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● Simplified model framework
● Monte-Carlo implementation
● Results with mixing between the scalars
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Introduction

● Standard Model (SM) – remarkably successful
● Discovery of a Higgs boson at 125 GeV (at LHC, 2012)
● Understanding of the universe is far from complete

– hierarchy problem
– baryon asymmetry of the universe
– neutrino masses
– . . .

● Various extensions to the SM
– supersymmetry (SUSY)  MSSM→
– extended Higgs sector (2HDM, C2HDM, . . . )

Beyond 
the SM 
physics!

Illustration by 
K. Radchenko

Physical states in 
two-Higgs doublets
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● Many BSM extensions 
feature heavy scalar(s) that 
decay to top pairs

● Heavy scalars predicted to 
have large couplings to 
third generation fermions

Motivation
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● Many BSM extensions 
feature heavy scalar(s) that 
decay to top pairs

● Heavy scalars predicted to 
have large couplings to 
third generation fermions

● Recent excess in tt-final 
state at 400 GeV by CMS 
[   local: 3.5 ± 0.3 σ
  global: 1.9 σ ] 

Motivation

CMS collaboration [ 1908.01115 ]

https://www.arxiv.org/abs/1908.01115


  
5 

Red curve:

expected signal: 
CP-odd scalar of 
mass 400 GeV 

and a decay-width 
of 16 GeV

CMS analysis utilized 
spin-correlations from 
charged leptons in the 
top-quark decay event
`helicity’ variable: c[hel]

High discrimination power 
for 0.6 < c[hel] < 1 

CMS collaboration [ 1908.01115 ]

https://www.arxiv.org/abs/1908.01115
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Search for heavy scalars and pseudoscalar bosons 
decaying to top quark pairs; full Run-2 analysis by CMS

More than 5-sigma deviation 
in m(tt) expectation (!)

Best day of Romal's life (2024) see also: Halil Saka’s talk

138 fb 1, Run 2 (13 TeV)CMSPreliminary ,  4j
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Di-top final state

• Total amplitude:

● Signal-background interference 

large destructive contribution

● Invariant mass distribution of the top 
quarks (       ) significantly distorted  →
peak-dip structure

Signal
(gg → Φ → tt)

QCD 
background

(gg → tt)

Gaemers & Hoogeveen (1984)
Dicus et al. [ hep-ph/9404359 ]

+ several others

https://doi.org/10.1016/0370-2693(84)91711-8
https://www.arxiv.org/abs/hep-ph/9404359
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ATLAS collaboration [ 1707.06025 ]

One additional scalar

https://www.arxiv.org/abs/1707.06025
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● Extended Higgs sector (theoretically well motivated)
● Consider two scalars                      such that

– mass above di-top threshold   (                    )
– produced via gluon fusion with top-triangle loop
– CP-mixed character
– decay to top quarks

Simplified model framework

Yukawa-coupling 
modifiers

CP-even CP-odd
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● Extended Higgs sector (theoretically well motivated)
● Consider two scalars                      such that

– mass above di-top threshold   (                    )
– produced via gluon fusion with top-triangle loop
– CP-mixed character
– decay to top quarks

Simplified model framework

Analytical implementation 
(Mathematica)

Monte-Carlo implementation 
(MadGraph 3.4.0)

Yukawa-coupling 
modifiers

CP-even CP-odd

Note: SM-like Higgs boson at 125 GeV
CP-even coupling ~ 1
CP-odd coupling ~ 0
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Two CP-mixed scalar(s)

● Trivial to extend the Signal-Background interference
● Signal-Signal interference terms contains (including fermion-loop functions)

Bernreuther et al. [ 1511.05584 ]
Carena & Liu [ 1608.07282 ]

https://www.arxiv.org/abs/1511.05584
https://www.arxiv.org/abs/1608.07282
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Two CP-mixed scalar(s)

● Trivial to extend the Signal-Background interference
● Signal-Signal interference terms contains

● No signal-signal interference between CP-even and CP-odd
● Sign of Yukawa-coupling modifiers can be relevant

Bernreuther et al. [ 1511.05584 ]
Carena & Liu [ 1608.07282 ]

https://www.arxiv.org/abs/1511.05584
https://www.arxiv.org/abs/1608.07282
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For heavy scalars, effective Higgs-gluon 
coupling is a poor approximation

