Robustness of the indirect Higgs width determination

Panagiotis Stylianou Work in progress in collaboration with Georg Weiglein

Extended Scalar Sectors From All Angles - CERN

24 October 2024

- Measuring the couplings of the 125-GeV Higgs boson to SM particles → one of the main goals of LHC
- But the couplings are not directly accessible, experiments measure signal strengths
- When Higgs bosons are produced on-shell the signal strength depends on the total decay width of the Higgs

$$\mu_{\rm on}(gg \to H \to ZZ) = \frac{\sigma(gg \to H) {\rm BR}(H \to ZZ \to 4\ell)}{\sigma_{\rm SM}(gg \to H) {\rm BR}_{\rm SM}(H \to ZZ \to 4\ell)} {\rm K}_{\mu}$$
$$= \frac{\kappa_{g,\rm on}^2 \kappa_{Z,\rm on}^2}{\Gamma_H / \Gamma_H^{\rm SM}}$$

- Measuring the couplings of the 125-GeV Higgs boson to SM particles \rightarrow one of the main goals of LHC
- But the couplings are not directly accessible, experiments measure signal strengths
- When Higgs bosons are produced on-shell the signal strength depends on the total decay width of the Higgs

$$\mu_{\rm on}(gg \to H \to ZZ) = \frac{\sigma(gg \to H) \mathrm{BR}(H \to ZZ \to 4\ell)}{\sigma_{\rm SM}(gg \to H) \mathrm{BR}_{\rm SM}(H \to ZZ \to 4\ell)} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\mu} \end{bmatrix}$$
$$= \frac{\kappa_{g,\mathrm{on}}^2 \kappa_{Z,\mathrm{on}}^2}{\Gamma_H / \Gamma_H^{\rm SM}} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\tau} \\ \kappa_{\tau} \end{bmatrix} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\tau} \\ \kappa_{\tau} \\ \kappa_{\tau} \end{bmatrix} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\tau} \end{bmatrix} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\tau} \end{bmatrix} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\tau} \\ \kappa_{\tau} \end{bmatrix} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\tau} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\tau} \end{bmatrix} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\tau} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\tau} \end{bmatrix} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\tau} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\tau} \end{bmatrix} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\tau} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\tau} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\tau} \end{bmatrix} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\tau} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \kappa_{\tau}$$

DESY. Panagiotis Stylianou | CERN 2024 | 24/10/24

CMS 95%CL direct limit:

 κ_W

 κ_{Z}

 κ_{γ}

 κ_{g}

κ_t

 κ_{b}

[CMS 2409.13663]

Direct limits on the Higgs width are orders of magnitude weaker than the **SM prediction**

- Measuring the couplings of the 125-GeV Higgs boson to SM particles \rightarrow one of the main goals of LHC
- But the couplings are not directly accessible, experiments measure signal strengths
- When Higgs bosons are produced on-shell the signal strength depends on the total decay width of the Higgs

$$\mu_{\rm on}(gg \to H \to ZZ) = \frac{\sigma(gg \to H) \mathrm{BR}(H \to ZZ \to 4\ell)}{\sigma_{\rm SM}(gg \to H) \mathrm{BR}_{\rm SM}(H \to ZZ \to 4\ell)} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\mu} \end{bmatrix}$$
$$= \frac{\kappa_{g,\mathrm{on}}^2 \kappa_{Z,\mathrm{on}}^2}{\Gamma_H / \Gamma_H^{\rm SM}} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\tau} \\ \kappa_{\tau} \end{bmatrix} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\tau} \\ \kappa_{\tau} \\ \kappa_{\tau} \end{bmatrix} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\tau} \end{bmatrix} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\tau} \end{bmatrix} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\tau} \\ \kappa_{\tau} \end{bmatrix} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\tau} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\tau} \end{bmatrix} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\tau} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\tau} \end{bmatrix} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\tau} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\tau} \end{bmatrix} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\tau} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\tau} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\tau} \end{bmatrix} \begin{bmatrix} \kappa_{\tau} \\ \kappa_{\tau} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \kappa_{\tau}$$

