Constraints on extended scalar sectors from flavor at the LHC

Biplab Dey

(including results from ATLAS, CMS and Belle II)

Extended Scalar Sectors From All Angles, CERN

Biplab Dey (ELTE)

Flavor and Higgs

 24^{th} October 2024

1/37

HIGGS AND FLAVOR

- $\mathcal{L}_{\text{gauge}}$ has huge flavor-degeneracy between the 3 generations.
- Global symmetry: $U(1)_L \times U(1)_B \times U(1)_Y \times U(3)_F^5$.

Biplab Dey (ELTE)

• Flavor-degeneracy is massively broken by the Higgs Yukawas resulting in strong hierarchy in quark masses.

Flavor and Higgs

GREAT SUCCESS OF SM PARADIGM AT THE LHC

FLAVOR AS A DISCOVERY TOOL

No unambiguous sign of New Physics yet...

- If $\Lambda_{\rm NP} \gg$ TeV, precision flavor can probe the "desert" via rare/forbidden loop-mediated processes.
- Long history of flavor as an "indirect" probe for new heavy particles:
 - weak nuclear β decay \Rightarrow heavy W/Z
 - $K_L^0 \rightarrow \mu^+ \mu^-$ GIM suppression \Rightarrow charm
 - B^0 -mixing at ARGUS \Rightarrow heavy top
 - − SM-like $\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$ at the LHC \Rightarrow tight limits on MSSM/SUSY

FLAVOR ANOMALIES OVER PAST DECADE...

- Measurements deviating from SM predictions.
- Anomalies development tracked here.
- Mostly from LHCb involving *b*-decays.
- Getting to $5\sigma \Rightarrow$ experimental, theory and external (sys.) challenges.

b-factories: e^+e^- vs pp colliders

- Running at $e^+e^- \to \Upsilon(4S) \to B\overline{B}$. Low background, $\epsilon_{\text{trigger}} \sim 100\%$. $\mathcal{O}(10^9)B^{0,\pm}$. BelleII $\to \mathcal{O}(10^{10})$.
- Excellent for electrons, neutrals, neutrinos, inclusive and flavor-tagging power.

- $\mathcal{O}(10^{11})B_{(s)}^{0,\pm}$. UpgradeII $\rightarrow \times 100$. Busy environment, initial partonic 4-mom unknown.
- Excellent for exclusive muonic/hadronic modes, PID, vertexing, all *b*-hadron species $(\Lambda_{\rm b}^0, B_s^0, B_c^+...)$
- $\mathcal{O}(10^{12})B^{0,\pm}_{(s)}$, but very high background. No PID.
- Excellent tracking. Limited *b*-trigger (low p_T) bandwidth; "B-parking" at CMS (10¹⁰ *b*-hadron pairs triggered just in 2018).

Biplab Dey (ELTE)

Flavor and Higgs

LHCb: current status

LHCB IN RUN 3

[LHCb Upgrade Ia (JINST19(2024)P05065)]

- General purpose forward experiment at the LHC.
- Major Upgrade Ia installed during LS2 (2018-21).

2024 DATA-TAKING

2022→2024: commissioning→ stable operation of a ~ brand new detector + DAQ in a higher pileup environment.

LHCb Average Instantaneous Lumi in p-p in 2024

Biplab Dey (ELTE)

2024 integrated lumi

• 2024 Run 3 *pp*-data taking ended last week. Remarkable haul in 2024, thanks to LHC and LHCb U1a DAQ.

CRUNCHING IT...

• Understanding and analyzing this large dataset will be the next big challenge. Also, prepare for Run 3 2025.

Biplab Dey (ELTE)

Flavor and Higgs

11 / 37

HIGGS @ LHCB RUN 1+2: OUTLOOK

- Run 1+2 (9/fb): levelled lumi ($\mu \sim 1$) for stable run conditions.
- New "proof-of-principle" searches towards upgrades, in addition to core flavor program.

