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We know that if the baryon asymmetry of the Universe was generated 
before the electroweak phase transition, then all particles in the SM 
but  had different numbers of particles than antiparticles:W±
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models in the literature are either effective or rather convoluted
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The Issue & the Goals
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2) Link the Dark Matter abundance to the baryon asymmetry of the 
Universe

1) Can we do it with a minimal set of ingredients?

Asymmetric Dark Matter has been studied in depth but most 
models in the literature are either effective or rather convoluted

Why scalars?
The Higgs has an asymmetry (2) and since 
it is a scalar it can allow for renormalizable 
interactions (1)!

Use something that we know should be there (from e.g. 
Thermal Leptogenesis) and employ mechanisms that we know 
operate in the early Universe (thermal freeze-out) 

Why could this be interesting? 
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Outline

4

Early Universe evolution in the presence of asymmetries 

Minimal ingredients for an Asymmetric Dark Matter model

A minimal realization with only two new fields BSM

Its phenomenology in 2 slides

 symmetry 
scalar singlet dark matter 
new dark Higgs doublet

Z4
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WIMP freeze-out
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Thermal Freeze-out
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proton-antiproton 
freeze-out 
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- Key requirement for dark matter:

- No antiparticles today

abundance dictated solely 
by the primordial asymmetry

Annihilation cross section larger than for a WIMP ⟨σv⟩ > ⟨σv⟩WIMP

B B̄ B B̄
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Asymmetry Transfer

7

One needs to connect the Standard Model asymmetries to the dark sector

Renormalizable 
operators:

Boltzmann equations and its phenomenology. We also briefly discuss what changes if one considers
the second interaction. We conclude in Section 10.))))

3 Equilibration of SM asymmetries with a dark matter asymmetry

Prior to the electroweak phase transition, all SM interactions thermalize. This also holds for the
weakest perturbative SM interaction, i.e. the electron Yukawa interaction for T ↭ 106 GeV, as well
as for the non-perturbative electroweak sphalerons. [ME: I think at this point it would be
good to list the chemical potentials in the SM species.] Modulo the conservation of the 3
B → Li, Y and Q quantum numbers this means that all SM particle chemical potential are related
(but the W

± one, which vanishes, see [6]). As a result any SM particle asymmetry produced at
a high scale would result in a asymmetry for all SM fermions particles as well as for the Higgs
doublet. In particular a high scale leptogenesis induced lepton asymmetry of a given flavor and L or
R chirality, results in a lepton asymmetry of both chirality for all SM fermion flavor, as well as in B
and H asymmetries. A single in-equilibrium additional interaction involving new field(s) including
the DM field and SM field(s) can thus straigthforwardelly lead to a DM asymmetry. To this end
the conditions that such an interaction must fulfill are quite simple:

• an DM-SM asymmetry equilibrium interaction must involve a non self-conjugated combination
of SM field(s)

• similarly it must involve the DM field in a non self conjugated combination

• it can also involve additional BSM fields. DM stability requires that the number of BSM fields,
including the DM one, is at least 2.1 DM must be charged under a stabilizing symmetry (for
instance a discrete symmetry such as a Z2 symmetry or a global or local continuous symmetry).
Neutrality of DM requires that one of these new BSM fields has a neutral component.

For instance if we limit ourselves to renormalizable equilibrating interactions there are quite a few
(((check)))

L : LH
→
N, Lωεd, LH

→! ,

l : lωN, lH
→
εd ,

H : HεdN,HH
→
ω, HH

→”, HH
→
ωω

→
, HH

→
H

→→
H

→→→
, HH

→”ω , HH
→””→

, Hεd! ,

HH : HHH
→
H

→→
, HH”ω, HH””→

, (3)

This list of 16 ”renormalizable equilibration portals” is fully general when we limit ourselves, as we
will do, to representations of SU(2)L up to a triplet. L, l,H are the SM lepton doublet, lepton singlet
and scalar doublet. N , εd and ! stand for BSM SM fermion singlet, doublet and triplet of SU(2)L.
ω,ω

→, H →
, H

→→
, H

→→→ and ”,”→ stand for BSM scalar singlet(s), doublet(s) and triplet(s) (which may
be identical when several same multiplets are involved). The hypercharges of the various new fields
is assumed to be anyones which give a vanishing sum in the interaction. At the non-renormalizable
level the list is much longer and we will not determine it. For instance the following operators have
been considered in previous setups, N2(LH)2 [1], ω2(LH)2 [2], N3(LH) [2], ε2

H
2 [3], #2

H
2 (with

# a scalar multiplet) [4].

1
If the equilibration interaction involves only one DM field on top of SM fields, the equilibrating interaction will in

general cause a too fast DM decay into SM particles. A very tiny equilibrating interaction leading to a slow enough

DM decay is not an option, as it would not cause any sizeable equilibration between SM and DM asymmetries.

