 1.88, \quad \lambda_5 \simeq 1.88, \quad \rho_1 \simeq 1.90\n\end{aligned}
$$

Coleman, Weinberg (1973)
Dolan, Jackiw (1974) We evaluated one-loop effective potential in Landau gauge

$$
(T = 0)
$$

Kanemura, et al (2003) Kanemura, et al (2004) $(T \neq 0)$ thermal resummation Parwani (1992)

$$
\lambda R \equiv \lambda_{hhh} / \lambda_{hhh}^{SM} - 1 = 38 \%
$$

$$
v_n / T_n = 1.74 > 1
$$

Kuzmin, Rubakov, Shaposhnikov (1985)

Other parameters are the same with those in the BS

How to test the BS

EDM measurements

■ One order improvement is expected in future ACME experiment ACME(2018)

Flavor experiments

- $B \to X_s \gamma$ or $B_d^0 \to \mu^+ \mu^-$ in Belle-II experiments E. Kou, et al [Bell-II], arXiv:1808.10567 [hep-ex]
- CP violation in $B \to X_s \gamma (\Delta A_{CP})$ Benz, Lee, Neubert, Paz (2011); Watanuki et al [Belle] (2019)
- **E** Lepton flavor violating decays $\mu \rightarrow e\gamma$ MEG-II $\mu \rightarrow 3e$, $\tau \rightarrow 3e$ Belle-II

Collider experiments

- $gg \rightarrow H_2, H_3$; $gg \rightarrow H^{\pm}tb$; $q\overline{q} \rightarrow H_2 A^{\pm}$
- $q\overline{q}$ \rightarrow S^+S^- ; $e^+e^ \rightarrow$ S^+S^- ; $e^+e^ \rightarrow$ NN M. Aoki, SK, O. Seto (2009)
-

Aiko, SK, Kikuchi, Mawatari, Sakurai, Yagyu (2021); SK, Takeuchi, Yagyu (2021)

■ Higgs triple coupling $\Delta R = \frac{\Delta \lambda_{hhh}}{\lambda_{hhh}^{SM}} = 38\%$
Sensitivity @ ILC ($\sqrt{s} = 500$ GeV)
 $\Delta R = 27\%$ K. Fujii, et al. arXiv:1506.05992 [hep-ph]

Azimuthal angle distribution of $H_{2,3} \to \tau \overline{\tau}$ at e^+e^- collider

SK, M. Kubota, K. Yagyu, JHEP (2021)

Dark matter direct detection

Observation of gravitational waves

Back to the original model AKS2009

FCNC by softly broken Z² Smaller number of parameters

M. Aoki, K. Enomoto, SK, S. Taniguchi 2024 $Type-X 2HDM + new Z2 odd (N_R^{\alpha}, S^{\pm}, \eta)$

Lagrangian

Higgs potential

Stationary condition

Im
$$
[\mu_{12}^2]
$$
 – $\frac{1}{2}$ Im $[\lambda_5]v_1v_2$ = 0
 μ_{12}^2 and λ_5 are related

$$
V = -\mu_1^2 |\phi_1|^2 - \mu_2^2 |\phi_2|^2 - (\mu_{12}^2 \phi_1^{\dagger} \phi_2 + \text{h.c.}) + \mu_S^2 |S^+|^2 + \frac{\mu_\eta^2}{2} \eta^2 + \frac{\lambda_1}{2} |\phi_1|^4 + \frac{\lambda_2}{2} |\phi_2|^4
$$

+ $\lambda_3 |\phi_1|^2 |\phi_2|^2 + \lambda_4 |\phi_1^{\dagger} \phi_2|^2 + (\frac{\lambda_5}{2} (\phi_1^{\dagger} \phi_2)^2 + \text{h.c.}) + \frac{\lambda_S}{4} |S^+|^4 + \frac{\lambda_\eta}{4!} \eta^4 + \frac{\xi}{2} |S^+|^2 \eta^2$
CP violating phase θ_5 ($\lambda_5 = |\lambda_5|e^{i\theta_5}$)
+ $\sum_{a=1}^2 (\rho_a |\phi_a|^2 |S^+|^2 + \frac{1}{2} \sigma_a |\phi_a|^2 \eta^2) + (2\mathbb{E} \tilde{\phi}_1^{\dagger} \phi_2 S^- \eta + \text{h.c.})$
The phase of κ can be 0 by rephasing S

