

Universität Zürich^{UZH}

Associated production of Higgses in 2HDMs

S. Banik, GC, A. Crivellin, H. Haber - IN PREPARATION

Guglielmo Coloretti University of Zurich and Paul Scherrer Institut 21.10.2024

- 1. LHC di-photon excesses
- 2. Associated production at the LHC
- 3. Flavored aligned 2HDM (A2HDM)
- 4. CP violation and EDMs

Scalar sector

$$\mathcal{L} = +\mu^2 |\Phi|^2 - \lambda |\Phi|^4$$

- Minimality of the scalar sector of the SM not guaranteed theoretically
- Scalar extensions common to multiple NP models
- Electroweak (EW) scalars must play a sub-leading role in EW spontaneous symmetry breaking

Di-photon excesses

Guglielmo Coloretti

ASSOCIATED PRODUCTION OF HIGGSES IN 2HDMS

10

 10^{-2}

- ATLAS: $\gamma\gamma$ (1.7 σ)
- CMS: *γγ* (2.9 *σ*)
- CMS: $\overline{\tau}\tau$ (2.4 σ) (but not seen by ATLAS)

ATLAS Preliminary - Observed

s=13 TeV, 140 fb

<u>.</u> ש

<u> Weiglein</u> Weiglein

Malinauskas

Hints for New Physics at 152 GeV

No significant excess in **inclusive** γγ searches

137 fb⁻¹ (13 TeV)

Interesting excesses in $\gamma\gamma + X$ (X represents additional particles in the signal regions)

Associated production mechanism

6

³CMS

ATLAS: $H \rightarrow \gamma \gamma + X$

- ATLAS search for associated production with **full Run2 data**
- SM search for $H \rightarrow \gamma \gamma + X$ ($m_{\gamma \gamma} = 105-160$ GeV)
- 22 categories ($X = l, j, j_b, E_T^{miss}$...)

Target	Signal region	Detector level	Correlations	
High jet activity	4j	$n_j \ge 4$	-	
Top	$\ell b \ t_{ m lep}$	$n_{\ell} \ge 1, n_{b-\text{jet}} \ge 1$ $n_{\ell=e,\mu} = 1, n_{\text{jet}} = n_{b-\text{jet}} = 1$	-	
Lepton	$rac{2\ell}{1\ell}$	$ee, \mu\mu \text{ or } e\mu$ $n_{\ell} = 1, n_{t_{\text{had}}} = 0, n_{b-\text{jet}} = 0$	< 26%	
Tau	$1 au_{ m had}$	$n_{\ell} = 0, n_{\tau_{\text{had}}} = 1, n_{b-\text{jet}} = 0$	_	
$E_{\mathrm{T}}^{\mathrm{miss}}$	$\begin{array}{l} E_{\mathrm{T}}^{\mathrm{miss}} > 100 \ \mathrm{GeV} \\ E_{\mathrm{T}}^{\mathrm{miss}} > 200 \ \mathrm{GeV} \end{array}$	$E_{\mathrm{T}}^{\mathrm{miss}} > 100 \ \mathrm{GeV}$ $E_{\mathrm{T}}^{\mathrm{miss}} > 200 \ \mathrm{GeV}$	29%	

ATLAS

Excesses at $m_{\gamma\gamma} = 152 \text{ GeV}$

m_{γγ} [GeV]

Moriond 2024

Excesses at $m_{\gamma\gamma} = 152 \text{ GeV}$

Excesses at $m_{\gamma\gamma} = 152 \text{ GeV}$

NO excesses at $m_{\gamma\gamma}=152~{ m GeV}_{_{ m ATLAS}}$

Universität Zürich[™]

NO excesses at $m_{\gamma\gamma}=152~{ m GeV}_{_{ m ATLAS}}$

Associated production

Guglielmo Coloretti

(Asymmetric-) associated production

- Provides a yet unexplored window on new physics
- Additional particles required in the signal regions (on top of the decays of the NP candidate)

Additional particles required in the signal regions (on top of the decays of the NP candidate)

Reduced SM background and enhanced NP sensitivity

Provides a yet unexplored

window on new physics

Universität

Zürich^{uzi}

11

(Asymmetric-) associated production

ATLAS and CMS review

(Asymmetric-) associated production

ATLAS and CMS review

- Provides a yet unexplored window on new physics
- Additional particles required in the signal regions (on top of the decays of the NP candidate)
- Reduced SM background and enhanced NP sensitivity

(Asymmetric-) associated production

ATLAS and CMS review

- Provides a yet unexplored window on new physics
- Additional particles required in the signal regions (on top of the decays of the NP candidate)
- Reduced SM background and enhanced NP sensitivity

Real Higgs Triplet

Guglielmo Coloretti

Real Higgs Triplet

- $\mathsf{Br}ig(\Delta^0 o \gamma\gammaig) pprox 1\%$ preferred over SM by $pprox 4\sigma$
- SFOPT induced within our benchmark points [Bandyopadhyay et al.]