Need to incorporate the full top-quark 
loop in Monte-Carlo simulations
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Illustrative plot for various interference 
effects [idealistic, no smearing; smearing 

discussed later] Monte-Carlo

For heavy scalars, effective Higgs-gluon 
coupling is a poor approximation

Need to incorporate the full top-quark 
loop in Monte-Carlo simulations
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However, things change when there is mixing 
between the scalars
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Investigation with loop-level mixing

● (lowest-order interaction states)                                       (loop-corrected  
          mass eigenstates)

● For particles that mix, the total amplitude can be written using wavefunction 
normalization factor (“Z-factors”, crucial for proper normalization of S-matrix,    
UV-finite) and the Breit-Wigner (BW) propagators

Propagator matrix involves tree-level 
parameters of the scalars and 
(renormalized, MS) self-energies

Containing loop-
corrected mass

Z-factor formalism

Fuchs & Weiglein [ 1610.06193 ]
see also:

Dabelstein [ hep-ph/9409375 ]
Frank et al. [ hep-ph/0611326 ]

https://www.arxiv.org/abs/1610.06193
https://www.arxiv.org/abs/hep-ph/9409375
https://www.arxiv.org/abs/hep-ph/0611326
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Investigation with loop-level mixing

● Z-factors rearranged in matrix     –matrix, → non-unitary and complex elements!

● Upshot: use Z-factors to write propagator-mixing in terms of separate              
Breit-Wigner propagators involving loop-corrected masses and widths 

Z-factors can be complex 
numbers

Additional phases! 

Affects the amplitudes and 
cross-sections, and eventually 

the m(tt)-distribution
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Good agreement between analytical 
and Monte-Carlo results
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LHC sensitivity
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Prospects at the LHC

● Grey band: statistical uncertainty band, derived 
from the expected SM di-top events at NLO in QCD

➔ Within experimental reach: region outside grey 
band

● Comparison with experimental sensitivity at Run-3 
of the LHC using [ 2404.19014 ] (detector simulation 
not public)

➔ Gaussian smearing of 15% on the m(tt)-variable to 
incorporate detector-effects

● ++ other technical details: see backup slides or ask 
later ;)
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Total result resembles shape for a single particle at lower mass (!)

M(S1) = 550 GeV
M(S2) = 580 GeV
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BSM effects: a low-mass resonance, in a physically realizable model; 
also recall the recent CMS excess (2024) at the di-top threshold
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Benchmark point–3 of
Basler et al. [ 1909.09987 ] 

in a C2HDM scenario

https://www.arxiv.org/abs/1909.09987
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Large cancellations between resonances and interferences (!)

M(S1) = 550 GeV
M(S2) = 571 GeV
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“Nightmare” scenario (!) the large destructive signal-signal interference cancels 
the sum of the two signal resonances

(+ the two individual signal-background interferences almost cancel each other)

M(S1) = 750 GeV
M(S2) = 766 GeV
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“Nightmare” scenario (!) the large destructive signal-signal interference cancels 
the sum of the two signal resonances

(+ the two individual signal-background interferences almost cancel each other)

M(S1) = 750 GeV
M(S2) = 766 GeV

gives motivation to look 
into other decay channels 
(e.g. four-tops) to establish 
complementarity!
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ROMAL.KUMAR@DESY.DE

Takeaways! ● Complete Monte-Carlo implementation to simulate 
different processes including support for the Z-factors

● Mixing between scalars can lead to highly non-trivial 
distribution profiles

● Signatures can emerge that are unexpected and/or 
difficult to interpret

● (+ Mathematica solver to calculate Z-factors)

Toolbox for experimental 
analysis to support 

investigation of “interesting” 
signatures that emerge in 

Higgs searches
Who ordered all of that?

