

Extended Scalar Sectors From All Angles

CERN, France/Swiss, 21-25 October, 2024

Minimal U(1) two-Higgs-doublet models for quark and lepton flavour

Henrique Brito Câmara

henrique.b.camara@tecnico.ulisboa.pt

CFTP/IST, U. Lisbon

In collaboration with: J. R. Rocha, F.R. Joaquim, R. G. Felipe

arXiv: 2406.03331 [hep-ph]

Phys.Rev.D 110 (2024) 3, 035027

Introduction

The **Standard Model** of Particle Physics:

- Quark mixing is encoded in the CKM matrix;
- This flavour structure is the only known source of CP violation;
- The CKM parameters have been determined with extreme precision.

Introduction

The **Standard Model** of Particle Physics:

- Quark mixing is encoded in the CKM matrix;
- This flavour structure is the only known source of CP violation;
- The CKM parameters have been determined with extreme precision.

Introduction

The **Standard Model** of Particle Physics:

- Quark mixing is encoded in the CKM matrix;
- This flavour structure is the only known source of CP violation;
- The CKM parameters have been determined with extreme precision.

EFFECTIVE THEORY with SM fields $\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \delta \mathcal{L}^{d=5} + \delta \mathcal{L}^{d=6} + ..., \quad \delta \mathcal{L}^{D=d} \equiv \sum_{k} \frac{\mathcal{O}_{k}^{(d)}}{\Lambda^{d-4}}$

The lowest d > 4 operator is unique (Weinberg Operator) (Weinberg, 1979)

The **SM does not allow** for the implementation of **Abelian flavour symmetries**

The **SM does not allow** for the implementation of **Abelian flavour symmetries**

Imposing a **global U(1) symmetry (softly broken)** the scalar potential reads:

$$V = \mu_{11}^2 \left(\Phi_1^{\dagger} \Phi_1 \right) + \mu_{22}^2 \left(\Phi_2^{\dagger} \Phi_2 \right) + \mu_{12}^2 \left(\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1 \right)$$
$$+ \frac{\lambda_1}{2} \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{\lambda_2}{2} \left(\Phi_2^{\dagger} \Phi_2 \right)^2$$
$$+ \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right)$$

The **SM does not allow** for the implementation of **Abelian flavour symmetries**

Imposing a **global U(1) symmetry (softly broken)** the scalar potential reads:

The **SM does not allow** for the implementation of **Abelian flavour symmetries**

(Branco, et al., 2012) **2HDM**
$$\Phi_{1,2} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}\phi_{1,2}^+ \\ v_{1,2} + \rho_{1,2} + i\eta_{1,2} \end{pmatrix}$$

Imposing a **global U(1) symmetry (softly broken)** the scalar potential reads:

Expanding the Yukawa Lagrangian in the mass eigenstates:

FCCC

Example:

$$\Phi_{1,2} \to q_{1L} + d_{2R}$$

Example:

