Higgs combinations and EFT interpretations

- Nan Lu on behalf of ATLAS and CMS Collaborations
 - University of Science and Technology of China
 - **Extended Scalar Sectors From All Angles Workshop**
 - CERN Oct 21-25, 2024

Nan Lu (USTC)

Standard Model Higgs production at LHC

Higgs boson decays

- "Big five": үү, ZZ, WW, тт, bb
 - $\gamma\gamma$ and ZZ \rightarrow 4I: high resolution and S/B: precise mass and differential measurement
 - WW $\rightarrow \mu vev$: high BR, low S/B, low resolution due to neutrinos
 - тт, bb: high BR, low S/B, directly probe Higgs couplings to fermions
- Rare decay channels to be observed: $\mu\mu$, Zy, cc, ...

Nan Lu (USTC)

/*/ <i>Z</i> *	Decay channel	SM BR [%] with m _н =125.09 GeV
*	H→bb	58.1
	H→WW	21.5
	$H \rightarrow \tau \tau$	6.26
Z/Z	H→ZZ	2.64
<u>leport 4</u>	Η→γγ	0.23
~ Ζ/γ	H→µµ	0.022
	H→Zγ	0.154
F	H→cc	2.88
\sim_{γ}	H→gg	8.18

Measurement of Higgs boson mass

 $\subseteq H \rightarrow ZZ^* \rightarrow 4I$ and $H \rightarrow \gamma\gamma$ are used to measure Higgs boson mass: fully reconstructed with high resolution

 $H \rightarrow ZZ^* \rightarrow 4I$ mass distribution

Nan Lu (USTC)

m_{yy} in categories with the best and worst experimental resolutions categories

Measurement of Higgs boson mass

 \bigcirc Using two high resolution channels: $H \rightarrow \gamma \gamma \& H \rightarrow ZZ^* \rightarrow 4I$ \odot CMS+ATLAS Run1 combination: $m_{\rm H} = 125.09 \pm 0.24 \, \text{GeV}$ \odot CMS: H \rightarrow YY & H \rightarrow ZZ* \rightarrow 4l Run1 + 2016 data: m_H = 125.38 ± 0.12 (±0.10 Stat. only) GeV \odot CMS: H \rightarrow ZZ* \rightarrow 4l Run 1+ Run 2 data: m_H = 125.08 ± 0.14 (±0.11 Stat. only) GeV Combined measurement still dominated by statistical uncertainty

Nan Lu (USTC)

CMS Preliminary

Phys. Lett. B 843 (2023) 137880 HIG-21-019, submitted to PRD

Measurement of Higgs boson mass

 \bigcirc Using two high resolution channels: $H \rightarrow \gamma \gamma \& H \rightarrow ZZ^* \rightarrow 4I$ \odot CMS+ATLAS Run1 combination: $m_{H} = 125.09 \pm 0.24 \text{ GeV}$ \therefore ATLAS Run 1 + Run 2 data: $m_H = 125.11 \pm 0.09(Stats.) \pm 0.06(Sys.)$ GeV Combined measurement still dominated by statistical uncertainty

Nan Lu (USTC)

Phys. Lett. B 805 (2020) 135425 Phys. Rev. Letters 131 (2023) 251802 Phys. Lett. B 843 (2023) 137880 HIG-21-019, submitted to PRD

Input channels to ATLAS and CMS combined measurements of Higgs boson couplings in Run 2