Nobel laureate, Isidor Isaac Rabi (1898–1988)
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Thank you for your attention :)
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Backup/Extra slides
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https://indico.ijclab.in2p3.fr/event/10259/contributions/35240/
attachments/23869/34632/Higgs_Hunting_Samuel_Baxter_v7_2.pdf

Summary

> A search for a scalar or pseudoscalar has been peformed in the dileptonic and

semileptonic final states of t̄t using the full Run2 dataset of CMS

> The analysis targets the mt̄t distribution along with angular and spin observables

> An excess, of more than 5 standard-deviations, has been observed that fits best

with a pseudoscalar with a mass of 365 GeV

> Excess also fits a model of the t̄t bound state ηt, a cross section has been

determined

> Stringent limits have been set on the scalar and pseudoscalar signal models, with

a floating normalisation of ηt included

Reference:CMS-PAS-HIG-22-013

DESY. | Search for pseudoscalars and scalars decaying to top quark pairs with CMS Run 2 | Samuel Baxter | Higgs Hunting 2024, Paris, 24.09.2024 Page 16
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CP-mixed scalar “intermediate” to a CP-even and a CP-odd scalar
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35 / 49arXiv:1908.01115

Red curve:

expected signal 
for a CP-odd 

Higgs boson at 
400 GeV

decay width of 
16 GeV

Two main observables:

m(tt) from tt-
reconstruction algo.

Spin correlation from 
the charged leptons in 

the event (‘helicity’ 
variable)
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Key points from one scalar analysis

● With the signal amplitude

● The total differential cross-section:

Background + Signal + Interference

● The absolute-value squared amplitudes for production and decay of scalar

CP-even and 
CP-odd 

components 
can be 

independently 
treated

quark-loop 
function
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Two CP-mixed scalar(s)

Production Amplitude Propagator Decay amplitude

● The total amplitude can be written as
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Monte-Carlo: treatment of imaginary parts

● Heavy-top approx. (effective Higgs-gluon) 
works well for SM-like Higgs

● But effective Higgs-gluon coupling: poor 
approximation for heavy scalars

● Sizeable imaginary parts above the di-top 
threshold

➔ Need to incorporate the full top-quark loop
● Adapted python files in the FeynRules 

output files, Fortran routine for the top-
loop
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Illustrative plot for various interference 
effects [idealistic, no smearing; smearing 

discussed later]
Monte-Carlo
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Aside: Neutrino or quark mixing

● Neutrino or quark flavours mix
● Reason: misalignment of mass (d’) and flavour (d, s, b) eigenstates

● Propagators mix flavours
● Interactions are pure

● Propagators are flavour-diagonal
● Interactions mix flavours

Image from a handout 
by Dr. A. Mitov [2012]

Flavour basis Mass basis
Change of 

basis



41 

Investigation with loop-level mixing

● Z-factors rearranged in matrix     –matrix, → non-unitary and complex elements!

● Upshot: use Z-factors to write propagator-mixing in terms of separate Breit-
Wigner propagators involving loop-corrected masses and widths 

Z-factors calculated from 
self-energies contributions

Large mixing effects can be 
possible (large off-diagonal 
terms in the Z-matrix)
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Z-factors can be 
complex numbers

Additional phases!

 Approximately
Z11  = Z22

       Z12  = – Z21

Z11 Z12

Z22Z21
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● Sign of Yukawa-coupling modifiers affects the 
contribution of signal-signal interference!

Some illustrative plots showing various processes

Analytical
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● Compare results with existing literature in arXiv:1909.09987v2
● 2HDM with a CP-violating scalar sector
● The Yukawa-coupling modifiers can be calculated using the elements of the 

rotation matrix that diagonalizes the 3x3 mass matrix to give a diagonal matrix 
with mass eigenstates

● We consider the lower-right 2x2 submatrix

Application to the C2HDM
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● Signal-Signal interference can be significant (not 
considered previously)

arXiv:1909.09987v2
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Prospects at the LHC
● Grey band  statistical uncertainty band, calculated from →

the square root of the expected SM top anti-top 
background events at NLO in QCD

● Branching ratio of the heavy scalar into leptons: ~11%
● Smearing of 15% and Acceptance of 6.5% to match the 

most sensitive helicity bin in the published CMS analysis 
(and also in comparison with results from 2404.19014)

● For the results shown in this presentation, the Monte-
Carlo simulation events are scaled to the expected 
number of events at 300 fb-1 integrated luminosity and 
13 TeV center of mass energy

● K-factors applied; 1.6 for the QCD background, ~2.5 for 
the signal process, and geometric mean for the K-factors 
of interference process
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● Signal-Signal could be as large as one of the pure signals!

Sign of
ctt2 flipped
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