DESY. Panagiotis Stylianou | CERN 2024 | 24/10/24

CMS 95%CL direct limit:

 κ_W

 κ_{Z}

 κ_{γ}

 κ_{g}

κ_t

 κ_{b}

Direct limits on the Higgs width are orders of magnitude weaker than the **SM prediction**

DESY. Panagiotis Stylianou | CERN 2024 | 24/10/24

			1	1	
arks	3				
~					
				-	
_					
S					
					_
igs l	20	S(Эľ	7	
<u> </u>		1			
H	1				
					_
					_
$v_{v} \leq$	1				
V					_
+ al			~	Ы	
ત વા	10	VV	e	u	
					-
		-	-	-	
	-	1			
					. 1
	-	-	-	1	_
1 (R				
1.1	0				
1					. 1
. In	Te	Э	n	ľ	aı
1			-	-	
	_	_	_	-	
0.2					
0.4					
~					
(C)		li	ľ	n	iŤ.
\sim				- 1	1.6

Indirect off-shell width measurement

- Off-shell cross section of $gg \rightarrow H \rightarrow VV$ enhanced by threshold effects [Kauer, Passarino `12]
- Can be exploited to measure the Higgs width Γ_H [Caola, Melnikov `13]
- Requires assumption $\kappa_{i,\text{off}} = \kappa_{i,\text{on}}$
- [CMS 2202.06923] Measured by CMS & ATLAS [ATLAS 2304.01532]

DESY. Panagiotis Stylianou | CERN 2024 | 24/10/24

$$\mu_{\rm on}(gg \to H \to ZZ) = \frac{\sigma(gg \to H) \text{BR}(H \to ZZ \to Z)}{\sigma_{\rm SM}(gg \to H) \text{BR}_{\rm SM}(H \to ZZ \to Z)}$$
$$= \frac{\kappa_{g,\rm on}^2 \kappa_{Z,\rm on}^2}{\Gamma_H / \Gamma_H^{\rm SM}}$$
$$\mu_{\rm off}(gg \to H \to ZZ) = \frac{\sigma(gg \to H \to ZZ)}{\sigma_{\rm SM}(gg \to H \to ZZ)}$$
$$= \kappa_{g,\rm off}^2 \kappa_{Z,\rm off}^2$$

Indirect off-shell width measurement

DESY. Panagiotis Stylianou | CERN 2024 | 24/10/24

$$\mu_{on}(gg \to H \to ZZ) = \frac{\sigma(gg \to H)BR(H \to ZZ \to 4)}{\sigma_{SM}(gg \to H)BR_{SM}(H \to ZZ \to 4)}$$
$$= \frac{\kappa_{g,on}^2 \kappa_{Z,on}^2}{\Gamma_H / \Gamma_H^{SM}}$$
$$\mu_{off}(gg \to H \to ZZ) = \frac{\sigma(gg \to H \to ZZ)}{(1 \to ZZ)}$$
[Logan `14]
[Conçalves, Han, Mukhopadhyay `18]
exotic/undetected Higgs width but in
easurements?

 $\mu_{
m off} < 2.4 \quad \Gamma_H/\Gamma_H^{
m SM} < 2.6$

 $m_{ZZ} > 220 \text{ GeV}$

- Focus on off-shell $gg \to H \to ZZ$ with only top loop \implies relevant Higgs couplings: κ_t, κ_Z
- To allow for a larger Higgs width we need to **decrease** the off-shell rate

$$\mu_{\rm on} \simeq \frac{\kappa_t^2 \kappa_Z^2}{\Gamma_H / \Gamma_H^{\rm SM}} \simeq 1$$

