ATLAS and CMS Searches for light scalars from direct production and h₁₂₅ decays A. Nikitenko, IC, London, UK Extended Scalar Sector Workshop in CERN, 21-25 Oct. 2024

Direct production

• I will consider the two following analyses

- pp→bbA, A→µµ, ττ, CMS (in the context of WS Yukawa Coupling Scenario in 2HDM Type II)
 - <u>JHEP 11 (2017) 010</u>,
 - <u>Phys. Lett. B 758 (2016) 296</u>
 - JHEP 05 (2019) 210
- pp \rightarrow ttA, A \rightarrow µµ (and pp \rightarrow tt, t \rightarrow H[±]b, H[±] \rightarrow W[±]A, A \rightarrow µµ), ATLAS
 - Phys. Rev. D 108 (2023) 092007

First CMS analyses on 8 TeV data

 $\mu\mu$ and $\tau\tau$ final states have similar sensitivity assuming their BRs are related as $(m_{\tau}/m_{\mu})^2$

Quick reminder on Wrong Sign Yukawa Coupling Scenario (WS) and pp \rightarrow bbA, A \rightarrow µµ, $\tau\tau$ (I)

Two solutions to have h compatible with h₁₂₅ in Type II 2HDM plot provided by P. Ferreira (in 2019), see also P. Ferreira et al arXiv1410.1926

- **Blue** alignment or decoupling limit, 20% compatibility with SM signal strength
- **Green and Yellow** $\cos(\beta + \alpha) \approx 0$, Wrong Sign Yukawa Scenario:

Green – 20 % compatibility

2HDM Type II scan by P. Ferreira

Wrong sign Yukawa coupling ($C_{D}\approx-1$, $C_{V}=C_{U}\approx1$) scenario, sin($\beta+\alpha$) ≈1 , can be excluded or confirmed with $h \rightarrow \gamma\gamma$ at HL-LHC,3 ab⁻¹ where the h_{125} signal strength accuracy measurement of ≈ 5 % can be reached (FTR-19-001)

Quick reminder on Wrong Sign Yukawa Coupling Scenario (WS) and pp \rightarrow bbA, A \rightarrow µµ, $\tau\tau$ (II)

can Wrong Sign Yukawa Coupling Scenario be probed with a search for additional bosons ?

- 2HDM Type II scan with constraints (see J. Bernon et al. arXiv:1412.3385)
 - $m_A < m_h/2$
 - BR(h->AA) < 0.3
 - Dark yellow color WS scenario

WS scenario: CMS searches for light A in bbA, A-> $\tau\tau$ at 13 TeV and complementarity with h₁₂₅ measurements

- most of the points in WS scenario with $tan\beta > 3$ are excluded by $pp \rightarrow bbA$, $A > \tau\tau$
- region $tan\beta < 3$ in WS scenario is excluded by h_{125} measurements
- can conclude that WS scenario is excluded for $m_A < m_h/2$
- what's about $m_A > m_h/2$ region ? One should check ATLAS/CMS A/H $\rightarrow \tau\tau$ searches

Comparison of experimental limits with predictions in 2HDM and WS scenario: bb ϕ , ϕ -> $\tau\tau$

- Scans of 2019 by Pedro Ferreira (see also <u>J. Bernon et al., arXiv:1507.00933</u>)
 - Blue 2HDM Type II, compatibility 20 % with SM signal strength
 - Yellow WS scenario in 2HDM Type II, compatibility with SM signal strength 10 %

ATLAS search for pp \rightarrow ttA, A \rightarrow µµ (and pp \rightarrow tt, t \rightarrow H[±]b, H[±] \rightarrow W[±]A, A \rightarrow µµ) with full Run II data

Motivated, in particular by <u>Mirkoantonio Casolino</u>, <u>Trisha Farooque</u>, <u>Aurelio</u> <u>Juste</u>, <u>Tao Liu</u>, <u>Michael Spannowsky</u> «Probing a light CP-odd scalar in di-topassociated production at the LHC" <u>arXiv:1507.07004</u>

