

Higgs & CP (ATLAS & CMS)

Arthur (RD) Schaffer

Univ Paris-Saclay, IJCLab, Orsay, France

On behalf of the ATLAS and CMS Collaborations

Extended Scalar Sectors From All Angles

October 22, 2024

Overview

- The observed Higgs boson at the LHC has been shown be consistent with the SM Higgs boson with quantum numbers J^{CP} = 0⁺⁺ since 2013, where a pure CP-odd state has been ruled out (refs: <u>1</u>, <u>2</u>, <u>3</u>, <u>4</u>)
 - For spin, charge-conjugation and parity
- However, the detection of a small CP-odd coupling of the observed Higgs boson in its production or decay would be an indication of a mixing of CP-even and CP-odd states, and be a sign of beyondthe-Standard-Model (BSM) physics
- This could be an indication of CP violation in the Higgs sector and potentially have implications in the matter-antimatter asymmetry of the Universe

CP-odd couplings to vector bosons and fermions

- The earliest property measurements of the Higgs boson have been done with vector bosons (γ, Z, W), and have since been studied with fermions (t, τ)
- The CP-odd coupling searches have largely been carried out for the following production and decays:
 - Vector boson fusion (VBF) production in final states: $\gamma\gamma$, ZZ, WW, $\tau\tau$
 - And as well, ggF + two jets and vector boson associated production (VH)
 - ttH, tH production in final states: $\gamma\gamma$, ZZ, WW, bb, $\tau\tau$
 - Higgs boson decays: ZZ, $\tau \tau$

CP-odd couplings to vector bosons and fermions (2)

- The CP-odd BSM couplings to fermions and vector bosons are different:
 - For fermions, e.g. ttH coupling, the CP-odd coupling enters via an additional γ_5 term in the Yukawa coupling

 $\mathcal{L}_{t\bar{t}H} = -\kappa'_t y_t \phi \bar{\psi}_t (\cos\alpha + i\gamma_5 \sin\alpha) \psi_t$

• $\alpha = 0$ is pure CP-even, $\alpha \neq 0$ is mixing of even/odd CP states

- One should note that this coupling enters at leading order in BSM models, e.g. 2HDM
- For vector bosons, the couplings enter with dimension 6 operators, e.g. for SMEFT: $\sum_{i} c_i$ (6)

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_{i}}{\Lambda^{2}} O_{i}^{(6)}$$

- The c_i include the BSM CP-odd couplings discussed here
- And note that the couplings are 'suppressed' by Λ^2 , the scale of the new physics, typically taken at 1 TeV

Couplings for vector boson couplings

- For CP-odd couplings, there are two EFT bases being used:
 - Higgs basis ("mass basis" after symmetry breaking):
 - Three couplings: $\tilde{c}_{zz}, \tilde{c}_{z\gamma}, \tilde{c}_{\gamma\gamma}$
 - Warsaw basis (before symmetry breaking):
 - Three couplings: $c_{H\widetilde{W}}, c_{H\widetilde{B}}, c_{H\widetilde{W}B}$
 - Each basis is a linear combination of the other
- ATLAS results are primarily in the Warsaw basis (the standard for SMEFT analyses)
- CMS measurements use a more general anomalous couplings framework, but also provides SMEFT results
 - Their CP-odd coupling, a_3 is proportional to \tilde{c}_{zz} , and they assume $\tilde{c}_{z\gamma} = \tilde{c}_{\gamma\gamma} = 0$
 - So a direct comparison of limits between ATLAS and CMS are limited
- * One might note that VBF is essentially aligned with \widetilde{c}_{zz}
 - sensitivity for $\widetilde{c}_{z\gamma}$ ~ x2 worse, and much worse for $\widetilde{c}_{\gamma\gamma}$

List of analyses covered in this talk (all full Run2)