Additional Yukawa coupling with RHN

Type-X 2HDM + new Z2 odd $(N_R^{\alpha}, S^{\pm}, \eta)$

$$
\mathcal{L} \supset -\frac{h_i^{\alpha}(N_R^{\alpha})^c}{k^s} l_R^i S^+ + \text{h.c.} \qquad \alpha = 1,2,3, \qquad i = 1,2,3, \qquad h_i^{\alpha} \text{ are } 3 \times 3 \text{ matrix}
$$
\n
$$
\text{CPV}
$$

Electric dipole moment in our model

In the model, new CPV contribution from

$$
\mathcal{L} \supset -\overline{h_i^{\alpha}(N_R^{\alpha})^c} l_R^i S^+ + \text{h.c.}
$$

By destructive interference Electron EDM can satisfy electron EDM

Benchmark scenario is found: K. Enomoto, SK, S. Taniguchi, arxiv:2403.13613

How about the UV theory?

The model (AKS2009) can satisfy all experimental results, and explain Neutrino, Dark Matter, Baryogenesis by TeV scale physics

1 st OPT. → Landau Pole Λ at 10-100TeV

What is the world above Λ?

Higgs as mesons

 $M_{ij} = T_i T_j$

An idea: New gauge theory with confinement. Higgs is a realization as a meson formed by the fundamental representation

Minimal SUSY Fat Higgs models by Murayama et al 2004, and many references

SK, T. Shindo, T. Yamada 2014

Landau pole and new physics

Minimal SUSY Fat Higgs models, Minimal model for confinement ($Nc=2$, $N_f=3$) by Murayama et al 2004 \rightarrow 3 pairs of $SU(2)_{H}$ fundamental rep. T_i (i=1-6) **Higgs as Meson** SU(2)H gauge theory **SK, Shindou, Yamada 2014** M_{ii} T_iT_i $SU(2)_L$ Z_2 Field Field $Z_2\,$ $SU(2)_L$ $|1\rangle$ 11 $\overline{2}$ Ω $^{+}$ Super-fields $\overline{2}$ $+1/2$ H_u $^{+}$ T_{2} **MSSM Higgs doublets** $\overline{2}$ $-1/2$ H_d $^{+}$ T_3 $+1/2$ $^{+}$ $\overline{2}$ $+1/2$ Φ_u $\overline{}$ **Extra Higgs doublets** T_{4} /2 $^{+}$ Φ_d 2 $-1/2$ $\qquad \qquad$ Ω^+ $T_{\rm 5}$ $+1/2$ $+1$ **Charged Higgs singlets** Additional $\Omega^ -1$ $T_{\boldsymbol{6}}$ $-1/2$ N, N_{Φ}, N_{Ω} Z₂-even Higgs singlets Ω $^{+}$ Z_2 -odd Higgs singlets 1 Ω ζ , η Intrilligator, Seiberg **Superpotential** $W_{eff} = \lambda \{ N(H_u H_d + v_0^2) + N_{\Phi}(\Phi_u \Phi_d + v_{\Phi}^2) + N_{\Omega}(\Omega^2 \Omega^2 + v_{\Omega}^2) \}$ $- NN_{\Phi}N_{\Omega} - N_{\Omega}\zeta\eta + \zeta H_d\Phi_u + \eta H_u\Phi_d - \Omega^+H_d\Phi_d - \Omega^-H_u\Phi_u$

The low energy theory is 4HDM+Singlets but with a common λ !

SK, Shindou, Yamada 2014

 $W_{\text{eff}}^N = \frac{\kappa}{2} N \nu_R^c \nu_R^c + \left(y_N^i\right) \nu_R^c L_i \Phi_u + \left(h_N^i\right) \nu_R E_i^c \Omega^- + \frac{M}{2} \nu_R^c \nu_R$

All particle contents are prepared from the $SU(2)_{H}$ gauge theory Multiplet structure may be explained by the UV theory

Summary

- **Higgs sector remains to be determined yet.**
- **Extended Higgs sector is used to explain physics of Neutrino, Dark Matter, Baryogenesis.**
- **A model which can explain neutrino, DM, BAU is revisited (AKS2009), and BAU was evaluated.**
- **Discussed viable benchmark scenarios**
- **The model is testable using various future experiments**