HIGGS & FLAVORS SEARCHES FOR H-C COUPLING, LFV, AND LIGHTER FERMIONS

Yusheng Wu

University of Science and Technology of China

For ATLAS and CMS collaborations

Extended Scalar Sectors From All Angles Workshop

CERN, Oct. 21-25, 2024

Physics @ Electroweak Scale

A central piece of LHC Physics Program: Higgs measurements and searches

Higgs & Flavor

Higgs Yukawa interactions at the heart of flavor-related questions the source of fermion masses and CKM matrix

$$\mathcal{L}_{Y} = \sum_{jk} \left\{ \left(\bar{u}'_{j}, \bar{d}'_{j} \right)_{L} \left[c^{(d)}_{jk} \left(\begin{array}{c} \phi^{(+)} \\ \phi^{(0)} \end{array} \right) d'_{kR} + c^{(u)}_{jk} \left(\begin{array}{c} \phi^{(0)*} \\ -\phi^{(-)} \end{array} \right) u'_{kR} \right] \right. \\ \left. + \left. \left(\bar{\nu}'_{j}, \bar{l}'_{j} \right)_{L} c^{(l)}_{jk} \left(\begin{array}{c} \phi^{(+)} \\ \phi^{(0)} \end{array} \right) l'_{kR} \right\} + \text{h.c.},$$

Study of Yukawa couplings is an essential part of Higgs physics program

- ✓ span over many orders, from accessible to ~inaccessible (active fronts for HL-LHC and for future collider)
- ✓ deviation expected from BSM models (2HDM, ...)

Experimental Status

- Heavy flavor Yukawa coupling (τ, b, t) observed and enter O(10%) precision regime with property measurements started
- ♦ Second generation coupling pursued ($3\sigma H \rightarrow \mu\mu$, ~3 SM accuracy for H→cc)
- Search for anomalies with lighter fermions, and FCNC/LFV processes

Experimental Charateristics

Primary sensitivity from Higgs decay channels

- Rely on successful reconstruction of decay final states (b, c, τ, μ, ...)
- ➔ Contribution from different production modes varies w.r.t. S/B

Complementary sensitivity with Yukawa interactions in production

- ➔ Indirect constraint from pT(H): sensitivity for inaccessible channels
- \rightarrow (Di-) Quark + H production

Flavor tagging, background modelling and control are essential

н

Higgs and Muon

ATLAS: *PLB 812 (2021) 135980* CMS: *JHEP 01 (2021) 148*

A Sketch of $H \rightarrow \mu\mu$ Study

Easily accessible final state of $\mu\mu$

Orders of magnitude larger background from Drell-Yan processes

Master Recipes:

Fit $m(\mu\mu)$ distribution with parametrized functions \rightarrow utilize the full power of data May turn to simulation-based study if side-band statistics poor

Improve Precision: Categorization, MVA

MVA (based on characteristic kinematic variables) to guide categorization or act as fitting variable

0.8

Improve Precision: Resolution of µ

→ Consider event-by-event resolution

HEP 01 (2021) 148

Improve Precision: Background Modelling

Key: a less-free background function that models full spectrum

- Breit-Wigner line-shape (Drell-Yan) plus empirical functions
- Cutting-edge techniques to assure no biases to signal from background modelling

Category	Empirical Function	$\max(SS / \delta S)[\%]$	$\max(\mathrm{SS}/S_{SM})[\%]$
VBF Very High	Epoly1	-20.3	-34.8
VBF High	Power0	11.7	20.0
VBF Medium	Power0	8.5	16.4
VBF Low	Power0	11.2	2.4
2-jet Very High	Power1	-13.3	-34.5
2-jet High	Epoly2	-19.8	-41.2
2-jet Medium	Power1	19.8	40.9
2-jet Low	Epoly3	2.1	8.0
1-jet Very High	Epoly2	21.9	-53.4
1-jet High	Epoly2	-7.8	-18.5
1-jet Medium	Power1	4.2	7.9
1-jet Low	Power1	17.3	51.5
0-jet Very High	Power1	19.2	50.9
0-jet High	Power1	-19.4	43.5
0-jet Medium	Power1	25.8	69.4
0-jet Low	Epoly3	-20.8	-100.4
VH4L	Power1	20.7	230
VH3LH	Epoly2	36.9	210
VH3LM	Epoly3	33.6	276
$t\bar{t}H$	Power0	32.2	117

Example from ATLAS: spurious signal should be small enough

State of Art Results

	Measured σ/σ _{SM}	Observed Significance	Expected Significance
ATLAS	1.2 ± 0.6	2.0 σ	1.7 σ
CMS	1.19 ± 0.43	2.95 σ 2.98 σ (+ Run 1)	2.46 σ 2.48 σ (+ Run 1)

- ***** Strong evidence for $H \rightarrow \mu \mu$
- Statistically limited results
- Sensitivity varies due to intrinsic muon resolution
- Room for improvements with larger stats. in Run-3