2ND PHD COMMITTEE MEETING

A2HDM & CP-violation

Guglielmo Coloretti

Associated production of Higgses

Tiny couplings to fermions

Tiny VEV

Alignment

Suppressed GF

Suppressed VBF/VH

Higgs/Flavor bounds

2HDMs and Drell-Yan

 $Y_{\Phi_{\rm NP}} \ll 1$ $\langle \Phi_{\rm SM} \rangle \approx v, \langle \Phi_{\rm NP} \rangle \ll 1$ Small mixing

[J. Haller, A. Hoecker et al.] Suppressed GF

Suppressed VBF/VH

Higgs/Flavor bounds

2HDMs and Drell-Yan

2HDMs and Drell-Yan

- Difficult to obtain sizable di-photon branching ratios with Z_2 symmetries (type I, type II, etc.)
- Composite Higgs? **Relaxing** Z₂ symmetries?

A2HDM

P. Tuzon, A. Pich

• Yukawa's of $\phi_1 \propto$ Yukawa's of $\phi_2 \Rightarrow$ NO FCNC $\mathcal{L}_Y = -\overline{Q}_L Y_d(\phi_1 + \zeta_d \phi_2) d_R - \overline{Q}_L Y_u(\tilde{\phi}_1 + \zeta_u^* \tilde{\phi}_2) u_R$ $-\overline{L}_L Y_\ell(\phi_1 + \zeta_\ell \phi_2) \ell_R + \text{h.c.}$ $\zeta_f \ll 1 \rightarrow \text{suppressed GF}$ (small mixing)

A2HDM

P. Tuzon, A. Pich

• Yukawa's of $\phi_1 \propto$ Yukawa's of $\phi_2 \Rightarrow$ NO FCNC $\mathcal{L}_Y = -\overline{Q}_L Y_d(\phi_1 + \zeta_d \phi_2) d_R - \overline{Q}_L Y_u(\tilde{\phi}_1 + \zeta_u^* \tilde{\phi}_2) u_R$ $-\overline{L}_L Y_\ell(\phi_1 + \zeta_\ell \phi_2) \ell_R + \text{h.c.}$ $\zeta_f \ll 1 \rightarrow \text{suppressed GF}_{\text{(small mixing)}}$ • No Z_2 symmetry imposed $\Rightarrow \lambda_6$ and λ_7 terms allowed

 $\mathcal{V} = \mathcal{V}_{Z_2} + [\lambda_6(\phi_1^{\dagger}\phi_1) + \lambda_7(\phi_2^{\dagger}\phi_2)]\phi_1^{\dagger}\phi_2 + \text{h.c.}$

A2HDM

[S. Banik, GC, A. Crivellin, H. Haber - IN PREPARATION]

Yukawa's of $\phi_1 \propto$ Yukawa's of $\phi_2 \implies$ **NO FCNC** $\mathcal{L}_Y = -\overline{Q}_L Y_d(\phi_1 + \zeta_d \phi_2) d_R - \overline{Q}_L Y_u(\tilde{\phi}_1 + \zeta_u^* \tilde{\phi}_2) u_R$ $-\overline{L}_L Y_\ell(\phi_1 + \zeta_\ell \phi_2)\ell_R + \text{h.c.}$ $\zeta_f \ll 1 \rightarrow \text{suppressed GF}$ (small mixing) No Z_2 symmetry imposed $\Rightarrow \lambda_6$ and λ_7 terms allowed $\mathcal{V} = \mathcal{V}_{Z_2} + \left[\underline{\lambda_6}(\phi_1^{\dagger}\phi_1) + \underline{\lambda_7}(\phi_2^{\dagger}\phi_2)\right]\phi_1^{\dagger}\phi_2 + \text{h.c.}$ $A/H \qquad A/H \qquad A/H$ $W^{\pm}/t/H^{\pm}$

Sizable Br $[H/A o \gamma \gamma]$ through H^\pm loop

ASSOCIATED PRODUCTION OF HIGGSES IN 2HDMS

A2HDM: CP-violation

[S. Banik, GC, A. Crivellin, H. Haber - IN PREPARATION]

 CP-violation of the model (Baryogenesis?)