Biplab Dey (ELTE)

Flavor and Higgs

 24^{th} October 2024

12/37

Rare $b \rightarrow s$ penguins

Basis of local operators for $b \rightarrow s$ penguins

• (V - A) LH operators consistent with SM symmetries:

$$\mathcal{O}_{1}^{u} = (\bar{s}\gamma_{\mu}T^{a}P_{L}u) (\bar{u}\gamma^{\mu}T^{a}P_{L}b)$$

$$\mathcal{O}_{2}^{u} = (\bar{s}\gamma_{\mu}P_{L}u) (\bar{u}\gamma^{\mu}P_{L}b)$$

$$\mathcal{O}_{1}^{c} = (\bar{s}\gamma_{\mu}T^{a}P_{L}c) (\bar{c}\gamma^{\mu}T^{a}P_{L}b)$$

$$\mathcal{O}_{2}^{c} = (\bar{s}\gamma_{\mu}P_{L}c) (\bar{c}\gamma^{\mu}P_{L}b)$$

$$\mathcal{O}_{3} = (\bar{s}\gamma_{\mu}P_{L}b) \sum_{q} (\bar{q}\gamma^{\mu}q)$$

$$\mathcal{O}_{4} = (\bar{s}\gamma_{\mu}T^{a}P_{L}b) \sum_{q} (\bar{q}\gamma^{\mu}T^{a}q)$$

$$\mathcal{O}_{4}^{c} = (\bar{s}\gamma_{\mu}T^{a}P_{L}b) \sum_{q} (\bar{q}\gamma^{\mu}T^{a}q)$$

$$\mathcal{O}_{5} = (\bar{s}\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}P_{L}b)\sum_{q} (\bar{q}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}q)$$

$$\mathcal{O}_{6} = (\bar{s}\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}T^{a}P_{L}b)\sum_{q} (\bar{q}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}T^{a}q)$$

$$\mathcal{O}_{7} = \frac{e}{16\pi^{2}}m_{b}(\bar{s}\sigma_{\mu\nu}P_{R}b)F^{\mu\nu}$$

$$\mathcal{O}_{8} = \frac{g_{s}}{16\pi^{2}}m_{b}(\bar{s}T^{a}\sigma_{\mu\nu}P_{R}b)G^{a\mu\nu}$$

$$\mathcal{O}_{9} = \frac{e^{2}}{16\pi^{2}}(\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell)$$

$$\mathcal{O}_{10} = \frac{e^{2}}{16\pi^{2}}(\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)$$

*O*_{1,2} (4-quark tree), *O*₃₋₆ (4-quark penguins), *O*₈ (gluon penguin) *B*⁰_(s) → μ⁺μ⁻ sensitive to additional NP scalar *O*_{S,P}.

Biplab Dey (ELTE)

14/37

THE THREE DOMINANT CONTRIBUTIONS

• The dominant $\mathcal{O}_{7,9,10}$ contributions, as a function of q^2 :

• Additional $\mathcal{O}'_{7,9,10}$ as RH (quark) operators, suppressed in the SM, but can be enhanced in NP scenarios.

Biplab Dey (ELTE)

Flavor and Higgs

WILSON COEFFICIENTS AND LOCAL FFS

• From SMEFT to weak EFT (WEFT) at m_b scale:

- The (dimensionless) Wilson coefficients encode the short-distance physics. $\mathcal{A}(i \to f) = \sum C_n(m_b) \langle f | \mathcal{O}_n(m_b) | i \rangle.$
- The long-distance physics (hadronization) is encoded in the *local* form-factors (theory). Eg. $V_{\mu}^{B \to M}(k,q) \equiv \langle M(k) | \overline{s} \gamma_{\mu} P_L b | \overline{B}(q+k) \rangle$
- Inputs to rich pheno from multibody amplitude analyses @LHCb: $B \to K \pi \ell^+ \ell^-, B^0_s \to \phi \ell^+ \ell^-, \Lambda^0_b \to \Lambda^{(*)} \ell^+ \ell^-, B^0 \to K^{*0} \gamma,$ $B^0_s \to K^+ K^- \gamma, \Lambda^0_b \to \Lambda^{(*)} \gamma.$

NON-LOCAL (AKA CHARM LOOP) CONTRIBUTIONS

• Non-local contributions from propagating $c\overline{c}$ are the bane:

- At leading order, the $\mathcal{O}_{1,2}$ is factorizable, but leads to strong phases from the resonances (LHCb has measured these).
- Further (soft+hard) gluons lead to *non-factorizable* contributions, that can mimic NP contributions. Need data-driven approaches.