Enhanced from exotic/undetected width

$$\mu_{\text{off}} \simeq \left(\kappa_t^2 \kappa_Z^2 + \text{ off-shell effects}\right) \le 2.4$$

- Focus on off-shell $gg \to H \to ZZ$ with only top loop \implies relevant Higgs couplings: κ_t, κ_Z
- To allow for a larger Higgs width we need to decrease the off-shell rate

Needs to increase to compensate
for an increased Higgs width

Enhanced from exotic/undetected width

- Focus on off-shell $gg \to H \to ZZ$ with only top loop \implies relevant Higgs couplings: κ_t, κ_Z
- To allow for a larger Higgs width we need to **decrease** the off-shell rate

Needs to increase to compensate for an increased Higgs width

Enhanced from exotic/undetected width

- Focus on off-shell $gg \to H \to ZZ$ with only top loop \implies relevant Higgs couplings: κ_t, κ_Z
- To allow for a larger Higgs width we need to **decrease** the off-shell rate

Needs to increase to compensate for an increased Higgs width

$$\mu_{\rm on} \simeq \frac{\kappa_t^2 \kappa_Z^2}{\Gamma_H / \Gamma_H^{\rm SM}} \simeq 1$$

Enhanced from exotic/undetected width

Allow deviations on κ_t , κ_Z and try to reduce off-shell rate by introducing scalars:

 \blacksquare Propagating BSM scalar $gg \rightarrow S \rightarrow ZZ$

- \blacksquare Modification of the Higgs gluon-fusion $gg \rightarrow H$ due to a BSM coloured scalar
- Modification the Higgs propagator with a scalar-singlet loop contribution

Simple extension with a scalar singlet coupled to top-quarks and Z boson:

$$\mathcal{L} \supset -\frac{C_{Stt}}{\sqrt{2}} \bar{t}St + \frac{y_t}{\sqrt{2}} \bar{t}St + \frac{y_t}{\sqrt$$

- Unitarity of $t\bar{t} \rightarrow ZZ$ channel requires the sum rule: [Logan `14] • $\kappa_t \kappa_Z + C_{Stt} C_{SZZ} = 1$
- Model implemented with FeynRules and NLOCT for \bullet simulations with MadGraph5_aMC@NLO

 $+\frac{C_{SZZ}}{4c_W^2 s_W^2} Z_\mu Z^\mu S$

Simple extension with a scalar singlet coupled to top-quarks and Z boson:

$$\mathcal{L} \supset -C_{Stt} \frac{y_t}{\sqrt{2}} \bar{t}St + C_{SZZ} \frac{e^2 v}{4c_W^2 s_W^2} Z_\mu Z^\mu S$$

- Unitarity of $t\bar{t} \rightarrow ZZ$ channel requires the sum rule: [Logan `14] ullet $\kappa_t \kappa_Z + C_{Stt} C_{SZZ} = 1$
- Model implemented with FeynRules and NLOCT for \bullet simulations with MadGraph5_aMC@NLO

$$d\sigma_{gg \to ZZ}(\kappa_t \kappa_Z, C_{Stt} C_{SZZ}) = d\sigma_{(0,0)} + \kappa_t \kappa_Z d\sigma_{(2,0)} + \kappa_t \kappa_Z d\sigma_{(2,0)} + \kappa_t \kappa_Z d\sigma_{(0,2)} + \kappa_t \kappa_Z d\sigma_{(0,$$

Parameterised cross section:

 $\kappa_t^2 \kappa_Z^2 d\sigma_{(4,0)}$ $\kappa_t \kappa_Z C_{Stt} C_{SZZ} d\sigma_{(2,2)}$

Simple extension with a scalar singlet coupled to top-quarks and Z boson:

$$\mathcal{L} \supset -C_{Stt} \frac{y_t}{\sqrt{2}} \bar{t}St + C_{SZZ} \frac{e^2 v}{4c_W^2 s_W^2} Z_\mu Z^\mu S$$