Procedure

Equivalence classes with the maximum number of zeros

Procedure

Procedure	l l l l l l l l l l l l l l l l l l l	Experim	ental Data	l
		Parameter	Best fit $\pm 1\sigma$	
alence classes with		$m_d(\times \text{MeV})$ $m_d(\times \text{MeV})$	$4.67^{+0.48}_{-0.17}$ 03 $4^{+8.6}$	
		$m_s(\times \text{ GeV})$ $m_b(\times \text{ GeV})$	$4.18^{+0.03}_{-0.02}$	_
aximum number of		$m_u(\times \text{MeV})$	$2.16^{+0.49}_{-0.26}$	
zeros		$m_c(\times \text{GeV})$	1.27 ± 0.02	Ja
		$m_t(\times \mathrm{GeV})$	172.69 ± 0.30	
		$ heta_{12}^q(^\circ)$	13.04 ± 0.05	()
		$ heta_{23}^q(^\circ)$	2.38 ± 0.06	
e system of equations		$ heta_{13}^q(^\circ)$	0.201 ± 0.011	
r the field charges		$\delta^q(\circ)$	68.75 ± 4.5	
	Pa	arameter	Best Fit ± 1	σ
↓		$e(imes \mathrm{keV})$	510.99895000 ± 0.0	0000015
monthility at the 1 g	m_{μ}	$(\times { m MeV})$	105.6583755 ± 0.0	0000023
ompationity at the To	$m_{ au}$	$(\times \text{GeV})$	1.77686 ± 0.00	0012
for all observables	Δm_{21}^2	$(\times 10^{-5} \text{ eV}^2)$	$7.50^{+0.22}_{-0.20}$	L L
	$ \Delta m_{31}^2 (\times$	(10^{-3} eV^2) [NO]	$2.55_{-0.03}$ $2.45^{+0.02}$	Ť
		$\theta_{12}^{\ell}(\circ)$	34.3 ± 1.0	5
	θ_2^ℓ	3(°)[NO]	49.26 ± 0.7	9
	$\theta_2^{\tilde{\ell}}$	23(°)[IO]	$49.46_{-0.97}^{+0.60}$	U
	$ heta_1^\ell$	$_{3}(^{\circ})[\text{NO}]$	$8.53_{-0.12}^{+0.13}$	
	θ_1^ℓ	(°)[IO]	$8.58^{+0.12}_{-0.14}$	
	δ^{ℓ}	$(^{\circ})[NO]$	194_{-22}^{+24}	
	δ	() IO	284^{+20}_{-28}	

		U(1) cha	irges	
				\mathbb{Z}_5
	$(\mathbf{M}_e,\mathbf{M}_ u$	$(\delta_1, \delta_2, \delta_3)$	$_{3})$ $(\epsilon_{1},\epsilon_{2},\epsilon_{3})$	$\epsilon_3)$
	$(5^e_1, 2^\nu_3)$	(-1, -3,	(1, -5, -5)	-1)
	$(5^e_1, 2^\nu_7)$	(-1, -2,	(0, -3, -3)	-1)
	$(5^e_1, 2^{\nu}_{10})$) (0, -1, 1)	(1, -2,	0)
				$\mathbb{Z}_{}$
$(\mathbf{M}_d, \mathbf{N}_d)$	(\mathbf{I}_u)	$(\alpha_1, \alpha_2, \alpha_3)$	$(\beta_1,\beta_2,\beta_3)$	$(\gamma_1,\gamma_2,\gamma_3)$
$(4^d_3, \mathbf{P}_1)$	$_{2}5_{1}^{u}\mathbf{P}_{23})$	(0, 1, 2)	(2, 1, 0)	(3, 2, 0)
$(4^d_3, \mathbf{P}_1)$	$_{23}5_1^u \mathbf{P}_{12})$	(0, 1, 2)	(2, 1, 0)	(3,0,1)
$(5^d_1, \mathbf{P}_1)$	$_{2}4_{3}^{u})$	(0, -1, 1)	(1, -2, 0)	(2, 1, 0)
$(5^d_1, \mathbf{P}_3)$	$(214_3^u \mathbf{P}_{23})$	(0, -1, 1)	(1, -2, 0)	(-1, 1, 0)