Yukawa sector: $\zeta_u, \zeta_d, \zeta_\ell$ Scalar potential: $\lambda_5, \lambda_6, \lambda_7$

A2HDM: CP-violation

[S. Banik, GC, A. Crivellin, H. Haber - IN PREPARATION]

 CP-violation of the model (Baryogenesis?)

Yukawa sector: $\zeta_u, \zeta_d, \zeta_\ell$ Scalar potential: $\lambda_5, \lambda_6, \lambda_7$

• $\Re[\lambda_6] / \Im[\lambda_6]$ drives $Br[H / A \to \gamma\gamma]$

A2HDM: CP-violation

[S. Banik, GC, A. Crivellin, H. Haber - IN PREPARATION]

 CP-violation of the model (Baryogenesis?)

Yukawa sector: $\zeta_u, \zeta_d, \zeta_\ell$ Scalar potential: $\lambda_5, \lambda_6, \lambda_7$

- $\Re[\lambda_6] / \Im[\lambda_6]$ drives $Br[H / A \to \gamma\gamma]$
- Correlating $Br[A \rightarrow \gamma \gamma]$ with EDMs?

$$i d_f \overline{q} \sigma^{\mu\nu} p_{\mu} \gamma_5 q \subset$$

Higgs basis

• Higgs-flavor symmetry: $U(2)_{ab}\Phi_a = \Phi_b$

•
$$\langle \Phi_1 \rangle = v, \langle \Phi_2 \rangle = 0 ; \lambda_i \iff Z_i$$

Suppressed VBF / VH (small mixing)

• Explicit treatment of CP-violation $\Im(Z_5^*Z_6^2) = \Im(Z_5^*Z_7^2) = \Im(Z_6^*Z_7) = 0$

 Z_7 (λ_6) independent of mixing angles

$$\mathcal{M}_{hHA}^2 = v^2 \begin{pmatrix} Z_1 & \Re(Z_6) & -\Im(Z_6) \\ \Re(Z_6) & \frac{1}{2}[Z_{34} + \Re(Z_5)] & -\frac{1}{2}\Im(Z_5) \\ \Im(Z_6) & -\frac{1}{2}\Im(Z_5) & \frac{1}{2}[Z_{34} - \Re(Z_5)] \end{pmatrix}$$

EDMs

- Electron gives stringent bounds (10⁻³⁰ e cm⁻¹)
- Projection for neutron and proton are also considered (10⁻²⁸/10⁻²⁹ e cm⁻¹)

$$d_n = + (0.78 \pm 0.03)d_d - (0.20 \pm 0.01)d_u - e(1.1 \pm 0.55)\tilde{d}_d - e(0.55 \pm 0.28)\tilde{d}_u) + e(50 \pm 40) \text{ MeV } d_G$$

 RGE improved chromomagnetic contributions

• Analytic results

W. Altmannshofer, S. Gori, N. Hamer, H. Patel

A2HDM: $A_{152} \rightarrow \gamma \gamma$

[S. Banik, GC, A. Crivellin, H. Haber - IN PREPARATION]

m	h	H	A	H^{\pm}	ATLAS
[GeV]	125	200	152	130	-

• $\zeta_u = \zeta_d = \zeta_\ell = \zeta_f \in \mathbb{R}$

•
$$\theta_{12} = 10^{-3}$$

 $\theta_{13} = \theta_{23} = 10^{-2}$

•
$$Z_2 = -Z_3 = 0.2$$

- $\Re[Z_7] = 0.1$
- HiggsTools, perturbativity, vacuum stability

A2HDM: $A_{152} \rightarrow \gamma \gamma$

0.4
0.1%
$$< \operatorname{Br}[A \to \gamma\gamma] \leq 0.5\%$$

0.5% $< \operatorname{Br}[A \to \gamma\gamma] \leq 1\%$
1% $< \operatorname{Br}[A \to \gamma\gamma] \leq 4\%$
 $|d_e| \leq 4.1 \times 10^{-30} e \operatorname{cm}$
 $|d_p| \leq 10^{-29} e \operatorname{cm} (\operatorname{prospect})$
 $|d_n| \leq 10^{-28} e \operatorname{cm} (\operatorname{prospect})$
 $\zeta_f \ll 1, \theta_{ij} \ll 1$
 $\Rightarrow \mathsf{DY} \operatorname{production}$
 $Q_{-2} \qquad -1 \qquad 0 \qquad 1$
 $\Im[Z_7]$

