

Extended Scalar Sectors From All Angles

CERN, France/Swiss, 21-25 October, 2024

Minimal U(1) two-Higgs-doublet models for quark and lepton flavour

Henrique Brito Câmara

henrique.b.camara@tecnico.ulisboa.pt

CFTP/IST, U. Lisbon

In collaboration with: J. R. Rocha, F.R. Joaquim, R. G. Felipe

arXiv: **2[406.03331](https://arxiv.org/pdf/2204.13605.pdf)** [hep-ph]

 Phys.Rev.D 110 (2024) 3, 035027

Introduction

The **Standard Model** of Particle Physics:

- **◆ Quark mixing is encoded in the** CKM matrix;
- \blacktriangleright This flavour structure is the only known source of CP violation;
- $\sqrt{\ }$ The CKM parameters have been determined with extreme precision.

Introduction

The **Standard Model** of Particle Physics:

- ◆ Quark mixing is encoded in the CKM matrix;
- \blacktriangleright This flavour structure is the only known source of CP violation;
- $\sqrt{\ }$ The CKM parameters have been determined with extreme precision.

Introduction

The **Standard Model** of Particle Physics:

- ◆ Quark mixing is encoded in the CKM matrix;
- \blacktriangleright This flavour structure is the only known source of CP violation;
- $\sqrt{\ }$ The CKM parameters have been determined with extreme precision.

EFFECTIVE THEORY with SM fields $\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \delta \mathcal{L}^{d=5} + \delta \mathcal{L}^{d=6} + ..., \delta \mathcal{L}^{D=d} \equiv \sum_{k} \frac{\mathcal{O}_{k}^{(d)}}{\Lambda^{d-4}}$

The **SM does not allow** for the implementation of **Abelian flavour symmetries**

The **SM does not allow** for the implementation of **Abelian flavour symmetries**

$$
\left(\begin{matrix}\text{Branco, et al., 2012)}\\ \Phi_{1,2}=\frac{1}{\sqrt{2}}\left(\begin{matrix}\sqrt{2}\phi_{1,2}^+\\ v_{1,2}+\rho_{1,2}+i\eta_{1,2}\end{matrix}\right)\end{matrix}\right)
$$

Imposing a **global U(1) symmetry (softly broken)** the scalar potential reads:

$$
V = \mu_{11}^2 \left(\Phi_1^{\dagger} \Phi_1 \right) + \mu_{22}^2 \left(\Phi_2^{\dagger} \Phi_2 \right) + \mu_{12}^2 \left(\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1 \right) + \frac{\lambda_1}{2} \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{\lambda_2}{2} \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right)
$$

The **SM does not allow** for the implementation of **Abelian flavour symmetries**

$$
\left(\begin{matrix}\text{Branco, et al., 2012)}\\ \Phi_{1,2}=\frac{1}{\sqrt{2}}\left(\begin{matrix}\sqrt{2}\phi_{1,2}^{+}\\ v_{1,2}+\rho_{1,2}+i\eta_{1,2}\end{matrix}\right)\end{matrix}\right)
$$

Imposing a **global U(1) symmetry (softly broken)** the scalar potential reads:

$$
V = \mu_{11}^2 \left(\Phi_1^{\dagger} \Phi_1 \right) + \mu_{22}^2 \left(\Phi_2^{\dagger} \Phi_2 \right) + \mu_{12}^2 \left(\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1 \right) \n\begin{array}{c}\n\text{Mass Eigenstates} \\
m_h & m_I \\
m_H & m_H \pm \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right)\n\end{array}
$$
\nAlignment Limit

\n
$$
\begin{array}{c}\nMass Eigenstates \\
m_H & m_H \pm \omega_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right)\n\end{array}
$$

The **SM does not allow** for the implementation of **Abelian flavour symmetries**

$$
\left(\begin{matrix}\text{Branco, et al., 2012)}\\ \Phi_{1,2}=\frac{1}{\sqrt{2}}\left(\begin{matrix} \sqrt{2}\phi_{1,2}^+\\ v_{1,2}+\rho_{1,2}+i\eta_{1,2} \end{matrix}\right)\end{matrix}\right)
$$