Maximally restrictive mass matrices			
Quarks	Leptons		
$4_3^d \sim \begin{pmatrix} 0 & 0 & \times \\ 0 & \times & \times \\ \times & \times & 0 \end{pmatrix}$	$5_1^e \sim \begin{pmatrix} 0 & 0 & \times \\ 0 & \times & 0 \\ \times & 0 & \times \end{pmatrix}$		
$5_1^d \sim \begin{pmatrix} 0 & 0 & \times \\ 0 & \times & 0 \\ \times & 0 & \times \end{pmatrix}$	$2_3^{\nu} \sim \begin{pmatrix} \times & \times & \bullet \\ \cdot & 0 & \bullet \\ \cdot & \cdot & 0 \end{pmatrix}$		
$\mathbf{P}_{12}5_1^u\mathbf{P}_{23} \sim \begin{pmatrix} 0 & 0 & \times \\ 0 & \bullet & 0 \\ \times & \times & 0 \end{pmatrix}$	$2_7^{\nu} \sim \begin{pmatrix} \times & 0 & \bullet \\ \cdot & 0 & \times \\ \cdot & \cdot & \bullet \end{pmatrix}$		
$\mathbf{P}_{123}5_1^u \mathbf{P}_{12} \sim \begin{pmatrix} 0 & \times & \bullet \\ 0 & 0 & \times \\ \times & 0 & 0 \end{pmatrix}$	$2_{10}^{\nu} \sim \begin{pmatrix} \times & \bullet & 0 \\ \cdot & \times & \bullet \\ \cdot & \cdot & 0 \end{pmatrix}$		
$\mathbf{P}_{12}4_3^u \sim \begin{pmatrix} 0 & \bullet & \times \\ 0 & 0 & \times \\ \times & \times & 0 \end{pmatrix}$			
$\mathbf{P}_{321}4_3^u\mathbf{P}_{23} \sim \begin{pmatrix} 0 & \bullet & \times \\ \times & 0 & \times \\ 0 & \times & 0 \end{pmatrix}$			

	U(1) cha	irges	
$\overline{(\mathbf{M}_{e},\mathbf{M}%)}$	$\overline{(\delta_1,\delta_2,\delta_3)}$	$\overline{\alpha_3}$ $(\epsilon_1,\epsilon_2,\epsilon_3)$	$\mathbb{Z}_{\frac{5}{3}}$
$\frac{(5^e_1, 2^\nu_3)}{(5^e_1, 2^\nu_7)}$) $(-1, -3, -3, -2, -2, -3, -2, -3, -2, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3$	$\begin{array}{ccc} 1) & (1, -5, -\\ 0) & (0, -3, -\end{array}$	-1)
$(5^e_1, 2^{\nu}_{10})$) (0, -1, 1	(1, -2, -2)	0)
$(\mathbf{M}_d,\mathbf{M}_u)$	$(\alpha_1, \alpha_2, \alpha_3)$	$(\beta_1,\beta_2,\beta_3)$	$(\gamma_1,\gamma_2,\gamma_3)$
$(4^d_3, \mathbf{P}_{12}5^u_1\mathbf{P}_{23})$	(0, 1, 2)	(2, 1, 0)	(3, 2, 0)
$(4^d_3, \mathbf{P}_{123}5^u_1\mathbf{P}_{12})$	(0,1,2)	(2, 1, 0)	(3,0,1)
$(5^d_1, \mathbf{P}_{12} 4^u_3)$	(0,-1,1)	(1, -2, 0)	(2, 1, 0)
$(5_1^d, \mathbf{P}_{321}4_3^u\mathbf{P}_{23})$	(0, -1, 1)	(1, -2, 0)	(-1, 1, 0)

"Decoupled" entry in the matrices of type "5" lead to zeros in the N_k matrices

Maximally restrictive mass matrices		
Quarks	Leptons	
$4_3^d \sim \begin{pmatrix} 0 & 0 & \times \\ 0 & \times & \times \\ \times & \times & 0 \end{pmatrix}$	$5_1^e \sim \begin{pmatrix} 0 & 0 & \times \\ 0 & \times & 0 \\ \times & 0 & \times \end{pmatrix}$	
$5_1^d \sim \begin{pmatrix} 0 & 0 & \times \\ 0 & \times & 0 \\ \times & 0 & \times \end{pmatrix}$	$2_{3}^{\nu} \sim \begin{pmatrix} \times & \times & \bullet \\ \cdot & 0 & \bullet \\ \cdot & \cdot & 0 \end{pmatrix}$	
$\mathbf{P}_{12}5_1^u \mathbf{P}_{23} \sim \begin{pmatrix} 0 & 0 & \times \\ 0 & \bullet & 0 \\ \times & \times & 0 \end{pmatrix}$	$2_7^{\nu} \sim \begin{pmatrix} \times & 0 & \bullet \\ \cdot & 0 & \times \\ \cdot & \cdot & \bullet \end{pmatrix}$	
$\mathbf{P}_{123}5_1^u \mathbf{P}_{12} \sim \begin{pmatrix} 0 & \times & \bullet \\ 0 & 0 & \times \\ \times & 0 & 0 \end{pmatrix}$	$2_{10}^{\nu} \sim \begin{pmatrix} \times & \bullet & 0 \\ \cdot & \times & \bullet \\ \cdot & \cdot & 0 \end{pmatrix}$	
$\mathbf{P}_{12}4_{3}^{u} \sim \begin{pmatrix} 0 & \bullet & \times \\ 0 & 0 & \times \\ \times & \times & 0 \end{pmatrix}$		
$\mathbf{P}_{321}4_3^u\mathbf{P}_{23} \sim \begin{pmatrix} 0 & \bullet & \times \\ \times & 0 & \times \\ 0 & \times & 0 \end{pmatrix}$	=	