- Unitarity of $t\bar{t} \rightarrow ZZ$ channel requires the sum rule: [Logan `14] ullet $\kappa_t \kappa_Z + C_{Stt} C_{SZZ} = 1$
- Model implemented with FeynRules and NLOCT for \bullet simulations with MadGraph5_aMC@NLO

Parameterised cross section:

$$d\sigma_{gg \to ZZ}(\kappa_t \kappa_Z, C_{Stt} C_{SZZ}) = d\sigma_{(0,0)} + \kappa_t \kappa_Z d\sigma_{(2,0)} + \kappa_t \kappa_Z d\sigma_{(2,0)} + \kappa_t \kappa_Z d\sigma_{(0,2)} + \kappa_t \kappa_Z d\sigma_{(0$$

Simple extension with a scalar singlet coupled to top-quarks and Z boson:

$$\mathcal{L} \supset -C_{Stt} \frac{y_t}{\sqrt{2}} \bar{t}St + C_{SZZ} \frac{e^2 v}{4c_W^2 s_W^2} Z_\mu Z^\mu S$$

- Unitarity of $t\bar{t} \rightarrow ZZ$ channel requires the sum rule: [Logan `14] • $\kappa_t \kappa_Z + C_{Stt} C_{SZZ} = 1$
- Model implemented with FeynRules and NLOCT for \bullet simulations with MadGraph5_aMC@NLO

$$d\sigma_{gg \to ZZ}(\kappa_t \kappa_Z, C_{Stt} C_{SZZ}) = d\sigma_{(0,0)} + \kappa_t \kappa_Z d\sigma_{(2,0)} + \kappa_t \kappa_Z d\sigma_{(2,0)} + \kappa_t \kappa_Z d\sigma_{(0,2)} + \kappa_t \kappa_Z d\sigma_{(0,$$

Parameterised

cross section:

 $\kappa_t^2 \kappa_Z^2 d\sigma_{(4,0)}$ $\kappa_t \kappa_Z C_{Stt} C_{SZZ}$

Simple extension with a scalar singlet coupled to top-quarks and Z boson:

$$\mathcal{L} \supset -C_{Stt} \frac{y_t}{\sqrt{2}} \bar{t}St + C_{SZZ} \frac{e^2 v}{4c_W^2 s_W^2} Z_\mu Z^\mu S$$

- Unitarity of $t\bar{t} \rightarrow ZZ$ channel requires the sum rule: [Logan `14] • $\kappa_t \kappa_Z + C_{Stt} C_{SZZ} = 1$
- Model implemented with FeynRules and NLOCT for \bullet simulations with MadGraph5_aMC@NLO

$$d\sigma_{gg \to ZZ}(\kappa_t \kappa_Z, C_{Stt} C_{SZZ}) = d\sigma_{(0,0)} + \kappa_t \kappa_Z d\sigma_{(2,0)} + \kappa_t \kappa_Z d\sigma_{(2,0)} + \kappa_t \kappa_Z d\sigma_{(0,2)} + \kappa_t \kappa_Z d\sigma_{(0,$$

Parameterised

cross section:

 $\kappa_t^2 \kappa_Z^2 d\sigma_{(4,0)}$ $\kappa_t \kappa_Z C_{Stt} C_{SZZ} d\sigma_{(2,2)}$

- $C_{SZZ}C_{Stt}$ is replaced by $\kappa_Z \kappa_t$ using the sum rule
- Destructive interference could decrease the off-shell rate depending on m_S , κ_t , κ_Z [Logan 14]
- Simulations at $gg \rightarrow ZZ$ level with $m_{ZZ} > 220$ GeV
- Size and location of resonance is important

Impact of propagating scalar on Higgs width

- To check compatibility with $\mu_{off} < 2.4$, define the ratio:
- Upper limit on R from ATLAS off-shell signal strength
- Compare with limits from **HiggsBounds**^{*} assuming only decays to top-quarks and Z bosons