[S. Banik, GC, A. Crivellin, H. Haber - IN PREPARATION]

m	h	H	A	H^{\pm}	ATLAS
[GeV]	125	200	152	130	-

$$\zeta_u = \zeta_d = \zeta_\ell = \zeta_f \in \mathbb{R}$$

•
$$\theta_{12} = 10^{-3}$$

 $\theta_{13} = \theta_{23} = 10^{-2}$

•
$$Z_2 = -Z_3 = 0.2$$

- $\Re[Z_7] = 0.1$
- HiggsTools, perturbativity, vacuum stability

A2HDM: $A_{95} \rightarrow \gamma \gamma$, $H_{98} \rightarrow bb$

[S. Banik, GC, A. Crivellin, H. Haber - IN PREPARATION]

Universität

Zürich

A2HDM: $A_{95} \rightarrow \gamma \gamma$, $H_{98} \rightarrow bb$

[S. Banik, GC, A. Crivellin, H. Haber - IN PREPARATION]

m	h	H	A	H^{\pm}	ATLAS
[GeV]	125	98	95	130	

Gluon fusion contribution: $\zeta_d = \zeta_\ell = 0, \ \zeta_u \in \mathbb{R}$

$$\begin{split} \theta_{12} &= 0.25 \; (\mu^{\text{LEP}}_{b \, \overline{b}, 98}) \\ \theta_{13} &= 10^{-2}, \theta_{23} = 3 \times 10^{-2} \end{split}$$

•
$$Z_2 = -Z_3 = 0.2$$

•
$$\Re[Z_7] = 0.1$$

HiggsTools, perturbativity, vacuum stability

$t\bar{t}$ distributions as a probe for NP

ATLAS

23

95 GeV and 152 GeV excesses?

- S_{95} : SM singlet mostly decaying to $b\overline{b}$
- Δ⁰: real Higgs triplet mostly decaying to WW

Consistent with the 95 GeV $\gamma\gamma$ signal strength and a mass for Δ^0 of 152 GeV

23

Conclusions and Outlook

- Asymmetric associated production of scalars is a prominent signature to look for NP at the LHC
- A2HDM achieves sizable $Br[H/A \rightarrow \gamma \gamma]$ and can be correlated to EDMs (Baryogenesis?)
- A2HDM provides explanation of the diphoton excesses at 95 GeV and 152 GeV

24

Conclusions and Outlook

- Asymmetric associated production of scalars is a prominent signature to look for NP at the LHC
- A2HDM achieves sizable $Br[H/A \rightarrow \gamma \gamma]$ and can be correlated to EDMs (Baryogenesis?)
- A2HDM provides explanation of the diphoton excesses at 95 GeV and 152 GeV

BACK UP SLIDES

Guglielmo Coloretti

Drell-Yan production

New Higgses mostly produced via Drell-Yan at the LHC must have specific properties

Transform non-trivially under $SU(2)_L$

No direct (or tiny) Yukawa couplings

Have small vacuum expectation value

Small mixing with the SM Higgs boson Gauge interaction with SM fields

Suppressed gluon-fusion production

Suppressed VBF and VH production

Bounds from Higgs data

Minimal model

Is there a minimal model to explain the 152 excesses?

Real Higgs triplet

Is there a minimal model to explain the 152 excesses?

• Parameters
$$\rightarrow \langle \Delta \rangle = v_{\Delta}$$
, α_{Δ}

Real Higgs triplet

Real Higgs triplet

Real Higgs triplet

S. Banik, GC, A. Crivellin et al.

The Δ SM model

S. Banik, GC, A. Crivellin et al.

Guglielmo Coloretti

Fit:

S. Banik, GC, A. Crivellin et al.

$$f(m_{\Delta^0}$$
 , α , $m_{\Delta^\pm}-m_{\Delta^0}$, v_Δ ; ...)