Minimal flavour patterns for quarks:

- ✓ Four different models;
- There is a total of ten independent parameters, matching the number of observables;

Minimal flavour patterns for quarks:

- ✓ Four different models;
- There is a total of ten independent parameters, matching the number of observables;

Minimal flavour patterns for leptons:

- Three different models;
- ✓ There are ten parameters, **two less** than the number of lepton observables;

Minimal flavour patterns for quarks:

- Four different models;
- There is a total of ten independent parameters, matching the number of observables;

Minimal flavour patterns for leptons:

Three different models;

✓ There are ten parameters, **two less** than the number of lepton observables;

I

Predictions
NO:
$$m_2 = \sqrt{m_1^2 + \Delta m_{21}^2}, \quad m_3 = \sqrt{m_1^2 + \Delta m_{31}^2}$$

IO: $m_1 = \sqrt{m_3^2 + |\Delta m_{31}^2|}, \quad m_2 = \sqrt{m_3^2 + \Delta m_{21}^2 + |\Delta m_{31}^2|}$
 $m_{\beta\beta} = \left|c_{12}^2 c_{13}^2 m_1 + s_{12}^2 c_{13}^2 m_2 e^{-i\alpha_{21}} + s_{13}^2 m_3 e^{-i\alpha_{31}}\right|$

Lepton sector predictions - NO

The symmetry-constrained lepton models provide **predictions** for the **neutrino sector**, for example:

For NO, $2^{\mu}_{3,7}$ and $2^{\tau}_{3,7}$ select the **first** and **second octant** for the atmospheric mixing angle θ_{23} , respectively

Lepton sector predictions - NO

The symmetry-constrained lepton models provide **predictions** for the **neutrino sector**, for example:

Lepton sector predictions - IO

There are models that behave similarly for **inverted ordering** (IO), namely 2^{μ}_{10} and 2^{τ}_{10}

For the numerical analysis of the phenomenology of maximally-restrictive matrices, a private *Python* code was developed, which works as follows:

Random values for tan β , m_I , m_H , $m_{H^{\pm}}$

Henrique Brito Câmara – Extended Scalar Sectors From All Angles – October 25, 2024

For the numerical analysis of the phenomenology of maximally-restrictive matrices, a private *Python* code was developed, which works as follows:

The mass matrices labelled "5" exhibit an isolated non-zero entry in a given row and column, which coincides with the mass of a fermion translating into:

$$5^{d,u,e}: \mathbf{N}_{d,u,e} \sim \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & \times \\ 0 & \times & \times \end{pmatrix}, \ 5^{s,c,\mu}: \mathbf{N}_{s,c,\mu} \sim \begin{pmatrix} \times & 0 & \times \\ 0 & \times & 0 \\ \times & 0 & \times \end{pmatrix}, \ 5^{b,t,\tau}: \mathbf{N}_{b,t,\tau} \sim \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$$

