Exotic Higgs decay: $h \rightarrow Za$ into two muons and two taus

J.M. No, C. Ramos, <u>R.M. Sandá Seoane</u>, J. Zurita

Extended Scalar Sectors From All Angles, CERN October 21, 2024

Why exotic Higgs decays (EHD)?

- EHD are Higgs decays are among the most promising areas to search for new physics.

- The symmetric decay $h \rightarrow aa$ $(h \rightarrow XX)$ have received the most attention so far.
- Although less explored, the asymmetric decay $h \rightarrow Za$ is being investigated, especially for $a \rightarrow \ell \ell$ and $a \rightarrow \gamma \gamma$ final states. LH [2002.12220]

• The Higgs measurements of the Higgs opens space for its decay into BSM states. Curtin et al, [1312.4992]; Cepeda et al [2111.12751]

• The HL-LHC would be able to constraint $BR(h \rightarrow X) \gtrsim 2.5 \%$ through a global fit to Higgs data. Cepeda et al [1902.00134]

Draper et al [1204.1061], Davoudiasl et al [2105.05866], ATLAS [2110.13673, 1802.03388]

Why $h \to Za, Z \to 2\mu, a \to 2\tau$?

- Experimental searches focus on $a \rightarrow \mu\mu$ since it is a cleaner final state; CMS [2111.01299], ATLAS [2110.13673, 1802.03388]
- However, for concrete models like ALPs or 2HDM+a, Bauer et al [1701.07427], Brivio et al [1701.05379]

$$\frac{BR(a \to \mu\mu)}{BR(a \to \tau\tau)} \approx \frac{m_{\mu}^2}{m_{\tau}^2} \approx 3.6 \times$$

- Even considering that the τ final state is less clean, it could yield a larger sensitivity.
- $a \rightarrow \tau \tau$ is then a highly relevant channel for 3.5 GeV $\leq m_a \leq 33.9$ GeV.
- Vey preliminary study has been done for LH 2019^{*}. LH [2002.12220]

Vignaroli, S. L. Williamson, and J. Zurita.

 $\times 10^{-3}$.

* Work done by A. Bharucha, J. M. Butterworth, N. Desai, S. Gascon-Shotkin, S. Jain, A. Lesauvage, G. Moreau, S. Mutzel, J. M. No, J. Quevillon, C. Smith, K. Tobioka, N.

Related experimental searches

To better understand the proposed process, we first study two analysis involving similar features:

ATLAS at 13 TeV for $h \rightarrow Za \rightarrow 4\ell$

Limits on total cross section:

ATLAS [2110.13673]

CMS at 13 TeV with $h \rightarrow aa \rightarrow 2\mu 2\tau$.

Limits on BR for symmetric Higgs decay:

Study $pp \to h \to Za, Z \to 2\mu, a \to 2\tau$ for $m_a \leq 30$ GeV (on-shell region) in four possible reco-level final

states (same ones as the CMS search in $pp \rightarrow h \rightarrow aa \rightarrow 2\mu 2\tau$):

- $\mu\mu + e\mu$:
- $\mu\mu + e\tau_h$

Model-independent simplified interpretation considering as free parameters m_a and $BR(h \rightarrow Za, a \rightarrow 2\tau)$:

 $N_s = \sigma(pp \to h) \times BR(Z \to 2\mu) \times BR(h \to Za, a \to 2\tau) \times \mathscr{L} \times \epsilon(m_a)$

- $\mu\mu + \mu\tau_h$
- $\mu\mu + \tau_h\tau_h$

Event Selection Criteria

Our event selection is based on both CMS and ATLAS analyses. We applied the following cuts on generated events for $pp \rightarrow h \rightarrow Za \rightarrow 2\mu 2\tau$ using MG5 + Pythia + Delphes:

- Muons: $p_T > 5$ GeV and $|\eta| < 2.4$
- Electrons: $p_T > 7$ GeV and $|\eta| < 2.5$
- Hadronically decaying taus (τ_h): $p_T > 18.5$ GeV and $|\eta| < 2.3$
- $\Delta R > 0.3$ (or $\Delta R > 0.4$ if the event has τ_h)
- Additional cuts on p_T fulfilling online and offline triggers in the related CMS search