Imposing a **global U(1) symmetry (softly broken)** the scalar potential reads:

$$
V = \mu_{11}^2 \left(\Phi_1^{\dagger} \Phi_1 \right) + \mu_{22}^2 \left(\Phi_2^{\dagger} \Phi_2 \right) + \mu_{12}^2 \left(\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1 \right)
$$
\n
$$
+ \frac{\lambda_1}{2} \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{\lambda_2}{2} \left(\Phi_2^{\dagger} \Phi_2 \right)^2
$$
\n
$$
+ \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right)
$$
\nAlgorithm

\nAlgorithm

\nAlgorithm

Expanding the **Yukawa Lagrangian** in the **mass eigenstates**:

Example:

$$
\Phi_{1,2} \to q_{1L} + d_{2R}
$$

Example:

Flavour charge is not conserved $Q_{\Phi_{1,2}} - Q_{q_{1L}} + Q_{d_{2R}} \neq 0$ d_{2R}

Procedure

Equivalence classes with the maximum number of zeros

Procedure

"Decoupled" entry in the matrices of type "5" lead to zeros in the N_k **matrices**

Minimal flavour patterns for **quarks**:

- \blacktriangleright Four different models;
- There is a total of ten independent parameters, **matching** the number of observables;

Minimal flavour patterns for **quarks**:

- \blacktriangleright Four different models;
- There is a total of ten independent parameters, **matching** the number of observables;

Minimal flavour patterns for **leptons**:

- \blacktriangleright Three different models;
- There are ten parameters, **two less** than the number of lepton observables;

Minimal flavour patterns for **quarks**:

- \blacktriangleright Four different models;
- There is a total of ten independent parameters, **matching** the number of observables;

Minimal flavour patterns for **leptons**:

 \blacktriangleright Three different models;

There are ten parameters, **two less** than the number of lepton observables;

I

Predictions	
NO: $m_2 = \sqrt{m_1^2 + \Delta m_{21}^2}$, $m_3 = \sqrt{m_1^2 + \Delta m_{31}^2}$	
IO: $m_1 = \sqrt{m_3^2 + \Delta m_{31}^2 }$, $m_2 = \sqrt{m_3^2 + \Delta m_{21}^2 + \Delta m_{31}^2 }$	
$m_{\beta\beta} = c_{12}^2 c_{13}^2 m_1 + s_{12}^2 c_{13}^2 m_2 e^{-i\alpha_{21}} + s_{13}^2 m_3 e^{-i\alpha_{31}} $	

Lepton sector predictions - NO

The symmetry-constrained lepton models provide **predictions** for the **neutrino sector**, for example:

For NO, $2^{\mu}_{3,7}$ and $2^{\tau}_{3,7}$ select the **first** and **second octant** for the atmospheric mixing angle θ_{23} , respectively

Lepton sector predictions - NO

The symmetry-constrained lepton models provide **predictions** for the **neutrino sector**, for example:

Lepton sector predictions - IO

There are models that behave similarly for **inverted ordering** (IO), namely 2_{10}^{μ} and 2_{10}^{τ}

For the numerical analysis of the phenomenology of maximally-restrictive matrices, a private *Python* code was developed, which works as follows:

Random values for $\tan \beta$, m_I , m_H , $m_{H^{\pm}}$

For the numerical analysis of the phenomenology of maximally-restrictive matrices, a private *Python* code was developed, which works as follows:

The mass matrices labelled "5" exhibit an isolated non-zero entry in a given row and column, which coincides with the mass of a fermion translating into:

$$
5^{d,u,e}: \mathbf{N}_{d,u,e} \sim \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & \times \\ 0 & \times & \times \end{pmatrix}, \ 5^{s,c,\mu}: \mathbf{N}_{s,c,\mu} \sim \begin{pmatrix} \times & 0 & \times \\ 0 & \times & 0 \\ \times & 0 & \times \end{pmatrix}, \ 5^{b,t,\tau}: \mathbf{N}_{b,t,\tau} \sim \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}
$$