Signal selections

- $e^{\pm}\mu^{+}\mu^{-}$, $\mu\mu\mu$ selected with single electron and single muon triggers
 - $\Sigma \mu$ charge = ±1 for $\mu\mu\mu$
 - for $\mu\mu\mu$ final state «a-muons» are muons with $m_{\mu\mu}$ closest to m_a . Other muon is «top-muon».
 - a-muons p_T > 15, 10 GeV,
 - + top-muon p_T > 27 GeV, $|\eta_{\mu}|$ < 2.5
- signal region
 - 12 < $m^a_{\mu\mu}$ < 77 GeV, $m^{other}_{\mu\mu}$ < 77 GeV or > 107 GeV to reject Z $\rightarrow \mu\mu$
 - \geq 3 jets p_T > 20 GeV, $|\eta|$ <2.5; \geq 1 b-tagged jet

width assumed to be dominated by detector resolution

Result for $pp \rightarrow tta$, $a \rightarrow \mu \mu$ model

Minimal p-value = 0.008 (2.4 σ) at m_a=27.0 GeV,

Searches for the light scalars from h₁₂₅ decay

CMS and ATLAS searches for $h_{125} \rightarrow ss \rightarrow xxyy$ on one plot

M. Carena et al arXIv:2203.08206 see also M. Cepeda at el arXiv:2111.12751

Recent ATLAS analyses of 2024

- <u>h₁₂₅→aa→4γ</u>
- $h_{125} \rightarrow Za \rightarrow ll\gamma\gamma$

R. Aggleton at al, arXiv:1609.06089 Br's in NMSSM

Searches for h_{125} decay to aa(hh) vs models (I)

this plot need to be updated for

13 TeV (Run II) analyses. CMS:

- μμbb: <u>arXiv:2402.13358</u> m_a range is 20-60 GeV
- ττbb: <u>arXlv:2402.13358</u> m_a range is 15-60 GeV
- $\mu\mu\tau\tau$: <u>arXiv:2005.08694</u> m_a range is 3.6-21 GeV
- $\tau \tau \tau \tau$: <u>arXiv:1907.07235</u> m_a range is 4.0-15 GeV
- μμμμ: <u>arXiv:1812.00380</u> m_arange is 0.25-8.5 GeV
- bbbb: <u>arXiv:2403.10341</u> m_a range is 15-60 GeV

h125+singlet model Already sensitive to parameter regions for strong 1st order EWPT

mass range, $m_a \approx 10-15 \text{ GeV}$ was not accessible. $\mu\mu(\tau\tau)$ bb could do it using a «fat jet», with two b-quarks inside.

Searches for h_{125} decay to aa(hh) vs models (II)

Regions 3-5, 9-11 GeV are covered with calculations taking into account effect of mixing of pseudoscalar and η_c , η_b states (h-> $\eta_b\eta_c$ ->aa, η_ba ->aa, ...). U. Haisch et al. arXiv:1802.02156

Search for dimuon resonance with mass of ≈28 GeV in µ⁺µ⁻ + b-jet events using CMS Run I and Run II data

Motivation of $\mu^+\mu^-$ **+b analysis**

M.M. Almarashi and S. Moretti, "Low mass Higgs signals at the LHC in NMSSM", Eur. Phys. J. C71 (2011) 1618

J. Bernon, J. F. Gunion, Y. Jiang, and S. Kraml,
 "Light Higgs bosons in two-Higgs-doublet models",
 <u>Phys. Rev. D 91 (2015) 075019</u>

CMS Preliminary, 19.8 fb⁻¹ at 8TeV CMS h,H,A→ττ 19.7 fb⁻¹ (8 TeV) + 4.9 fb⁻¹ (7 TeV) Events dN/dm $_{ m tr}$ [1/GeV] - Observed h.H.A→ττ μτ (pre-fit) Observed Bkg. uncertainty b-tag 10² b-tag Ζ→ττ Ζ→ττ tī **Z**→μμ Electroweak Electroweak OCD tī. 🕅 Bkg. uncertainty MSSM m^hay scenario m₄=160 GeV, tanβ=8 10 10⁻² 10⁻³ 10-4 10 20 25 30 35 40 45 50 500 1000 1500

JHEP 10 (2014) 160

m_{ττ} [GeV]

16

zoom at low mass

M_{rt} [GeV]

Observation of event excess at 8 TeV in 2014

17

- due to good luck: selection $p_T^{\mu 1,2}$ >25 GeV instead of 25,10 GeV was applied due to typo in code for Search Region 1 (SR1)
- once bump was observed in SR1
 Higgs PAG conveners
 wanted to be convinced by finding
 the same bump in different event
 category (SR2). It was done.

m_{μμ} [GeV]

Once paper of 8 TeV analysis was ready to be out in 2016 we were requested to add 13 TeV 2016 data with <u>the same selection</u>. We published analysis (JHEP 11 (2018) 161) 2 years later in 2018.