Higgs and Charm

A Charming Field for Exploration

Charm quark:

more complex backgrounds, difficulty of charm tagging

Larger c-H coupling:

affordable to look at rarer, clean process or at production

Direct Probe Needs C-tagging

EPJC 83 (2023) 681

Background

jet ratio

Light-flavour

ratio

1.05

- **Neutral networks** maximize performance combining all known knowledge (SV, Impact Parameter, Kinematic Topology)
- Use taggers to categorize events into different c-like regions
- **Careful calibration** with top, $g \rightarrow cc$ before full analysis

PRL 131 (2023) 061801

A Sketch of VH(cc) Study

Final state: 0/1/2 charged leptons + two c-jets

Overwhelming SM backgrounds: from **instrumental** to **QCD** to **EWK**

Advanced techniques (c-tagging, MVA, background control) to push the limit

Boosted tagging utilized if explore high-pT

Master formula:

Event categories \times **c**-purity categories \times **fit discriminants**

Data **control regions** to correct modelling of backgrounds

categorization either MVA or cut-based; discriminant MVA or m(cc)

Simultaneous fit of O(100) regions

Statistical results on VH, with proof of principle validation with VV

VH(cc): Final States and Categories

VH(cc): Selected MVA discriminants

VH(cc): Statistical Results

Comb. VZ, $Z \rightarrow c\overline{c}$

0.5

1

0.97 ^{+0.25}_{-0.22}

1.5 2 2.5

 $\begin{pmatrix} +0.13 & +0.22 \\ -0.13 & -0.18 \end{pmatrix}$

3.5 4 μ_{VZ}^{cc}

3

- Observed

ATI AS-CONF-2024-010 PRL 131 (2023) 061801

Compatible results (precision of 3.5-5 on signal strength !!!)

138 fb⁻¹ (13 TeV)

40

----- Median expected

68% expected

---- 95% expected

 κ_c 95% interval **ATLAS:** $|\kappa_c| < 4.2$ **CMS:** 1. 1 < $|\kappa_c| < 5.5$

- **Everything Counts** in such a comprehensive physics study
- May hint on future directions: categorization, pT v.s. jet radius, c-tagging

18

observed

VH(cc): Uncertainty

Uncertainty source	$\Delta \mu / (\Delta \mu)_{\rm tot}$
Statistical	85%
Background normalizations	37%
Experimental	48%
Sizes of the simulated samples	37%
c jet identification efficiencies	23%
Jet energy scale and resolution	15%
Simulation modeling	11%
Integrated luminosity	6%
Lepton identification efficiencies	4%
Theory	22%
Backgrounds	17%
Signal	15%

ATLAS-CONF-2024-010 PRL 131 (2023) 061801

Uncertainty breakdown

→ Valuable info. for designing future studies

CMS table as example → ATLAS breakdown tells similar story, except that systematics weight more

VH(cc): Peek into future from tagging perspectives

Signal efficiency

4000 ATLAS Preliminary 80 $\sqrt{s} = 13 \text{ TeV}, p_{T} \in [85, 110] \text{ GeV}$ GN2 3500 70 $(\varepsilon_{b}^{\text{data}} = 74\%)$ 3000 eiection in simulated (Pythia8) top-pair events $(1/\varepsilon_c)$ -jet rejection in top-pair data events light-jet rejection in simulated (MadGraph) Z + jets events 2500 50 F light-jet rejection in Z + jets data events rejection x6.4 2000 Ö 40 **Reco Software Update** 1500 ᡖ c-jet i 30 DL1d **Reference:** DL1r $(\varepsilon_{b}^{\text{data}} = 75\%)$ 1000 5 x4.0 $(\varepsilon_{b}^{\text{data}} = 75\%)$ DL1 20 x2.0 $(\varepsilon_{\mu}^{\text{data}} = 77\%)$ x1.4 x1.7 10 500 x1.5 2020 2021 2022 2017 2018 2019 2023 Year of tagger deployment **CMS** Simulation Preliminary (13 TeV) efficiency $H \rightarrow c\overline{c} vs QCD$ 450 < p_T < 600 GeV, InI < 2.4 90 < m_{SD} < 140 GeV 10 Background 10^{-;} 10⁻³ ParticleNet-MD ccvsQCD DeepDoubleCvL DeepAK8-MD ccvsQCD 10⁻⁴ – 0.0 Y. Wu 0.8 0.2 0.4 0.6 1.0

Updated ML techniques lead to improved tagging performance → Exciting results expected!