The mass matrices labelled "5" exhibit an isolated non-zero entry in a given row and column, which coincides with the mass of a fermion translating into:

$$
5^{d,u,e}: \mathbf{N}_{d,u,e}\sim \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & \times \\ 0 & \times & \times \end{pmatrix},\;5^{s,c,\mu}: \mathbf{N}_{s,c,\mu}\sim \begin{pmatrix} \times & 0 & \times \\ 0 & \times & 0 \\ \times & 0 & \times \end{pmatrix},\;5^{b,t,\tau}: \mathbf{N}_{b,t,\tau}\sim \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}
$$

To directly observe the effect of flavour symmetries, consider the NP contribution to the matrix element that contributes to the $\overline{K}_0 \rightarrow K_0$ transition:

$$
M_{21}^{\rm NP} = \frac{f_k^2 m_K}{96v^2} \Bigg\{ \left[(\mathbf{N}_d^*)^2_{ds} + (\mathbf{N}_d)^2_{sd} \right] \frac{10m_k^2}{(m_s + m_d)^2} \Bigg(\frac{1}{m_I^2} - \frac{c_{\beta - \alpha}^2}{m_h^2} - \frac{s_{\beta - \alpha}^2}{m_H^2} \Bigg) + 4(\mathbf{N}_d^*)_{ds} (\mathbf{N}_d)_{sd} \Bigg[1 + \frac{6m_K^2}{(m_s + m_d)^2} \Bigg(\frac{1}{m_I^2} + \frac{c_{\beta - \alpha}^2}{m_h^2} + \frac{s_{\beta - \alpha}^2}{m_H^2} \Bigg) \Bigg] \Bigg\}
$$

The mass matrices labelled "5" exhibit an isolated non-zero entry in a given row and column, which coincides with the mass of a fermion translating into:

$$
5^{\underbar{\textbf{d}}\textbf{u},e}: \mathbf{N}_{\underbar{\textbf{d}}\textbf{u},e} \sim \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & \times \\ 0 & \times & \times \end{pmatrix}, \; 5^{\underbar{\textbf{s}}\textbf{c},\mu}: \mathbf{N}_{\underbar{\textbf{s}}\textbf{c},\mu} \sim \begin{pmatrix} \times & 0 & \times \\ 0 & \times & 0 \\ \times & 0 & \times \end{pmatrix}, \; 5^{b,t,\tau}: \mathbf{N}_{b,t,\tau} \sim \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}
$$

To directly observe the effect of flavour symmetries, consider the NP contribution to the matrix element that contributes to the $\overline{K}_0 \rightarrow K_0$ transition:

$$
M_{21}^{\rm NP} = \frac{f_k^2 m_K}{96v^2} \Bigg\{ \left[(\mathbf{N}_d^*)^2_{ds} + (\mathbf{N}_d)^2_{sd} \right] \frac{10m_k^2}{(m_s + m_d)^2} \Bigg(\frac{1}{m_I^2} - \frac{c_{\beta - \alpha}^2}{m_h^2} - \frac{s_{\beta - \alpha}^2}{m_H^2} \Bigg) + 4(\mathbf{N}_d^*)_{ds} (\mathbf{N}_d)_{sd} \Bigg[1 + \frac{6m_K^2}{(m_s + m_d)^2} \Bigg(\frac{1}{m_I^2} + \frac{c_{\beta - \alpha}^2}{m_h^2} + \frac{s_{\beta - \alpha}^2}{m_H^2} \Bigg) \Bigg] \Bigg\}
$$