For the fit, all parameters subsumed into single relevant phenomenological one $Br[\Delta^0 \to \gamma \gamma]$

(although explicit formulae used to compute, for instance, bounds on SM $h \rightarrow \gamma\gamma$)

Results: $\Delta^0 \rightarrow \gamma \gamma + X$

- $\mathsf{Br}(\Delta^0 o \gamma \gamma) pprox 1\%$ preferred over SM by $pprox 4\sigma$
- SFOPT induced within our benchmark points [Bandyopadhyay et al.]

Results: $\Delta^0 \rightarrow \gamma \gamma + X$

- $\mathsf{Br}(\Delta^0 o \gamma \gamma) pprox 1\%$ preferred over SM by $pprox 4\sigma$
- SFOPT induced within our benchmark points [Bandyopadhyay et al.]

S. Banik and A. Crivellin

Scalar potential

- Vacuum stability and perturbative unitarity in slight tension with other phenomenological observables
- Pointing to additional fields at or above the EW scale

Real Triplet: individual SRs

Real Triplet: individual SRs

3 and 4 – leptons bounds

[In prepation...]

 Multi-lepton searches with 3 and 4 leptons as final states are not excluding a real Higgs triplet at low masses

WW analysis

- No dedicated BSM search for $gg \rightarrow H \rightarrow WW$ with full luminosity and including 90 GeV for the range of m_H
- CMS and ATLAS analyses available for SM Higgs (135 ${
 m fb}^{-1}$)

WW results

• Observed limit is weaker than expected over the whole mass range (room for BSM $\geq 2\sigma$)

WW simulation efficiency

3.0 ATLAS • CMS $p_{T2} < 20 \text{ GeV}$ 2.5 $\blacksquare \text{ CMS } p_{T2} > 20 \text{ GeV}$ 2.0 $\epsilon/\epsilon_{_{
m SM}}$ 1.5 1.0 0.5 0.0 140 200 100 120 160 180 m_H [GeV]

2HDM Type-I: Results

S. Banik and A. Crivellin

2HDMs: flavor bounds

A2HDM: flavor bounds

Guglielmo Coloretti

2HDMs: EW precision

A2HDM: EW precision

FCC-ee prospects

FCC feasibility Mid-term report -

Scalars produced in associated production via DY are a prominent candidate for FCC-ee

FCC-ee

- 16 years, 4 IPs
- Flexibility in the run scenario: in order and operation periods.
 - Additional runs, e.g. 125GeV possible
- Stringent experimental requirements

	Working point	Z, years $1-2$	Z, later	WW, years $1-2$	WW, later	ZH	tī	
integrated luminosity per year summed over 4 IPs corresponding to 185 days of physics per year and 76% officiency	$\sqrt{s} \; (\text{GeV})$	88, 91, 94		157, 163		240	340-350	365
	Lumi/IP $(10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	70	140	10	20	5.0	0.75	1.20
	Lumi/year (ab^{-1})	34	68	4.8	9.6	2.4	0.36	0.58
	Run time (year)	2	2	2		3	1	4
all the data of LEP1 in minutes	Number of events	6×10^{12} 7		$9.4 \times 10^8 \text{ WW}$		$1.45 \times 10^6 \mathrm{ZH}$	$1.9 \times 10^6 t\bar{t}$	
	Number of events	0 × 10 - Z		2.4 × 10° W W		$45k \text{ WW} \rightarrow \text{H}$	+30k ZH $+80k WW \rightarrow H$	
	Pahara Gonzalez Suarez // III N- PSI Particle Physics Summer School 2024							

Rebeca Gonzalez Suarez (UU) - PSI Particle Physics Summer School 2024

FCC-ee prospects

 Scalars produced in associated production via DY are a prominent candidate for FCC-ee

Real triplet at the FCC-ee

- Only Z^*/γ^* s-channel
- Suppressed $\Delta^0 \Delta^0$ production for a real triplet
- Pair production of the charged components

$6\ell + 2\nu$ at the FCC-ee

• The decay $\Delta^{\pm} \rightarrow W^{\pm}Z$ leads to a 6 ℓ (+ MET) signature

- Log-Likely-hood ratio yields $\chi^2 \approx 80$
- $\sigma(e^+e^- \rightarrow \Delta^{\pm} \Delta^{\mp})$ could be measured at $\approx 9\sigma$