The mass matrices labelled "5" exhibit an isolated non-zero entry in a given row and column, which coincides with the mass of a fermion translating into:

$$5^{d,u,e}: \mathbf{N}_{d,u,e} \sim \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & \times \\ 0 & \times & \times \end{pmatrix}, \ 5^{s,c,\mu}: \mathbf{N}_{s,c,\mu} \sim \begin{pmatrix} \times & 0 & \times \\ 0 & \times & 0 \\ \times & 0 & \times \end{pmatrix}, \ 5^{b,t,\tau}: \mathbf{N}_{b,t,\tau} \sim \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$$

To directly observe the effect of flavour symmetries, consider the NP contribution to the matrix element that contributes to the $\overline{K}_0 \rightarrow K_0$ transition:

$$M_{21}^{\rm NP} = \frac{f_k^2 m_K}{96v^2} \left\{ \left[(\mathbf{N}_d^*)_{ds}^2 + (\mathbf{N}_d)_{sd}^2 \right] \frac{10m_k^2}{(m_s + m_d)^2} \left(\frac{1}{m_I^2} - \frac{c_{\beta-\alpha}^2}{m_h^2} - \frac{s_{\beta-\alpha}^2}{m_H^2} \right) + 4(\mathbf{N}_d^*)_{ds} (\mathbf{N}_d)_{sd} \left[1 + \frac{6m_K^2}{(m_s + m_d)^2} \left(\frac{1}{m_I^2} + \frac{c_{\beta-\alpha}^2}{m_h^2} + \frac{s_{\beta-\alpha}^2}{m_H^2} \right) \right] \right\}$$

The mass matrices labelled "5" exhibit an isolated non-zero entry in a given row and column, which coincides with the mass of a fermion translating into:

$$5^{\underline{d}u,e}: \mathbf{N}_{\underline{d}u,e} \sim \begin{pmatrix} \times & \mathbf{0} & 0 \\ \mathbf{0} & \times & \times \\ 0 & \times & \times \end{pmatrix}, \ 5^{\underline{s}c,\mu}: \mathbf{N}_{\underline{s}c,\mu} \sim \begin{pmatrix} \times & \mathbf{0} & \times \\ \mathbf{0} & \times & 0 \\ \times & 0 & \times \end{pmatrix}, \ 5^{b,t,\tau}: \mathbf{N}_{b,t,\tau} \sim \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$$

To directly observe the effect of flavour symmetries, consider the NP contribution to the matrix element that contributes to the $\overline{K}_0 \rightarrow K_0$ transition:

$$M_{21}^{\rm NP} = \frac{f_k^2 m_K}{96v^2} \left\{ \left[(\mathbf{N}_d^*)_{ds}^2 + (\mathbf{N}_d)_{sd}^2 \right] \frac{10m_k^2}{(m_s + m_d)^2} \left(\frac{1}{m_I^2} - \frac{c_{\beta-\alpha}^2}{m_h^2} - \frac{s_{\beta-\alpha}^2}{m_H^2} \right) + 4(\mathbf{N}_d^*)_{ds} (\mathbf{N}_d)_{sd} \left[1 + \frac{6m_K^2}{(m_s + m_d)^2} \left(\frac{1}{m_I^2} + \frac{c_{\beta-\alpha}^2}{m_h^2} + \frac{s_{\beta-\alpha}^2}{m_H^2} \right) \right] \right\}$$

The mass matrices labelled "5" exhibit an isolated non-zero entry in a given row and column, which coincides with the mass of a fermion translating into:

$$5^{\underline{d}u,e}: \mathbf{N}_{\underline{d}u,e} \sim \begin{pmatrix} \times & \mathbf{0} & 0 \\ \mathbf{0} & \times & \times \\ 0 & \times & \times \end{pmatrix}, \ 5^{\underline{s}c,\mu}: \mathbf{N}_{\underline{s}c,\mu} \sim \begin{pmatrix} \times & \mathbf{0} & \times \\ \mathbf{0} & \times & 0 \\ \times & 0 & \times \end{pmatrix}, \ 5^{b,t,\tau}: \mathbf{N}_{b,t,\tau} \sim \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$$