ATLAS	Couplings: Yukawa or Vector bosons	Links
Η -> ττ	Yukawa	<u>2022/12</u>
ttH -> γγ	Yukawa	2020/04
ttH -> bb	Yukawa	2023/03
Η -> γγ	Vector boson	2022/08
H -> ττ differential	Vector boson	2024/07
H -> ZZ* -> 4I	Vector boson	2023/04
CMS	Couplings: Yukawa or Vector bosons	Links
CMS Η -> ττ	Couplings: Yukawa or Vector bosons Yukawa	Links 2021/10
CMS H -> ττ ttH -> multileptons	Couplings: Yukawa or Vector bosons Yukawa Yukawa	Links 2021/10 2022/08
CMS H -> ττ ttH -> multileptons ttH -> bb	Couplings: Yukawa or Vector bosons Yukawa Yukawa Yukawa	Links 2021/10 2022/08 2024/07
CMS H -> $\tau\tau$ ttH -> multileptons ttH -> bb H -> $\tau\tau$	Couplings: Yukawa or Vector bosons Yukawa Yukawa Yukawa Vector boson	Links 2021/10 2022/08 2024/07 2022/05
CMS H -> $\tau\tau$ ttH -> multileptons ttH -> bb H -> $\tau\tau$ H-> WW*	Couplings: Yukawa or Vector bosons Yukawa Yukawa Yukawa Vector boson Vector boson	Links 2021/10 2022/08 2024/07 2022/05 2023/09

List of analyses covered in this talk (all full Run2)

ATLAS	Couplings: Yukawa or Vector bosons	Links
Η -> ττ	Yukawa	2022/12
ttH -> γγ	Yukawa	<u>2020/04</u>
ttH -> bb	Yukawa	<u>2023/03</u>
Η -> γγ	Vector boson	2022/08
H -> ττ differential	Vector boson	2024/07
H -> ZZ* -> 4I	Vector boson	2023/04
CMS	Couplings: Yukawa or Vector bosons	Links
CMS Η -> ττ	Couplings: Yukawa or Vector bosons Yukawa	Links 2021/10
CMS H -> ττ ttH -> multileptons	Couplings: Yukawa or Vector bosons Yukawa Yukawa	Links 2021/10 2022/08
CMS H -> ττ ttH -> multileptons ttH -> bb	Couplings: Yukawa or Vector bosons Yukawa Yukawa Yukawa	Links 2021/10 2022/08 2024/07
CMS H -> $\tau\tau$ ttH -> multileptons ttH -> bb H -> $\tau\tau$	Couplings: Yukawa or Vector bosons Yukawa Yukawa Yukawa Vector boson	Links 2021/10 2022/08 2024/07 2022/05
CMS H -> $\tau\tau$ ttH -> multileptons ttH -> bb H -> $\tau\tau$ H-> WW*	Couplings: Yukawa or Vector bosons Yukawa Yukawa Yukawa Vector boson Vector boson	Links 2021/10 2022/08 2024/07 2022/05 2023/09

CP-odd in H -> $\tau\tau$ decays (H to fermion)

The CP-odd angle \u03c6_{\u03c4} can be extracted from the differential distribution of the signed acoplanarity angle \u03c6_{\u03c4}* of tau decay planes in Higgs rest frame:

$$\mathcal{L}_{H\tau\tau} = -\frac{m_{\tau}}{\upsilon} \kappa_{\tau} (\cos \phi_{\tau} \bar{\tau} \tau + \sin \phi_{\tau} \bar{\tau} i \gamma_{5} \tau) H_{\tau}$$
$$d\Gamma_{H \to \tau^{+} \tau^{-}} \approx 1 - b(E_{+}) b(E_{-}) \frac{\pi^{2}}{16} \cos(\varphi_{CP}^{*} - 2\phi_{\tau})$$

- where $b(E_{\pm})$ are known spectral functions
- The decay planes (in zero-momentum frame) are defined with π^{\pm} and impact parameter for single pion decays, and the other particles for $\pi^{\pm}\pi^{0}\nu$, etc decays:

Extraction of ϕ_{CP}^{*} from H -> $\tau\tau$ decays

- ✤ Both ATLAS and CMS utilize several decay modes for $\tau_{\ell} \tau_h$ and $\tau_h \tau_h$
 - $\ell = e, \mu, h$ is hadron, $\tau_h \tau_h$ is more sensitive
- ATLAS has four event categories:
 - VBF (low/high MVA), boosted ggF (low: $p_T^{\tau\tau}$ in 100-140 GeV or $\Delta R_{\tau\tau}$ > 1.5, and high: $p_T^{\tau\tau}$ > 140 GeV and $\Delta R_{\tau\tau}$ < 1.5)
- CMS uses a multi-class MVA to categorize events
- * Backgrounds are mostly from $Z \rightarrow \tau \tau$, and fake- τ
 - Statistical fluctuations are 'symmetrized' in the background ϕ^*_{CP} distributions