5

does not work:
ℒ = λ |ϕ |2 |H |2

ϕϕ̄ ↔ HH̄

works
ℒ = λ5(H†H′ )2

HH ↔ H′ H′ 
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Take λ5(H†H′ )2

if  then there is a thermal dark Higgs 
Asymmetry

λ5 ≳ 10−5

does not work:
ℒ = λ |ϕ |2 |H |2

ϕϕ̄ ↔ HH̄

works
ℒ = λ5(H†H′ )2

HH ↔ H′ H′ 
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Typical Dark Matter Abundance
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Take a dark matter particle that couples in a non-self conjugated way 
to the Higgs and remains in thermal equilibrium with it until TEW

Linear scaling with mass Exponential 
Boltzmann 
suppression

m ∼ 𝒪(10) GeV

m ∼ 𝒪(1) TeV
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1) Define a good enough symmetry in the Dark Sector (note that 
usual Z2 symmetries for WIMPs will not actually work) m2

ϕϕ2 + m2
ϕ̄ϕ̄2
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2) Find a least one particle coupled under both the DS and the SM 
and write down a non-self conjugated portal to the SM

3) For the dark matter to have an asymmetry dominated by the 
symmetric component one needs to a strong enough symmetric 
depletion portal

Previous studies:
Cohen & Zurek [0909.2035]  Ibe, Matsumoto & Yanagida [1110.5452] Servant & Tullin 
[1304.3464] Boucenna, Krauss & Nardi [1503.01119]  Dhen & Hambye [1503.03444]

1) Define a good enough symmetry in the Dark Sector (note that 
usual Z2 symmetries for WIMPs will not actually work) m2

ϕϕ2 + m2
ϕ̄ϕ̄2
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2) Find a least one particle coupled under both the DS and the SM 
and write down a non-self conjugated portal to the SM

3) For the dark matter to have an asymmetry dominated by the 
symmetric component one needs to a strong enough symmetric 
depletion portal
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Cohen & Zurek [0909.2035]  Ibe, Matsumoto & Yanagida [1110.5452] Servant & Tullin 
[1304.3464] Boucenna, Krauss & Nardi [1503.01119]  Dhen & Hambye [1503.03444]

1) Define a good enough symmetry in the Dark Sector (note that 
usual Z2 symmetries for WIMPs will not actually work) m2

ϕϕ2 + m2
ϕ̄ϕ̄2

Our model: (H†H′ ) New dark Higgs doublet H′ 
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1) Define a good enough symmetry in the Dark Sector (note that 
usual Z2 symmetries for WIMPs will not actually work) m2

ϕϕ2 + m2
ϕ̄ϕ̄2

Our model: (H†H′ ) New dark Higgs doublet H′ 

Our model:
Z4

[ϕ] = i
[H′ ] = − 1

ℒ = λϕϕH†H′ + λ5(H†H′ )2

 local (killed by DD as there is tree level mass mixing)
 global (killed by star cooling (axion))

U(1)X
U(1)X

DM:
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1) Define a good enough symmetry in the Dark Sector (note that 
usual Z2 symmetries for WIMPs will not actually work) m2

ϕϕ2 + m2
ϕ̄ϕ̄2

Our model: (H†H′ ) New dark Higgs doublet H′ 

Our model:
Z4

[ϕ] = i
[H′ ] = − 1

ℒ = λϕϕH†H′ + λ5(H†H′ )2

 local (killed by DD as there is tree level mass mixing)
 global (killed by star cooling (axion))

U(1)X
U(1)X

DM:

Our model: ℒ = λP |ϕ |2 |H |2 The good old Higgs portal
ϕϕ̄ → HH̄
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Relevant processes in the EU
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Deep into thermal equilibrium

Resulting asymmetry arises from small 
departures from thermal equilibrium 

ℒ = λϕϕH†H′ + λ5(H†H′ )2
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Thank You!