To directly observe the effect of flavour symmetries, consider the NP contribution to the matrix element that contributes to the $\overline{K}_0 \rightarrow K_0$ transition:

$$M_{21}^{\rm NP} = \frac{f_k^2 m_K}{96v^2} \left\{ \left[(\mathbf{N}_d)_{ds}^2 + (\mathbf{N}_d)_{sd}^2 \right] \frac{10m_k^2}{(m_s + m_d)^2} \left(\frac{1}{m_I^2} - \frac{c_{\beta-\alpha}^2}{m_h^2} - \frac{s_{\beta-\alpha}^2}{m_H^2} \right) + 4(\mathbf{N}_d)_{ds} (\mathbf{N}_d)_{sd} \left[1 + \frac{6m_K^2}{(m_s + m_d)^2} \left(\frac{1}{m_I^2} + \frac{c_{\beta-\alpha}^2}{m_h^2} + \frac{s_{\beta-\alpha}^2}{m_H^2} \right) \right] \right\}$$

The mass matrices labelled "5" exhibit an isolated non-zero entry in a given row and column, which coincides with the mass of a fermion translating into:

$$5^{\underline{d}u,e}: \mathbf{N}_{\underline{d}u,e} \sim \begin{pmatrix} \times & \mathbf{0} & 0 \\ \mathbf{0} & \times & \times \\ 0 & \times & \times \end{pmatrix}, \ 5^{\underline{s}c,\mu}: \mathbf{N}_{\underline{s}c,\mu} \sim \begin{pmatrix} \times & \mathbf{0} & \times \\ \mathbf{0} & \times & 0 \\ \times & 0 & \times \end{pmatrix}, \ 5^{b,t,\tau}: \mathbf{N}_{b,t,\tau} \sim \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$$

To directly observe the effect of flavour symmetries, consider the NP contribution to the matrix element that contributes to the $\overline{K}_0 \rightarrow K_0$ transition:

$$\begin{split} M_{21}^{\mathrm{NP}} &= \frac{f_k^2 m_K}{96v^2} \bigg\{ \left[(\mathbf{M}_d)_{ds}^2 + (\mathbf{M}_d)_{sd}^2 \right] \frac{10m_k^2}{(m_s + m_d)^2} \bigg(\frac{1}{m_I^2} - \frac{c_{\beta-\alpha}^2}{m_h^2} - \frac{s_{\beta-\alpha}^2}{m_H^2} \bigg) \\ &+ 4 (\mathbf{M}_d)_{ds} (\mathbf{M}_d)_{sd} \bigg[1 + \frac{6m_K^2}{(m_s + m_d)^2} \bigg(\frac{1}{m_I^2} + \frac{c_{\beta-\alpha}^2}{m_h^2} + \frac{s_{\beta-\alpha}^2}{m_H^2} \bigg) \bigg] \bigg\} \\ & \bullet \\ \Delta m_K^{\mathrm{NP}} &= 2|M_{21}^{\mathrm{NP}}| = 0 \qquad \varepsilon_K = \varepsilon_K^{\mathrm{SM}} - \frac{\mathrm{Im}(M_{21}^{\mathrm{NP}} \lambda_u^{*2})}{\sqrt{2}\Delta m_K |\lambda_u|^2} \\ \mathrm{The two \ constraints \ associated \ with \ K^0 \ are \ inherently \ satisfied \ for \ d \ or \ s \ decoupled} \end{split}$$

Yukawa perturbativity bounds

$$\tan^2 \beta \le \frac{2\pi v^2}{|(\mathbf{M}_1^x)_{ij}|^2} - 1, \quad \tan^2 \beta \ge 1 / \left(\frac{2\pi v^2}{|(\mathbf{M}_2^x)_{ij}|^2} - 1\right)$$

Thus, $\tan \beta$ finds its upper and lower bounds determined by the maximum value of $|(\mathbf{M}_1^{\chi})_{ij}|$ and $|(\mathbf{M}_2^{\chi})_{ij}|$.