RD Scha

10

20

30

Bin number

H -> au au decays $\phi_{ au}$ and ϕ_{CP}^* results

List of analyses covered in this talk (all full Run2)

ATLAS	Couplings: Yukawa or Vector bosons	Links
Η -> ττ	Yukawa	2022/12
ttH -> γγ	Yukawa	2020/04
ttH -> bb	Yukawa	<u>2023/03</u>
Η -> γγ	Vector boson	<u>2022/08</u>
H -> ττ differential	Vector boson	2024/07
H -> ZZ* -> 4I	Vector boson	2023/04
CMS	Couplings: Yukawa or Vector bosons	Links
CMS Η -> ττ	Couplings: Yukawa or Vector bosons Yukawa	Links 2021/10
CMS H -> ττ ttH -> multileptons	Couplings: Yukawa or Vector bosons Yukawa Yukawa	Links 2021/10 2022/08
CMS H -> ττ ttH -> multileptons ttH -> bb	Couplings: Yukawa or Vector bosons Yukawa Yukawa Yukawa	Links 2021/10 2022/08 2024/07
CMS H -> $\tau\tau$ ttH -> multileptons ttH -> bb H -> $\tau\tau$	Couplings: Yukawa or Vector bosons Yukawa Yukawa Yukawa Vector boson	Links 2021/10 2022/08 2024/07 2022/05
CMS H -> $\tau\tau$ ttH -> multileptons ttH -> bb H -> $\tau\tau$ H-> WW*	Couplings: Yukawa or Vector bosons Yukawa Yukawa Yukawa Vector boson Vector boson	Links 2021/10 2022/08 2024/07 2022/05 2023/09

CP-odd couplings in ttH, tH

- * As for the $H \rightarrow \tau \tau$ decays, the Lagrangian can be expressed as a coupling modifier and angle, or two coupling modifiers
- For ttH/tH analyses, there are two "handles" to extracting CP-odd constraints:
 - For ttH, the spin correlations of the tt pair contain the information of the CP content of the interaction, as for $H \rightarrow \tau \tau$
 - Use kinematics of tt + H system
 - tH production in the SM is <20% of the ttH production due to destructive interference of two diagrams of the t-channel (tHq) production

 - the tH rate is used to constrain CP-odd couplings
 - tH normalization is sensitive to sign of κ_t

ATLAS ttH, $H \rightarrow \gamma \gamma$

- The diphoton mass gives a clear signature for the Higgs decay
- Event selection: 2γ (>35,25 GeV), 1 tagged b-jet $p_T > 25$ GeV *
- Two regions for the tt (or t) signature:
- "Lep" region (semi-leptonic W decay): muon or electron $p_T > 15 \text{ GeV}$ (medium ID, isolated)
 - "Had" region (hadronic top decay, incl τ_h): ≥ 2 jets, $p_T > 25$ GeV, no lepton
- Top reconstruction uses BDT:
 - For Had: t₁ is top-scoring jet triplet,
 - For Lep: lepton + MET + best scoring jet
- For CP signal extraction 2 BDTs are used:
 - Bkg rejection BDT: separate ttH events from backgrounds ($\gamma\gamma$ +jets, $t \bar{t} \gamma \gamma$
 - CP BDT: separate CP-even from CP-odd

13

CP

ATLAS ttH, $H \rightarrow \gamma \gamma$: Results

ATLAS ttH, $H \rightarrow bb$

- Event selection:
 - isolated electron (tight ID), muon (medium ID), p_T > 27 (10) GeV 1st (2nd)
 - jet, p_T > 25 GeV, variable levels of b-tag efficiency
- Categorization:
 - Boosted Higgs: large R jet, p_T > 300 GeV, using DNN and variable b-tags
 - Dilepton: training region TR $\geq 4j$, $\geq 4b$, 3 CRs
 - ℓ +jets: TR $\geq 6j$, $\geq 4b$, 2 CRs
- 2 sets of BDTs for each category
 - Reconstruction: assign jets to Higgs or top decay
 - Classification: discriminate ttH from background
- * CP-sensitive observables: using top-top kinematics or just rate
 - Boosted Higgs yield is sensitive to tH, only use classification BDT