Event	S	SR2				
category	Additional forward jet		Additional central jet			
Muons	OS, $p_{\rm T} > 25 { m GeV}, \eta < 2.1$					
$m_{\mu\mu}$	$m_{\mu\mu} > 12{ m GeV}$					
b-tagged jet	$p_{ m T}>30{ m GeV}, \eta \leq 2.4$					
Additional jet	$p_{\mathrm{T}} > 30 \mathrm{GeV}$	$p_{\rm T} > 30 { m GeV}, \eta \le 2.4$				
Jet veto	No other jets $p_{\rm T}$	No jets $p_{ m T} > 30 { m GeV}$, 2.4 $< \eta < 4.7$				
$p_{\mathrm{T}}^{\mathrm{miss}}$			$<\!40\mathrm{GeV}$			
$\Delta \phi(\mu \mu, jj)$			>2.5 rad			
					_	
	Event	Event SR1		R2		
\	category Add	ditional forward jet	Additiona	ıl central jet	_	
	$m_{\rm X} ({\rm GeV}) = 28.4 \pm 0.6$		28.2 ± 0.7			
	$\Gamma_{\mu\mu}$ (GeV)	μ (GeV) 1.9±1.3 1.9±1.1		_		
	-					
\sqrt{s} (TeV)		8	8		13	
Event category		SR1	SR2	SR1	SR2	
Local significance (s.d.)		4.2	2.9	2.0	1.4 deficit	
$m_{\rm X}$ (GeV)		28.3=	28.3 ± 0.4			
$\Gamma_{\mu\mu}$ (GeV)		1.8±	$1.8 {\pm} 0.8$			
Ns		22.0 ± 7.6	22.8 ± 9.5	14.5 ± 9.3	-14.9 ± 10.1	

M. Mangano: no observation at 13 TeV might be explained by the increase of tt background by a factor of 3.3

Extended Scalar Workshop in CERN, 21-25 October, 2024

Analysis is on the way with full Run II data.

What we can learn from public plots of the previous analysis?

• bumpy structure in $p_T^{\mu 2}$ =[18-25] GeV in the signal region is not present in sidebands

- therefore previous analysis cut of $p_T^{\mu 2} > 25$ GeV is not optimal for the «signal» in 13 TeV data
- «signal» is produced from the decay of heavy object (to be shown later)
- "signal" has non zero soft missing p_T in the range of \approx [0-80] GeV

Signal models we considered based on 8 TeV and 13 TeV 2016 data

In collaboration with Stefano Moretti, Luca Panizzi, Daniele Barducci

Does signal originate from the direct production or not? Is it a scalar or vector?

VLQ model

Direct production

CMS simulation, 8 TeV

(=scalar

X→μμ

60 70

0.9

0.7

0.6E

0.5E

0.4E

0.3

0.2

0.1E

data

«XY» model

Signal has some missing p_T

◀

∢

from bbA

Run I, 8 TeV data soft missing p_T

«XY» model:bbY prod.

too large real missing p_T

.

40

20

60 80 100 120 140 160 180 200 220

true missing p_ [GeV]

0.05

23

YX model: true missing p_T in SR1, 8 TeV

It seems S2 is a dominant contribution, but ... (next slide)

YX model, $p_T^{\mu 2}$ in SR1, 13 TeV

25

Analysis is on the way with full Run II data

Stay tuned.

Conclusions

- no light scalars found yet in a direct production or from h₁₂₅ decays
 - need to improve sensitivity in $10 < m_a < 20$ GeV mass range with merged b-jets
- most significant excess is found in $\mu\mu$ +b-jet analysis at $m_{\mu\mu} \approx 28$ GeV in two event categories at 8 TeV (local significance 4.2 σ and 2.9 σ)
 - analysis is on the way with full Run II data

YX model, $p_T^{\mu 2}$ in SR1, 13 TeV