Yukawa perturbativity bounds

$$\tan^2 \beta \le \frac{2\pi v^2}{|(\mathbf{M}_1^x)_{ij}|^2} - 1, \quad \tan^2 \beta \ge 1 / \left(\frac{2\pi v^2}{|(\mathbf{M}_2^x)_{ij}|^2} - 1\right)$$

Thus, $\tan \beta$ finds its upper and lower bounds determined by the maximum value of $|(\mathbf{M}_1^x)_{ij}|$ and $|(\mathbf{M}_2^x)_{ij}|$.

Lepton sector constraints

We only consider the lepton model $(5_1^e, 2_3^\nu)_{NO}$, as the conclusions do not differ with a more detailed analysis.

The only exception is for the $(5_1^d, \mathbf{P}_{123}4_3^u \mathbf{P}_{12})$ model.

Yukawa perturbativity bounds

$$\tan^2 \beta \le \frac{2\pi v^2}{|(\mathbf{M}_1^x)_{ij}|^2} - 1, \quad \tan^2 \beta \ge 1 / \left(\frac{2\pi v^2}{|(\mathbf{M}_2^x)_{ij}|^2} - 1\right)$$

Thus, $\tan \beta$ finds its upper and lower bounds determined by the maximum value of $|(\mathbf{M}_1^x)_{ij}|$ and $|(\mathbf{M}_2^x)_{ij}|$.

Lepton sector constraints

We only consider the lepton model $(5_1^e, 2_3^\nu)_{NO}$, as the conclusions do not differ with a more detailed analysis.

The only exception is for the $(5_1^d, \mathbf{P}_{123}4_3^u\mathbf{P}_{12})$ model.

Most restrictive constraints

Only some constraints shape the allowed region $(\tan \beta, \{m_H = m_I = m_{H^{\pm}}\})$, which we refer to as the **most restrictive constraints**.

$$\mathbf{N}_t \sim \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$$

$$\mathbf{N}_t \sim \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$$

+

None of the most restrictive constraints are automatically satisfied.

The decoupled state could be picked to satisfy some constraints, for example d

Observable	Constraint	Decoupled state
$ \varepsilon_K $	$(2.228 \pm 0.011) \times 10^{-3}$	(u, d, s)
$\Delta m_K^{ m NP}$	$< 3.484 \times 10^{-15} { m GeV}$	(d,s)
Δm_{B_d}	$(3.334 \pm 0.013) \times 10^{-13} \text{ GeV}$	(d,b)
Δm_{B_s}	$(1.1693 \pm 0.0004) \times 10^{-11} \text{ GeV}$	(s,b)
$\Delta m_D^{ m NP}$	$< 6.56 \times 10^{-15} { m GeV}$	(u,c)

This model highlights the effectiveness of Abelian flavour symmetries in aligning theoretical frameworks with highly constrained experimental observations.

Summary and outlook

Work done:

- Study of the theoretical framework of the minimal U(1) 2HDM for flavour;
- Identification of the maximally-restrictive pairs of quark and lepton mass matrices compatible with current masses, mixing and CP violation data;
- Lepton sector predictions;
- Phenomenological study (analytical and numerical) of the quark and charged lepton sectors.

Summary and outlook

Work done:

- Study of the theoretical framework of the minimal U(1) 2HDM for flavour;
- Identification of the maximally-restrictive pairs of quark and lepton mass matrices compatible with current masses, mixing and CP violation data;
- Lepton sector predictions;
- Phenomenological study (analytical and numerical) of the quark and charged lepton sectors.

•

Abelian flavour symmetries in the 2HDM stand out as a simplest approach in addressing the flavour puzzle, leading to minimal quark and lepton models that are predictive

Summary and outlook

Work done:

- Study of the theoretical framework of the minimal U(1) 2HDM for flavour;
- Identification of the maximally-restrictive pairs of quark and lepton mass matrices compatible with current masses, mixing and CP violation data;
- Lepton sector predictions;
- Phenomenological study (analytical and numerical) of the quark and charged lepton sectors.

ŀ

Abelian flavour symmetries in the 2HDM stand out as a simplest approach in addressing the flavour puzzle, leading to minimal quark and lepton models that are predictive

Thank you !