• Dilepton (b_4) ℓ +jets where $\vec{p}_{1,2}$ are the two tops $\frac{(\vec{p}_1 \cdot \hat{z})(\vec{p}_2 \cdot \hat{z})}{|\vec{p}_1||\vec{p}_2|} \qquad \frac{(\vec{p}_1 \times \hat{z}) \cdot (\vec{p}_2 \times \hat{z})}{|\vec{p}_1||\vec{p}_2|}$

22/10/24

RD Schaffer

ATLAS ttH, $H \rightarrow bb$: Results

CMS ttH, H -> multleptons

- * Multileptons concern $H \rightarrow WW$ and $H \rightarrow \tau \tau$ decays
 - Leptons come from both Higgs and top decays
- Event selection and background estimate:
 - prompt leptons selected with BDT-classifier, extra leptons rejected with loose requirements, and DNN used for *τ*-leptons
 - Channels: $2\ell SS + 0\tau_h$, $2\ell SS + 1\tau_h$, $3\ell + 0\tau_h$
 - 1 ℓ from top decay, others from 2nd top, W or τ_{ℓ} , SS same sign
 - 1st two: ≥3 jets, last: ≥2 jets
 - require b-jets tagged with DeepJet discriminator
 - DNN used to separate into ttH, tH and backgrounds (ttW, other)
 - reducible bkgs: mis-ID leptons, conversions $(t\bar{t}\gamma)$, electron charge flips
- CP discriminant for ttH (BDT_{CP})
 - Separate discriminant in each channel (based on 16 to 25 variables)
- Fit includes BDT_{CP}, and rates for tH, backgrounds and CRs

CMS ttH, H -> multleptons: Results

CMS ttH, H -> bb

- Categories:
 - 0-lepton (fully hadronic)
 - 1-lepton (includes tH)
 - 2-leptons (ttH)
- Use ANN to separate signal/bkg, and categorize into SR/CR
- * κ_t vs $\tilde{\kappa}_t$ is combined with earlier CMS measurements
 - $WW/\tau\tau$ and $\gamma\gamma/4\ell$

List of analyses covered in this talk (all full Run2)

ATLAS	Couplings: Yukawa or Vector bosons	Links
Η -> ττ	Yukawa	2022/12
ttH -> γγ	Yukawa	2020/04
ttH -> bb	Yukawa	2023/03
Η -> γγ	Vector boson	<u>2022/08</u>
H -> ττ differential	Vector boson	2024/07
H -> ZZ* -> 4I	Vector boson	2023/04
CMS	Couplings: Yukawa or Vector bosons	Links
CMS Η -> ττ	Couplings: Yukawa or Vector bosons Yukawa	Links 2021/10
CMS H -> ττ ttH -> multileptons	Couplings: Yukawa or Vector bosons Yukawa Yukawa	Links 2021/10 2022/08
CMS H -> ττ ttH -> multileptons ttH -> bb	Couplings: Yukawa or Vector bosons Yukawa Yukawa Yukawa	Links 2021/10 2022/08 2024/07
CMS H -> $\tau\tau$ ttH -> multileptons ttH -> bb H -> $\tau\tau$	Couplings: Yukawa or Vector bosons Yukawa Yukawa Yukawa Vector boson	Links 2021/10 2022/08 2024/07 2022/05
CMS H -> $\tau\tau$ ttH -> multileptons ttH -> bb H -> $\tau\tau$ H-> WW*	Couplings: Yukawa or Vector bosons Yukawa Yukawa Yukawa Vector boson Vector boson	Links 2021/10 2022/08 2024/07 2022/05 2023/09