$b \rightarrow s \mu^+ \mu^-$: effect on global fits

• Both BFs and angular analyses show tensions. C_{10A} constrained by $B_s^0 \to \mu^+ \mu^-$ and $C_{7\gamma}$ by $B \to X_s \gamma$. Primary suspect is C_{9V} .

THREE WAYS TO TAME HADRONIC UNCERTAINTIES

- More model-independent amplitude analyses, including $c\bar{c}$ ansatz. $B^0 \to K^* \mu^+ \mu^-$ for now, but B_s^0 , Λ_b^0 to follow. Hovering at $\sim 2\sigma$.
- Lepton Flavor Universality violation (LFUV) in the rates:

$$\begin{split} R_X^{-1} &\equiv \frac{\frac{N}{\epsilon}(H_b \to X_s e^+ e^-)}{\frac{N}{\epsilon}(H_b \to X_s J/\psi \, (e^+ e^-))} \; \middle/ \; \frac{\frac{N}{\epsilon}(H_b \to X_s \mu^+ \mu^-)}{\frac{N}{\epsilon}(H_b \to X_s J/\psi \, (\mu^+ \mu^-))} \\ \text{with } \mathcal{B}(J/\psi \to e^+ e^-)/\mathcal{B}(J/\psi \to \mu^+ \mu^-) = 1 \text{ from PDG.} \\ \text{LHCb-2023 } R(K^{(*)}) \text{ update [PRD108(2023)032002] + CMS-2023} \\ \text{[CMS-PAS-BPH-22-005]: SM-like.} \end{split}$$

• LFUV in angular observables $Q_i \equiv S_i^{\mu} - S_i^{e}$.

Run 1+2 still "exploratory" \rightarrow need Run 3 and beyond

Biplab Dey (ELTE)

Flavor and Higgs

19 / 37

Two new data-driven fits for $B^0 \to K^{*0} \mu^+ \mu^-$

Four new $b \to se^+e^-$ results

- Electron triggers need higher E_T thresholds to tackle ECal occupancy, than muons. Lower statistics than muons.
- Data-driven trigger eff corrections in MC, and $h \to e$ background removal, similar to 2023 $R(K^{(*)})$ paper [PRD108(2023)032002]

Biplab Dey (ELTE)

Flavor and Higgs

24th October 2024

21/37

Run 1+2 R_{ϕ} and $R_{K\pi\pi}$ (preliminary)

• Two new LFUV in the BFs:

LFUV in $B^0 \to K^{*0} \ell^+ \ell^-$ angular analysis

- $B^0 \to K^{*0} e^+ e^-$ angular analysis in the central q^2 region.
- For LFUV, muonic results from [PRL132(2024)131801]

$C_7^{(')}$ from $B_s^0 \to \phi e^+ e^-$

$B_s^0 \to \phi e^+ e^-$ LOW- q^2 ANGULAR ANALYSES

- $q^2 \to 0$ region close to the photon pole sensitive to $C_7^{(\prime)}$. Accessible only via the *ee* modes. $B^0 \to K^{*0}e^+e^-$ in [JHEP12(2020)081].
- Corresponding analysis with the B_s^0 . CP-averaged for now, but TDCPV also very interesting.

$C_7^{(\prime)}$ from $B_s^0 \to \phi e^+ e^-$

$B^0_s \to \phi e^+ e^-$ LOW- q^2 ANGULAR ANALYSES

• Places constraints on RH currents in $b \to s\gamma$:

[LHCB-PAPER-2024-030-002]

(preliminary)

Biplab Dey (ELTE)

Flavor and Higgs

24th October 2024 25 / 37

$B^0_{(s)} \to \mu^+ \mu^-$ STATUS

- Loop+hel. suppressed in the SM. B_d^0 yet to be observed.
- 2020 LHC combination: $\mathcal{B}(B^0_s \to \mu^+ \mu^-)$ $\sim 2.4\sigma$ below SM (mostly driven by ATLAS).