 $R(\kappa_t \kappa_Z, C_{Stt} C_{SZZ}) = \frac{\sigma_{gg \to ZZ}(\kappa_t \kappa_Z, C_{Stt} C_{SZZ})}{\sigma_{gg \to ZZ}^{SM}}$ $\sqrt{110}$ 11D

h:
$$R^{\rm up} = \frac{\sigma_{(0,0)} + \sqrt{\mu_{\rm off}^{\rm up} \sigma_{(2,0)} + \mu_{\rm off}^{\rm up} \sigma_{(4,0)}}}{\sigma_{(0,0)} + \sigma_{(2,0)} + \sigma_{(4,0)}} = 3.4$$

*modified to include [CMS-PAS-HIG-24-002]

Impact of propagating scalar on Higgs width

• Assuming no impact on on-shell signal strength from S, we can use:

$$\mu_{\rm on} = \frac{\kappa_t^2 \kappa_Z^2}{\Gamma_H / \Gamma_H^{\rm SM}}$$

• Experimental bounds on on-shell signal strength:

$$\mu_{\rm on}^{\rm ATLAS} = 1.01^{+0.23}_{-0.20}$$

• Re-interpreted upper bound on $\kappa_t \kappa_Z$ as upper bound on Higgs width using on-shell results

- For low masses the resonance is outside the off-shell region and interference decreases the rate \rightarrow weaker bound on Γ_H
- ► HiggsBounds limits require $\Gamma^H / \Gamma^H_{SM} \lesssim 4$ (but are <u>model-dependent</u>)

Gluon fusion modification: coloured scalar

Investigate simple extension with coloured scalar S_c : ullet

 $\mathcal{L} \supset D_{\mu}S_{c}D^{\mu}\bar{S}_{c} - m_{S_{c}}^{2}S_{c}\bar{S}_{c} + \lambda_{S_{c}}\Phi^{\dagger}\Phi S_{c}^{\dagger}S_{c}$ leads to gluon-fusion modification

- No sum rule imposed in this scenario ullet
- Similar parameterisation for the cross section $gg \rightarrow ZZ$ \bullet

Gluon fusion modification: coloured scalar

Investigate simple extension with coloured scalar S_c : \bullet

> $\mathcal{L} \supset D_{\mu}S_{c}D^{\mu}\bar{S}_{c} - m_{S_{c}}^{2}S_{c}\bar{S}_{c} + \lambda_{S_{c}}\Phi^{\dagger}\Phi S_{c}^{\dagger}S_{c}$ leads to gluon-fusion modification

- No sum rule imposed in this scenario \bullet
- Similar parameterisation for the cross section $gg \rightarrow ZZ$

Impact of propagating scalar on Higgs width

- <u>Upper limits</u> on $\kappa_t = \kappa_Z = \kappa$ from $R(\kappa, \kappa, \lambda_{S_c}) < R^{up}$

Coloured Scalar: on-shell

Connecting to Higgs width more complicated:

$$\mu_{\text{on}}^{\text{ggF}} = \frac{\kappa_V^2}{\Gamma^H / \Gamma_{\text{SM}}^H} \left| \kappa_t + \frac{\lambda_{S_c} v^2 \left[1 + \tau_{S_c} f(\tau_{S_c}) \right]}{m_H^2 \left[1 + (\tau_t - 1) f(\tau_t) \right]} \right|_{\tau_t}$$
$$f(\tau_i) = \begin{cases} \arcsin^2 \tau_i^{-1/2} & \tau_i > 1\\ -\frac{1}{4} \left[\log \frac{1 + \sqrt{1 - \tau_i}}{1 - \sqrt{1 - \tau_i}} - i\pi \right]^2 & \tau_i < 1 \end{cases} \quad \text{for } \tau_i$$

DESY.