CP-odd measurements for Vector Bosons

- CMS has studied CP-odd couplings in the context of a more general anomalous couplings analysis (see <u>ref</u>)
 - Here we focus on CP-odd coupling, a_3 , and the effective cross-section ratio $f_{a_3} = \frac{|a_3|^2 \sigma_3}{|a_1|^2 \sigma_1 + |a_3|^2 \sigma_3},$
 - where a_1 is the SM a^{VV} assuming $a^{ZZ} = a^{WW}$, custodial symmetry, σ_i is cross section assuming $a_i^{=1}$, $a_{\neq i}^{=0}$.
 - CMS measurements in VBF/VH using the dijet kinematics, and concern a_3^{ZZ} , with $a_3^{Z\gamma} = a_3^{\gamma\gamma} = 0$
 - a_3^{ZZ} is proportional to \widetilde{c}_{zz} of the Higgs basis
 - CMS measurements are also performed for ggF + 2jets for a_3^{gg} ($\propto \tilde{c}_{gg}$)
- * ATLAS has measurements of CP-odd couplings in the Warsaw basis: $c_{H\widetilde{W}}, c_{H\widetilde{B}}, c_{H\widetilde{W}B}$
 - These are performed for VBF using $\Delta \phi_{jj}$ (fiducial measurements), and optimal observables (see next),
 - As well as in the decay kinematics of $H \rightarrow 4\ell$ decays with optimal observables

RD Schaffer

Optimal Observables with SM/BSM matrix elements

- For the SMEFT Lagrangian:
 - The x-sec is proportional:

- $\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_{i}}{\Lambda^{2}} O_{i}^{(6)}$ $|\mathcal{M}|^{2} = \left| \mathcal{M}_{\text{SM}} + \sum_{i} \frac{c_{i}}{\Lambda^{2}} \mathcal{M}_{\text{BSM},i} \right|^{2}$
- This expands to terms linear and quadratic in $M_{\rm BSM}^{i}$, which can be used to build two optimal observables:

•
$$OO_1 = \frac{2\Re \left(M_{\text{SM}}^* M_{\text{BSM}}\right)}{\left|M_{\text{SM}}\right|^2}$$
 and $OO_2 = \frac{\left|M_{\text{BSM}}\right|^2}{\left|M_{\text{SM}}\right|^2}$, *M* are LO matrix elements

- Note that OO₁ is asymmetric for CP-odd couplings, and OO₂ is symmetric i.e. only changes the x-sec
- * ATLAS measurements primarily use OO_1 to look for an asymmetry
- CMS uses both, reformulated, as discriminants (MELA):

•
$$OO_1$$
: $D_{\text{int}} = \frac{P_{\text{SM-BSM}}^{\text{int}}}{P_{\text{SM}} + P_{\text{BSM}}}$, OO_2 : $D_{\text{BSM}} = \frac{P_{\text{SM}}}{P_{\text{SM}} + P_{\text{BSM}}}$

$CMS H \rightarrow WW: VBF, VH$

- Two approaches (applies to all anomalous coupling measurements):
 - 1) $a_3^{WW} = a_3^{ZZ}$,
 - 2) $a_3^{WW} = c_W^2 a_3^{ZZ}$, SMEFT equivalent, enforce SU(2)xU(1) (c_W is cosine of weak mixing angle)
 - We will quote SMEFT results (see refs. for 1)
- Event categories
 - HVV: VBF 2 jets m_{ij} > 120 GeV, VH 2 jets m_{jj} 60-120 GeV or boosted jet(s), ggH 0,1 jet
 - ggH: ggH 2 jets *m*_{ii} > 120 GeV
 - CRs for $\tau \tau$, top, WW
- Discriminants for a_3 VBF and ggH analyses:
 - VBF: D_{sig} (VBF vs Bkg), D_{BSM} , D_{int} , $m_{\ell\ell}$ (for WW decay effects)
 - ggH: D_{sig} (VBF vs Bkg), D_{BSM} , D_{int}
 - ggH 0,1-jet: $D(m_T, m_{\ell \ell})$ from SM analysis