- Full Run 2 CMS and LHCb, both consistent w/ SM.
- Higher lumi at GPDs, while better mass resolution at LHCb:

Very rare decays

 $B_s^0 \to \mu^+ \mu^- \gamma$

$B^0_s ightarrow \mu^+ \mu^- \gamma$: FIRST DIRECT SEARCH [JHEP07(2024) 101]

- Unlike $B_s^0 \to \mu^+ \mu^-$, no hel. suppression in $B_s^0 \to \mu^+ \mu^- \gamma$. Indirect limit from high- q^2 ISR in $B_s^0 \to \mu^+ \mu^-$. Now, reconstructed γ .
- Sensitivity to $C_{7,9}$ in addition to C_{10} . Theory $\mathcal{B} \sim 10^{-9}$ to 10^{-10} depends on $B_s^0 \to \gamma$ FF.

ϕ_s from B_s^0 mixing in $b \to sc\bar{c}$

- In the SM, $B_s^0 \overline{B}_s^0$ mixing angle $\phi_s \equiv 2 \arg[-(V_{ts}V_{tb}^*/(V_{cs}V_{cb}^*)])$, is small, precisely known and sensitive to penguins.
- CKMFitter-2023: $\beta_s = 0.01882^{+0.00026}_{-0.00054}$
- Consistent w/ SM, but statistics limited.

$B^+ \to K^+ \nu_\ell \overline{\nu}_\ell$ AT BELLEII

s

lo charm

loop poll

Rest Of the

Event (ROE)

Charged particles
 Neutral particles

Belle II (362 fb⁻¹, combined)

Belle II (362 fb⁻¹, hadronic) ¹¹±^{1.1} This analysis, preliminary Belle II (362 fb⁻¹, inclusive) ²⁷±^{0.7} This analysis, preliminary Belle II (63 fb⁻¹, inclusive)

Belle (711 fb⁻¹, semileptonic) 10+00 FHD96 0FHH Belle (711 fb⁻¹, hadronic) 2+1.0 FHD97, 10100 BaBar (418 fb⁻¹, semileptonic)

10

BaBar (429 fb⁻¹, hadronic) 15+13 PR087, 12085

 $10^5 \times \text{Br}(B^+ \rightarrow K^+ \nu \bar{\nu})$

Biplab Dey (ELTE)

Ks
 not associated to K

 W^{-}

 $\mathcal{B}_{\rm SM} \sim 5.6 \times 10^{\circ}$

ITA

incl

0

high $\epsilon_{\rm tag}$

[PRD109, 112006(2024) [PRL 127 181802 (2021)]

- Access to 3rd gen. in EWP (also $B^0 \to K^0 \tau^- \tau^+$)
 - Theory prediction from lattice: 6% precision. Previous best UL at 1.6×10^{-5} at 90% CL.
 - $B^+ \to K^+ +$ invisible: no access at LHCb.
 - Conventionally, hadronic tag. New: inclusive tag.
 - Data/MC checks from control samples: $q\overline{q} + B\overline{B}$ $(B \to D^{(*)}(\to K^+X)\ell\nu, B^+ \to K^+K_LK_{L,S}, B^+ \to K^+nn, B^+ \to K^+D^{(*)},$ $B^+ \to K^+[J/\psi(\to \mu\mu)]_{\text{miss}}, B^+ \to \pi^+K^0)$
 - $\bullet\,$ Two-step BDT (ITA). ITA/HTA agrees.
 - \bullet ITA: 2.3 σ tension w/ BABAR-SL tag.
 - Combined: 3.5σ evidence, 2.7σ deviation from SM.