<u>https://atlas.web.cern.ch/A</u> <u>tlas/GROUPS/PHYSICS/PL</u> <u>OTS/FTAG-2023-07/</u> ATL-PHYS-PUB-2023-021 CMS-PAS-BTV-22-001

Indirect but Sensitive Probes

CMS-PAS-HIG-23-011 JHEP 05 (2023) 028 **CMS** Preliminary 138 fb⁻¹ (13 TeV) da/dp^H_T [fb/GeV] **ATLAS** $H \rightarrow ZZ^*$, $\sqrt{s} = 13$ TeV, 139 fb⁻¹ pT(H) from Observed, float all Shape + normalisation $H \rightarrow ZZ$ and $\gamma\gamma$ 10 ----- Expected, float all combined with Fixed $\kappa_b = 1$ Observed, fix others SM: $\kappa_c = 1$ VH(bb) and $\kappa_{c} = -2.3$ ----- Expected, fix others $\kappa_c = 2.3$ 0.04 -2∆ In L VH(cc) (previous Data version of ATLAS 0.02 VH(cc) results) 5 0.00 95% CL Ratio to SM Lead to **tight** 68% CL 60 80 100 120 140 160 180 200 κ_c precision 40 20 p_T^H [GeV] -2 2 Ω Observed Observed Scenario κ_{c} 95% confidence interval 68% confidence interval γ + H(ZZ \rightarrow 4I) cross-section leads to $B_{\rm BSM} = 0$ [-1.61, 1.70][-2.47, 2.53]*κ*_c 95% interval of [-4.0, 3.4] No assumption on $B_{\rm BSM}$ [-2.63, 3.01][-4.46, 4.81]

Various assumptions in the indirect constraints, complementary to direct probes

by fixing non-Yukawa terms $|\kappa_c| < 38.1$ Continuous background subtracted Good start, long way to go

ATLAS measures a first inclusive c + H cross-section. 5.2 ± 3.0 pb

First studies deal with **c-jet** + $H(\rightarrow \gamma \gamma)$: benefit from good S/B and fitting strategy for background control

c + H Probes

Y. Wu

Events / 0.5 GeV

Data/Sig+Bkg

CMS attempts to constrain κ_c

Probes from Flavor Sector

EPJC 83 (2023) 781 PLB 842 (2023) 137534

$\gamma + J/\psi(\rightarrow \mu\mu)$

Simultaneous fit on 2body and 3-body masses (with parametrization)

```
B(H→γ+ J/ψ) < 2 x 10<sup>-4</sup>
SM expectation ~ 3 x 10<sup>-6</sup>
95% CL interval [-133, 175]
for \kappa_c/\kappa_\gamma
B(H→Z+ J/ψ) < 1.9 x 10<sup>-3</sup>
SM expectation ~ 2.3 x 10<sup>-6</sup>
```

Room for future improvements SM precision for the rare decay at HL-LHC

Higgs and Light, FCNC, LFV

Higgs FCNC with top and light

Explore two different production modes, and both hadronic and leptonic final states + $H(\rightarrow \gamma \gamma)$

Hadronic final states

JHEP 12 (2023) 195

5

160

 $m(\gamma\gamma)$ fit offer 95% CL constraints: $B(t \rightarrow cH) < 4.3 \times 10^{-4}$ Most stringent B(t→uH) < 3.8 x 10⁻⁴

Higgs with Strange and Light

CMS: $H \rightarrow \gamma + \rho_0(770)$ or $\varphi(1010)$ or $K^*(892)$ ATLAS: $H \rightarrow \gamma + \omega_0(782)$ or $K^*(892)$

Multiple tracks + kinematic/mass constraints \rightarrow mass fitting leads to 95% constraints on B

The way to light flavor started ...

CMS-PAS-HIG-23-011

 $|\kappa_s| < 50$

 $\left|\kappa_{u,d}\right| < O(1000)$

Higgs with LFV

 $H \rightarrow \mu \tau$, $e\tau$, $e\mu$ probes LFV at Higgs sector \rightarrow new input to the global LFV efforts

τ reconstruction + MVA

 $B(H \rightarrow \mu \tau) < 1.8 \times 10^{-3}, B(H \rightarrow e \tau) < 2.0 \times 10^{-3}, B(H \rightarrow e \mu) < 4.4 \times 10^{-5}$

JHEP 07 (2023) 166 PRD108 (2023) 072004 PLB 801 (2020) 135148 JHEP 03 (2020) 103

 $H \rightarrow e\mu$ similar strategy as $H \rightarrow \mu\mu$

Higgs with electrons

The lightest to imagine at the LHC

Upper limit at 95% CL: $B(H \rightarrow ee) < 3.6 \times 10^{-4} (ATLAS)$ $B(H \rightarrow ee) < 3.0 \times 10^{-4} (CMS)$

Pursue better precision?

- Important to separate 1st and 2nd lepton generation
- Careful study needed to deal with loop contributions (like Dalitz decays to ee+γ)

Conclusion

- Higgs Yukawa interactions play key roles in the SM, and the phenomena with second generation and lighter, rarer processes are actively pursued
- > Throughout years, many novel methods implemented for studying $H-\mu$ and $H-c \rightarrow$ precision is now at unprecedented level
- Lighter fermions, FCNC, LFV-related phenomena are extremely difficult to observe, the march is on the way ...
- > Expect more novel methods along with enlarged Run3 + HL-LHC data

Will be surprised by the ultimate precision then w.r.t. today as we are now w.r.t. beginning of LHC!

A LONG, CHARMING WAY TO GO THANKS!

30