The mass matrices labelled "5" exhibit an isolated non-zero entry in a given row and column, which coincides with the mass of a fermion translating into:

$$
5^{\underbar{\textbf{d}}\textbf{u},e}: \mathbf{N}_{\underbar{\textbf{d}}\textbf{u},e} \sim \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & \times \\ 0 & \times & \times \end{pmatrix}, \; 5^{\underbar{\textbf{s}}\textbf{c},\mu}: \mathbf{N}_{\underbar{\textbf{s}}\textbf{c},\mu} \sim \begin{pmatrix} \times & 0 & \times \\ 0 & \times & 0 \\ \times & 0 & \times \end{pmatrix}, \; 5^{b,t,\tau}: \mathbf{N}_{b,t,\tau} \sim \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}
$$

To directly observe the effect of flavour symmetries, consider the NP contribution to the matrix element that contributes to the $\overline{K}_0 \rightarrow K_0$ transition:

$$
M_{21}^{\rm NP} = \frac{f_k^2 m_K}{96v^2} \Bigg\{ \left[(\mathbf{N}_d)^2_{ds} + (\mathbf{N}_d)^2_{sd} \right] \frac{10m_k^2}{(m_s + m_d)^2} \left(\frac{1}{m_I^2} - \frac{c_{\beta - \alpha}^2}{m_h^2} - \frac{s_{\beta - \alpha}^2}{m_H^2} \right) + 4(\mathbf{N}_d)^2 \Big(\mathbf{N}_d \Big[1 + \frac{6m_K^2}{(m_s + m_d)^2} \left(\frac{1}{m_I^2} + \frac{c_{\beta - \alpha}^2}{m_h^2} + \frac{s_{\beta - \alpha}^2}{m_H^2} \right) \Big] \Bigg\}
$$

The mass matrices labelled "5" exhibit an isolated non-zero entry in a given row and column, which coincides with the mass of a fermion translating into:

$$
5^{\underbar{\textbf{d}}\textbf{u},e}: \mathbf{N}_{\underbar{\textbf{d}}\textbf{u},e} \sim \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & \times \\ 0 & \times & \times \end{pmatrix}, \; 5^{\underbar{\textbf{s}}\textbf{c},\mu}: \mathbf{N}_{\underbar{\textbf{s}}\textbf{c},\mu} \sim \begin{pmatrix} \times & 0 & \times \\ 0 & \times & 0 \\ \times & 0 & \times \end{pmatrix}, \; 5^{b,t,\tau}: \mathbf{N}_{b,t,\tau} \sim \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}
$$

To directly observe the effect of flavour symmetries, consider the NP contribution to the matrix element that contributes to the $\overline{K}_0 \rightarrow K_0$ transition:

$$
M_{21}^{\text{NP}} = \frac{f_k^2 m_K}{96v^2} \Bigg\{ \left[(\mathbf{N}_d)^2_{ds} + (\mathbf{N}_d)^2_{sd} \right] \frac{10m_k^2}{(m_s + m_d)^2} \Bigg(\frac{1}{m_l^2} - \frac{c_{\beta - \alpha}^2}{m_h^2} - \frac{s_{\beta - \alpha}^2}{m_H^2} \Bigg) + 4(\mathbf{N}_d)_{ds} (\mathbf{N}_d)_{sd} \Bigg[1 + \frac{6m_K^2}{(m_s + m_d)^2} \Bigg(\frac{1}{m_l^2} + \frac{c_{\beta - \alpha}^2}{m_h^2} + \frac{s_{\beta - \alpha}^2}{m_H^2} \Bigg) \Bigg] \Bigg\}
$$

\n
$$
\Bigg\{ \frac{\Delta m_K^{\text{NP}} = 2|M_{21}^{\text{NP}}| = 0 \qquad \varepsilon_K = \varepsilon_K^{\text{SM}} - \frac{\text{Im}(M_{21}^{\text{NP}} \mathbf{X}_u^2)}{\sqrt{2} \Delta m_K |\lambda_u|^2}
$$

\nThe two constraints associated with K^0 are **inherently satisfied** for d or s decoupled

Yukawa perturbativity bounds

$$
\tan^2 \beta \le \frac{2\pi v^2}{|\left(\mathbf{M}_1^x\right)_{ij}|^2} - 1, \quad \tan^2 \beta \ge 1/\left(\frac{2\pi v^2}{|\left(\mathbf{M}_2^x\right)_{ij}|^2} - 1\right)
$$

Thus, $tan \beta$ finds its upper and lower bounds determined by the maximum value of $|(M_1^x)_{ij}|$ and $|(M_2^x)_{ij}|$.