6

Fvent Selection Criteria

- Events should have a pair of OS muons ($\mu\mu$) and OS tau candidates ($e\mu$, $e\tau_h$, $\mu\tau_h$, or $\tau_h\tau_h$);
- $2\mu + e\mu : m_{4\ell} < 110 \, \text{GeV}$
- $2\mu + e\tau_h \text{ or } 2\mu + \tau_h \mu$: $m_{4\ell} < 120 \text{ GeV}$
- $2\mu + 2\tau_h$: $m_{4\ell} < 130 \, {\rm GeV}$
- $m_{34} < m_{12}$ $50 \, {
 m GeV} < m_{12} < 106 \, {
 m GeV}$

Index 12: Z decayed particles

Index 34: a decayed particles

Important to keep broad window for higher values of m_a

Challenges

Extremely low efficiency to reconstruct au candidates:

tag_1: detector simulation, after recasting of CMS search. tag_2: adding CMS expected efficiency for tau-tagging for HL-LHC (special thanks to Maria Cepeda).

Cutflow for 200k MC events and $m_a = 20$ GeV (tag_2):

Cut	Events
OS pairs	1290
$\Delta R > 0.3(0.4)$	1116
$m_{4\ell} < 110/120/130~{ m GeV}$	547
$m_{34} < m_{12}$	537
$50 < m_{12} < 106 { m GeV}$	523

0.27 % of the events passed all cuts for this BP

We are only able to reconstruct masses above $\sim 14~{
m GeV}$

Kinematics

Invariant mass of the τ candidates (m_a) :

Invariant mass of the final state (m_h) :

Invariant mass of the OS pair of muons (m_Z) :

9

Considering for the signal: $N_s = \sigma(pp \rightarrow h) \times BR(Z)$

Signal + (irreducible) background:

Reducible backgrounds ($t\bar{t} + Z, Z + j, t\bar{t}, WZ, VVV$) are not expected to contribute much (to check).

$$Z \to 2\mu$$
 $\times BR(h \to Za, a \to 2\tau) \times \mathscr{L} \times \epsilon(m_a)$

Fixed values:

 $\sigma(pp \rightarrow h) = 52.17 \text{ pb} (\text{from HWG})$

 $BR(Z \to 2\mu) = 0.0337 \,(\text{SM})$

% of MC events after cuts:

 $pp \rightarrow 2\mu 2\tau : 0.01\%$

 $pp \rightarrow h \rightarrow 2\mu 2\tau : 0.14\%$

Model-independent expected 95 % CL exclusion limits (using m_{34} for Binned-Likelihood fit), and projected in m_a and $BR(h \rightarrow Za, a \rightarrow 2\tau)$ parameter space:

$r = BR(a \rightarrow \mu \mu)/BR(a \rightarrow \tau \tau)$ $a \rightarrow 2\tau$ limit (this work) limit MFV alp $(r = \frac{m_{\mu}^2}{m_{\tau}^2})$ limit r = 0.2 limit r= 1 HL-LHC global fit

 $a \rightarrow 2\mu$ ATLAS [2110.13673] 26 28 24 m_a [GeV]

Conclusions

$pp \rightarrow h \rightarrow Za, Z \rightarrow 2\mu, a \rightarrow 2\tau$ is a very promising channel for $m_a \leq 30$ GeV

- We successfully defined signal regions based in related CMS and ATLAS searches.
- We are only able to explore $m_a \gtrsim 14$ GeV due to reconstruction limitations.
- We set limits in a model-independent approach for $BR(h \rightarrow Za, a \rightarrow 2\tau)$ (bellow the expected limit for the global fit to all Higgs data, and more sensitive than $a \rightarrow 2\mu$ in most expected scenarios).

Next steps

- Verify reducible backgrounds ($t\bar{t} + Z, Z + j, t\bar{t}, WZ, VVV$).
- Try small variations in event selection criteria.
- Explore ML techniques to enhance discrimination between signal and background and improve sensitivity.
- Model-dependent interpretation (ALP framework and 2HDM+a).

Expected contribution from each final state:

1	5