CMS $H \rightarrow WW$: VBF, VH: SMEFT Results

CMS $H \rightarrow \tau \tau$: ggH+2jets, and VBF, VH

- * Channel with best sensitivity uses $\tau_{\ell} \tau_{\ell}$, $\tau_{\ell} \tau_h$, and $\tau_h \tau_h$
- Measure two f_{a_3} , in both ggH+2jets, and VBF/VH:
 - $f_{a_3}^{ggH}$: find similar sensitivity with $\Delta\phi_{jj}$ and MELA
 - f_{a_3} (VBF/VH): use MELA ($\Delta \phi_{jj}$ less sensitive)
- 3 Event categories
 - 0-jet: ggH, VBF: 2 jets m_{jj} > 300 GeV, |Δη_{jj}| > 2.5 for both VBF and ggH+2jets, boosted: rest
- Discriminants:
 - NN for separating VBF/ggH+2jets from bkg
 - D_{2jet}^{VBF} for ggH to separate from VBF
 - For both analyses: D_{BSM} with $\left| M_{\text{BSM}} \right|^2$ term , D_{int} BSM/SM interference term

CMS $H \rightarrow \tau \tau$ production results

MELA results for ggH + 2jets ggH: $f_{a_3} = -0.08^{+0.35}_{-0.08} (0.0 \pm 0.36 \text{ exp})$ Combined with $H \rightarrow 4\ell$ ggH: $f_{a_3} = -0.07^{+0.32}_{-0.07} (0.0 \pm 0.26 \text{ exp})$

MELA results for VBF, VH VBF: $f_{a_3} = 0.40^{+0.53}_{-0.33} (0.0 \pm 0.08 \text{ exp}) \times 10^{-3}$ Combined with $H \rightarrow 4\ell$ VBF: $f_{a_3} = 0.28^{+0.39}_{-0.23} (0.0 \pm 0.08 \text{ exp}) \times 10^{-3}$

From $H \rightarrow WW$ ggH: $f_{a_3} = -0.034^{+0.3}_{-0.7} (0.0^{+1.0}_{-1.0} \text{ exp})$ VBF: $f_{a_3} = -0.8^{+2.7}_{-1.6} - (0.0^{+1.1}_{-0.8} \text{ exp}) \times 10^{-3}$

ATLAS $H \rightarrow ZZ^* \rightarrow 4\ell$ production and decay

 $OO_1 = \frac{2\Re \left(M_{\rm SM}^* M_{\rm BSM} \right)}{\left| M_{\rm SM} \right|^2}$

- SMEFT: both Higgs and Warsaw bases
- * Fits production (VBF) and/or 4ℓ decay
 - \widetilde{c}_{zz} is only sensitive to VBF production
 - $c_{H\widetilde{W}}$ is sensitive to both production and decay
 - $c_{H\widetilde{B}}$, $c_{H\widetilde{W}B}$ is sensitive to only decay
- NN discriminant used for VBF/ggH+2jet separation
- BDT discriminant for ggH qqZZ background separation
- Effects of ignoring the $\left| M_{\rm BSM} \right|^2$ term are < 10%

OO_{ii} equal-size bins

tails are important

22/10/24

ATLAS $H \rightarrow Z^*Z^* \rightarrow 4\ell$: Results

CP-odd coupling results in Warsaw and Higgs bases

ATLAS $H \rightarrow \gamma \gamma$ VBF production

Same approach as for

 $H \to ZZ^* \to 4\ell$

- * Shape analysis for $OO_1 = \frac{2\Re \left(M_{\rm SM}^* M_{\rm BSM}\right)}{\left|M_{\rm SM}\right|^2}$
- Discriminants: 2 BDTs for
 - VBF/ggF, and
 - VBF/continuum bkg
 - 10% Improved VBF discrimination relative standard analysis
 - Loose VBF sel: $|\Delta \eta_{jj}| < 2$, $\eta^{Zepp} < 5 (|\eta_{\gamma\gamma} - (\eta_{j1} + \eta_{j2})/2|)$

ATLAS $H \rightarrow \gamma \gamma$ VBF production: Results

Table 1: Observed and expected 68% and 95% confidence intervals for \tilde{d} and $c_{H\tilde{W}}$. Results for scenarios with the interference-only (noted as 'inter. only') term and interference-plus-quadratic terms (noted as 'inter.+quad.') are both presented. Combined results for \tilde{d} including the $H \rightarrow \tau\tau$ analysis are shown. The expected results of $H \rightarrow \tau\tau$ are slightly different from Ref. due to the different correlation scheme between their signal region and control region.