Yukawa perturbativity bounds

$$
\tan^2 \beta \le \frac{2\pi v^2}{|\left(\mathbf{M}_{1}^x\right)_{ij}|^2} - 1, \quad \tan^2 \beta \ge 1/\left(\frac{2\pi v^2}{|\left(\mathbf{M}_{2}^x\right)_{ij}|^2} - 1\right)
$$

Thus, tan β finds its upper and lower bounds determined by the maximum value of $|(M_1^x)_{ij}|$ and $|(M_2^x)_{ij}|$.

Lepton sector constraints

We only consider the lepton model $(5^e_1, 2^\nu_3)_{\rm NO}$, as the conclusions do not differ with a more detailed analysis.

The only exception is for the $(5^d_1, \mathbf{P}_{123}4^u_3 \mathbf{P}_{12})$ model.

Yukawa perturbativity bounds

$$
\tan^2 \beta \le \frac{2\pi v^2}{|\left(\mathbf{M}_{1}^x\right)_{ij}|^2} - 1, \quad \tan^2 \beta \ge 1/\left(\frac{2\pi v^2}{|\left(\mathbf{M}_{2}^x\right)_{ij}|^2} - 1\right)
$$

Thus, tan β finds its upper and lower bounds determined by the maximum value of $|(M_1^x)_{ij}|$ and $|(M_2^x)_{ij}|$.

Lepton sector constraints

We only consider the lepton model $(5^e_1, 2^\nu_3)_{\rm NO}$, as the conclusions do not differ with a more detailed analysis.

The only exception is for the $(5^d_1, \mathbf{P}_{123}4^u_3 \mathbf{P}_{12})$ model.

Most restrictive constraints

Only some constraints shape the allowed region (tan β , { $m_H = m_I = m_{H^{\pm}}$ }), which we refer to as the **most restrictive constraints**.

$$
\mathbf{N}_t \sim \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}
$$

$$
\mathbf{N}_t \sim \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}
$$

None of the most restrictive constraints are automatically satisfied.

$$
N_t \sim \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}
$$

u, c
...
...
None of the most
restrictive constraints
are automatically
satisfied.

The decoupled state could be picked to satisfy some constraints, for example

This model highlights the effectiveness of Abelian flavour symmetries in aligning theoretical frameworks with highly constrained experimental observations.

Summary and outlook

Work done:

- Study of the theoretical framework of the **minimal U(1) 2HDM for flavour**;
- Identification of the **maximally-restrictive pairs of quark and lepton mass matrices** compatible with current masses, mixing and CP violation data;
- Lepton sector **predictions**;
- **Phenomenological study** (analytical and numerical) of the quark and charged lepton sectors.

Summary and outlook

Work done:

- Study of the theoretical framework of the **minimal U(1) 2HDM for flavour**;
- Identification of the **maximally-restrictive pairs of quark and lepton mass matrices** compatible with current masses, mixing and CP violation data;
	- Lepton sector **predictions**;

Phenomenological study (analytical and numerical) of the quark and charged lepton sectors.

Abelian flavour symmetries in the 2HDM stand out as a simplest approach in addressing the flavour puzzle, leading to minimal quark and lepton models that are predictive

Summary and outlook

Work done:

- Study of the theoretical framework of the **minimal U(1) 2HDM for flavour**;
- Identification of the **maximally-restrictive pairs of quark and lepton mass matrices** compatible with current masses, mixing and CP violation data;
	- Lepton sector **predictions**;

Phenomenological study (analytical and numerical) of the quark and charged lepton sectors.

Abelian flavour symmetries in the 2HDM stand out as a simplest approach in addressing the flavour puzzle, leading to minimal quark and lepton models that are predictive

Thank you !