ullet

•

 $\mu_{\rm on}^{\rm VBF} = \frac{\kappa_V^4}{\Gamma_H / \Gamma_H^{\rm SM}}$ VBF on-shell signal strength:

We use our allowed range of κ^2 and require that the on-shell signal strengths lie within the ATLAS 95% CL bounds [ATLAS 2004.03447]

Coloured Scalar: impact on Higgs width

 \bullet

We obtain the upper bound on the total Higgs width compatible with both on-shell and off-shell results

Loop modification of Higgs propagator: Higgs portal

Scalar singlet modifying the Higgs propagator at 1-loop through Higgs portal coupling:

Higgs amplitude $gg \rightarrow H \rightarrow ZZ$ modification factor: ullet

$$\bar{\mathcal{M}} = \frac{\mathcal{M}_H + \mathcal{M}_S}{\mathcal{M}_H^{\text{SM}}} = 1 + \frac{\lambda_S^2 v^2}{8\pi^2 (p^2 - m_H^2)} \times \left[B_0(p_H^2, m_S^2, m_S^2) - \text{Re}B_0(m_H^2, m_H^2)\right]$$

- Introduced in UFO model as form-factor in order to ulletcalculate $gg \rightarrow ZZ$ process with Higgs/box interference
- Similar cross section parameterisation as before

DESY. Panagiotis Stylianou | CERN 2024 | 24/10/24

 $\mathcal{L} \supset -\lambda_S S^2 \Phi^{\dagger} \Phi$

Impact of propagating scalar on Higgs width

- Upper limits similar to previous cases: $R(\kappa\kappa, \lambda)$
- Much smaller impact on κ^2 even at relatively large couplings λ_S

We could again use the onshell signal strength to obtain a limit on Γ_H \rightarrow However, given the small impact on κ^2 , we would not get a large impact on Γ_H

$$\lambda_S) = \frac{\sigma_{gg \to ZZ}(\kappa, \kappa, \lambda_S)}{\sigma_{gg \to ZZ}^{SM}} < R^{up}$$

Conclusions

- A direct determination of the Higgs width is not possible in the near future \rightarrow need to rely on **indirect bounds** from the off-shell ZZ channel
- Effects in the off-shell $gg \rightarrow ZZ$ channel that **decrease** the total rate, could allow for enhanced Higgs couplings and thus a larger Higgs width Γ_H
- We assessed the impact on the Higgs width from three simplified scenarios:
 - An additional propagating scalar $gg \rightarrow S \rightarrow ZZ$
 - \blacksquare Modification of the Higgs gluon-fusion $gg \rightarrow H$ due to a coloured scalar
 - Modification the Higgs propagator with a scalar loop contribution
- Overall, the indirect Higgs width limit remains robust, except for effects arising from scalars with relatively
 low masses → however searches for such scalars can widen the validity of the Higgs width limit

Reduction of off-shell rate from interference effects

Conclusions

- A direct determination of the Higgs width is not possible in the near future \rightarrow need to rely on **indirect bounds** from the off-shell ZZ channel
- Effects in the off-shell $gg \rightarrow ZZ$ channel that **decrease** the total rate, could allow for enhanced Higgs couplings and thus a larger Higgs width Γ_H
- We assessed the impact on the Higgs width from three simplified scenarios:
 - \blacksquare An additional propagating scalar $gg \rightarrow S \rightarrow ZZ$
 - \blacksquare Modification of the Higgs gluon-fusion $gg \rightarrow H$ due to a coloured scalar
 - Modification the Higgs propagator with a scalar loop contribution
- Overall, the indirect Higgs width limit remains robust, except for effects arising from scalars with relatively low masses \rightarrow however searches for such scalars can widen the validity of the Higgs width limit

Reduction of off-shell rate from interference effects

Backup

Enhancing κ_V

- Increasing κ_V quickly leads to issues with perturbative unitarity in many models
- Allowed in Georgi-Machacek models \bullet