		68% (exp.)	95% (exp.)	68% (obs.)	95% (obs.)
	\tilde{d} (inter. only)	[-0.027, 0.027]	[-0.055, 0.055]	[-0.011, 0.036]	[-0.032, 0.059]
	\tilde{d} (inter.+quad.)	[-0.028, 0.028]	[-0.061, 0.060]	[-0.010, 0.040]	[-0.034, 0.071]
	\tilde{d} from $H \to \tau \tau$	[-0.038, 0.036]	—	[-0.090, 0.035]	-
d	Combined \tilde{d}	[-0.022, 0.021]	[-0.046, 0.045]	[-0.012, 0.030]	[-0.034, 0.057]
Cuĩ	$c_{H\tilde{W}}$ (inter. only)	[-0.48, 0.48]	[-0.94, 0.94]	[-0.16, 0.64]	[-0.53, 1.02]
<i>HW</i> -	$c_{H\tilde{W}}$ (inter.+quad.)	[-0.48, 0.48]	[-0.95, 0.95]	[-0.15, 0.67]	[-0.55, 1.07]
quadration has little	c term effect	expected 68% CL	expected 95% CL	observed 68% CL	observed 95% CL

~25% improved sensitivity over $H \to Z Z^* \to 4\ell$

Also measure d constraints (HISZ basis) to compare and combined with previous $H \rightarrow \tau \tau$ <u>measurement</u>: $\frac{\Lambda^2}{v^2} \tilde{d} = c_{H\widetilde{W}} = c_{H\widetilde{B}}, c_{H\widetilde{W}B} = 0$

22/10/24

RD Schaffer

ATLAS $H \rightarrow \tau \tau$ VBF production: differential

Unfolded $\Delta \phi_{jj}$ vs p_T^H is used for CP-odd couplings fit

 $\circ m_{jj}$ > 300 GeV, $|\Delta \eta_{jj}|$ > 3.4, p_T^{jj} > 30 GeV - better VBF/ggF separation

• results better than $H \rightarrow \gamma \gamma$, expect improvements with OO

Results summary: 95% CL limits (ttH from 2d)

	ATLAS		CMS	
	obs	ехр	obs	ехр
H→ττ decay <mark>(deg)</mark>	±34	[-70, 75]	[-42, 40]	±21
ttH/tH H→bb $\frac{\tilde{\kappa}_t}{k}$	±1.2		±1.4	±1.7
ttH/tH H→γγ	±1.1		±1.2	±1.3
ttH/tH H→WW,ττ			±1.7	±1.2
ttH/tH combined			±1.1	±1.0
VBF H \rightarrow WW $f_{a_3}(10)$	-3)		[-7.6,59.]	[-3.4,4.3]
VBF H→ττ			[-0.01,1.9]	[-0.33,0.33]
VBF $H \rightarrow \tau \tau$, $H \rightarrow 4\ell$			[-0.01,1.3]	[-0.30,0.30]
$VBF H \to 4\ell \qquad {}^{\mathcal{C}}_{\mathcal{H}\widetilde{W}}$	[-0.81, 1.5]	[-1.3, 1.3]		
VBF H→γγ	[-0.53, 1.02]	[-0.9, 0.9]		
VBF H→ττ	[-0.31, 0.88]	[-0.6, 0.6]		

Summary

- Constraints on CP-odd couplings to the Higgs boson are now available for most analyses of interest for full Run 2
 - These cover both couplings to fermions and vector bosons
 - Expect a few more results to complete Run 2
 - Other fiducial differential ($\Delta \phi_{ii}$) results are available for EFT analysis
- Currently no evidence for a deviation from the SM
- Measurements are largely statistics-dominated, leaving room for improved constraints
- Limit combinations has largely been done within CMS and is on-going within ATLAS
- Would probably be good to combine ATLAS and CMS results
 - Requires some discussions...

CMS $H \rightarrow \tau \tau$ VBF production results

RD Schaffer