Flavor and Higgs

29 / 37

$b \to c \tau^- \overline{\nu}_{\tau}$ and friends

THE TWO TOWERS

 $u, c \quad \bullet \text{ Hard at LHCb because of missing } \nu's$ $\ell^- \quad \bullet \ R_X \equiv \mathcal{B}(H_b \to X_c \tau^- \overline{\nu}_{\tau}) / \mathcal{B}(H_b \to X_c \ell^- \overline{\nu}_{\ell}).$ $\ell = \mu \text{ at LHCb.}$

• ~ 3σ tensions in $|V_{xb}|$ and $R(D^{(*)})$. $|V_{xb}|$ probably SM/exp. issue.

τ reconstruction at LHCB

Muonic (BelleII+LHCb)

- Higher statistics
- Same final state as $B \to D^* \mu \nu$ normalization mode. Many systematics cancel.
- Multiple missing ν 's. Infer p_B using boost approx. $p_B^{\parallel} \propto p_{\rm vis}^{\parallel}$

Hadronic (LHCb)

- Cleaner selections.
- Normalization mode is $B \to D^* 3\pi \ (\Lambda_{\rm b}^0 \to \Lambda_c 3\pi).$ Need external BFs as inputs $(\to \text{systematics}).$
- Better resolutions in the kinematic variables. Two two-fold ambiguities.

OTHER SEMITAUONIC RESULTS

- First evidence, $B^- \to D^{**0} (\to D^{*+} \pi^-) \tau^- \overline{\nu}_{\tau}$
- Important bkgd for $R(D^{(*)})$

$$P(D_1(2420)^0 + D_2^*(2460)^0) = 0.13 \pm 0.03(\text{stat}) \pm 0.01(\text{syst}) \pm 0.02(\text{ext})$$

• Consistent w/ SM at 1σ

 $F_L^{D^*} = 0.51 \pm 0.07 \pm 0.03$ at $q^2 < 7 \text{ GeV}^2/c^4$ $F_I^{D^*} = 0.35 \pm 0.08 \pm 0.02$ at $q^2 > 7 \text{ GeV}^2/c^4$ $F_L^{D^*} = 0.495 \pm 0.017$ | at $q^2 < 7 \text{ GeV}^2/c^4$

• Consistent w/ SM, but statistics limited.

• Run 1 $R(\Lambda_c)$ [PRL128(2022)191803] also consistent w/ SM.

Biplab Dey (ELTE)

Flavor and Higgs

 24^{th} October 2024

Direct Higgs searches

$H \to b \bar{b} (c \bar{c})$ in forward jets at LHCB

• Excellent tracking, vertexing, lepton-id in the forward region. HF jet tagging.

• $b\overline{b}(c\overline{c})$ +lepton: sensitive to WH/ZH.

• No signal in Run 1. UL: $y^b < 7y^b_{\rm SM}, y^c < 80y^c_{\rm SM}$

- Run 2: regression for jet energy correction (*jj* mass) and DNN for jet identification.
- Upgrade II 300/fb projection: $y^c \sim 2y_{\rm SM}^c$ sensitivity possible.

Flavor and Higgs

 24^{th} October 2024

r 2024 35 / 37

EXOTIC HIGGS \rightarrow LLPS AT LHCB

• Lower mass reach than GPDs due to softer triggers.

SUMMARY AND OUTLOOK

- Flavor constraints are a critical part of NP search paradigm.
- Around $2\sigma \ (b \to s\ell^+\ell^-)$ and $3\sigma \ (b \to c\tau\nu)$ tensions still persistent.
- Leptoquarks, Z', charged Higgs...?

• Much more data is coming in Run 3+. Large program at LHCb:

- Both $b \to c$ and $b \to s$ with baryons $(\Lambda_b^0, \Omega_b, \Sigma_b, \Xi_b)$ and B_c^+ .
- **TDCPV** in $b \to s$: $B^0_s \to \phi \mu^+ \mu^-$, $B^0 \to K^0_s \pi^+ \pi^- \gamma$, $B^0 \to K^0_s \phi \gamma$.
- Higgs to HF Yukawa couplings can be probed at LHCb.
- LHCb can probe dark Higgs portal both at low and high transversity, with downstream tracking and CODEX-b.