Direct measurement of the Higgs width

- SM prediction for the Higgs width: $\Gamma^{H} = 4.1$ MeV [CERN Yellow Reports V2]
- CMS upper limit on Higgs width in the on-shell $gg \rightarrow H \rightarrow ZZ^*$ channel at 95 % :

Γ^{H} < 330 MeV

Indirect width measurement: mass shift

- Large interference between $gg \to H \to \gamma\gamma$ and background $gg \to \gamma\gamma$ creates a mass shift in $m_{\gamma\gamma}$ lacksquare
- Can compare the peaks in $\gamma\gamma$ and 4ℓ channels and use the shift to probe Γ_H [Dixon, Li 13] lacksquare
- Method limited by current mass resolution

DESY. Panagiotis Stylianou | CERN 2024 | 24/10/24

Gluon fusion modification: comparison

Investigate simple extension with coloured scalar S_c : lacksquare

 $\mathcal{L} \supset D_{\mu}S_{c}D^{\mu}\bar{S}_{c} - m_{S_{c}}^{2}S_{c}\bar{S}_{c} + \lambda_{S_{c}}\Phi^{\dagger}\Phi S_{c}^{\dagger}S_{c}$ leads to gluon-fusion modification

Perturbativity is more complicated than before, we do not enforce a sum-rule

Simple analytical setup:

<u>Modification of SM Higgs contribution:</u>

$$\bar{\mathcal{M}} = \kappa_Z \left(\kappa_t + \frac{\lambda_{S_c} v^2 \left[1 + \tau_{S_c} f(\tau_{S_c}) \right]}{m_H^2 \left[1 + (\tau_t - 1) f(\tau_t) \right]} \right)$$

for $\tau_i = 4m_i^2 / p_H^2$

Loop function:

$$f(\tau_i) = \begin{cases} \arcsin^2 \tau_i^{-1/2} & \tau_i > 1\\ -\frac{1}{4} \left[\log \frac{1 + \sqrt{1 - \tau_i}}{1 - \sqrt{1 - \tau_i}} - i\pi \right]^2 & \tau_i < 1 \end{cases}$$

Numerical setup:

<u>Parameterised cross section for $gg \rightarrow ZZ$:</u> $d\sigma_{qq \to ZZ}(\kappa_t, \kappa_Z, \lambda_{S_c}) =$ $d\sigma_{(0,0)} + \kappa_t \kappa_Z d\sigma_{(2,0)} + \frac{\kappa_t^2 \kappa_Z^2 d\sigma_{(4,0)}}{\kappa_t^2 \kappa_Z^2 d\sigma_{(4,0)}}$ + $\kappa_Z \lambda_{S_c} d\sigma_{(1,1)} + \kappa_t \kappa_Z^2 \lambda_{S_c} d\sigma_{(3,1)}$ $+ \kappa_Z^2 \lambda_{S_c}^2 d\sigma_{(2,2)}$

→ Can compare when box-contributions are not included (i.e. only $d\sigma_{\!(4,0)}\!,\,d\sigma_{\!(3,1)}\!,\,d\sigma_{\!(2,2)}$)

Coloured scalar: comparison with analytical

DESY. Panagiotis Stylianou | CERN 2024 | 24/10/24

For small masses negative λ_{S_c} induces negative interference (and vice-versa for large masses)

Coloured scalar κ^2 limits

• Increasing λ_{S_c} does not necessarily increase upper limit on κ^2

 $m_{S_c} \; [\text{GeV}]$

Coloured scalar: limits from cross section

Assuming that the coloured scalar is only coupled to gluons, the region $m_{S_c} < 230$ GeV would be ● excluded

Higgs portal: comparison with analytical

Check implementation without any box contributions \bullet

Analytical setup:

DESY. Panagiotis Stylianou | CERN 2024 | 24/10/24