ATLAS: <u>Nature 607, 52–59 (2022)</u>

Decay mode	Targeted production processes	\mathcal{L} [fb ⁻¹]	Ref.	Fits deployed in	Γ	Analysis Single Higgs boson prod	Decay tags uction	Production tags
$H \rightarrow \gamma \gamma$	ggF, VBF, WH, ZH, ttH, tH	139	[31]	All				ggH, $p_{\rm T}({\rm H}) \times N_{\rm j}$ bins VBF/VH hadronic, $p_{\rm T}({\rm Hjj})$ bins
$H \rightarrow ZZ$	ggF, VBF, $WH + ZH$, $t\bar{t}H + tH$	139	[28]			$ m H ightarrow \gamma \gamma$ [42]	$\gamma\gamma$	WH leptonic, $p_{\rm T}({\rm V})$ bins ZH leptonic ttH $p_{\rm T}({\rm H})$ bins, tH
	ttH + tH (multilepton)	36.1	[39]	All but fit of kinematics		$H \rightarrow ZZ \rightarrow 4\ell$ [43]	4µ, 2e2µ, 4e	ggH, $p_T(H) \times N_j$ bins VBF, m_{jj} bins VH hadronic
$H \to WW$	ggF, VBF	139	[29]	All				VH leptonic, $p_{\rm T}({\rm V})$ bins ttH
	WH, ZH $t\bar{t}H + tH$ (multilepton)	36.1 36.1	[30]	All but fit of kinematics All but fit of kinematics		$H \rightarrow WW \rightarrow \ell \nu \ell \nu$ [44]	$e\mu/ee/\mu\mu$ $\mu\mu+jj/ee+jj/e\mu+jj$ 3ℓ	ggH ≤ 2-jets VBF VH hadronic WH leptonic
$H \rightarrow Z\gamma$	inclusive	139	[32]	All but fit of kinematics		${ m H} ightarrow { m Z} \gamma$ [45]	$rac{4\ell}{2\gamma}$	ZH leptonic ggH VBF
$H \rightarrow b \bar{b}$	WH, ZH VBF	139 126	[33, 34] [35]	All All		m H ightarrow au au [46]	$e\mu$, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$	$ggH, p_T(H) \times N_j$ bins VH hadronic VBF
	$t\overline{t}H + tH$ inclusive	139 139	[36] [37]	All Only for fit of kinematics		m H ightarrow m bb [47–51]	$W(\ell \nu)H(bb) \ Z(\nu \nu)H(bb), Z(\ell \ell)H(bb) \ bb$	VH, high- $p_{\rm T}({\rm V})$ WH leptonic ZH leptonic ttH, $\rightarrow 0, 1, 2\ell$ + jets
$H \to \tau \tau$	ggF, VBF, $WH + ZH$, $t\bar{t}H + tH$	139	[38]	All		$ m H ightarrow \mu\mu$ [52]	μμ	ggH, high-p _T (H) bins ggH VBF
	$t\bar{t}H + tH$ (multilepton)	36.1	[39]	All but fit of kinematics		ttH production with H \rightarrow leptons [53]	$\begin{array}{c} 2\ell\mathrm{SS},3\ell,4\ell,\\ 1\ell+\tau_{\mathrm{h}},2\ell\mathrm{SS}{+}1\tau_{\mathrm{h}},3\ell+1\tau_{\mathrm{h}} \end{array}$	ttH
$H \rightarrow \mu \mu$	$ggF + t\bar{t}H + tH$, VBF + $WH + ZH$	139	[40]	All but fit of kinematics		$H \rightarrow Inv. [71, 72]$	$p_{\mathrm{T}}^{\mathrm{miss}}$	ggH VBF VH hadronic ZH leptonic
$H \to c \bar{c}$	WH + ZH	139	[41]	Only for free-floating κ_c		Higgs boson pair produc	tion	
$H \rightarrow \text{invisible}$	VBF	139	[42]	κ models with $B_{\rm u.}$ & $B_{\rm inv.}$		$ ext{HH} ightarrow ext{bbbb} [57, 58] \ ext{HH} ightarrow ext{bb} au au [59] \ ext{HH} ightarrow ext{leptons} [60] ext{}$	$\begin{array}{c} H(bb)H(bb)\\ H(bb)H(\tau\tau)\\ H(WW)H(WW),H(WW)H(\tau\tau),H(\tau\tau)H(\tau\tau)\end{array}$	ggHH, VBFHH (resolved, boosted) ggHH, VBFHH ggHH, VBFHH
	ZH	139	[43]	κ models with $B_{\rm u.}$ & $B_{\rm inv.}$		$\mathrm{HH} ightarrow \mathrm{bb} \gamma \gamma$ [61] $\mathrm{HH} ightarrow \mathrm{bb} \mathrm{ZZ}$ [62]	$H(bb)H(\gamma\gamma)$ H(bb)H(ZZ)	ggHH, VBFHH ggHH

Nan Lu (USTC)

Extended Scalar Sectors From All Angles Workshop

CMS: <u>Nature 607, 60–68 (2022)</u>

Input channels for couplings and STXS combination

Nan Lu (USTC)

Input channels for couplings and STXS combination

Extended Scalar Sectors From All Angles Workshop

Nan Lu (USTC)

Higgs boson production and decay rates

Signal strength: $\mu = N_{signal}(obs.)/N_{signal}(exp.)$

Inclusive signal strength:

Good compatibility among decay channels and with SM

Nan Lu (USTC)

<u>Nature 607, 52–59 (2022)</u>

 $\mu = 1.05 \pm 0.06 = 1.05 \pm 0.03(\text{stat.}) \pm 0.03(\text{exp.}) \pm 0.04(\text{sig. th.}) \pm 0.02(\text{bkg. th.})$

Extended Scalar Sectors From All Angles Workshop

Higgs boson production and decay rates

Inclusive signal strength: $\mu = 1.002 \pm 0.057$

Good compatibility among decay channels and with SM

Nan Lu (USTC)

Nature 607, 60-68 (2022)

Higgs boson couplings: *x*-framework

- modifier to each (effective) interaction vertex (e.g. κ_W , κ_Z , κ_t ...) and total width (κ_H)
- Section Assumptions: single resonance, zero width, SM tensor structure J^P = 0⁺
- Second Compatibility Tests using κ and their ratios

Cross section for production and decay $i \rightarrow H \rightarrow f$ parametrized as

$$\sigma \cdot B(i \to H \to f) = \frac{\sigma_i \cdot \Gamma_j}{\Gamma_H}$$

coupling modifiers: $\kappa_i^2 = \frac{\sigma_i}{\sigma_i^{SM}}$ Production

Example: $gg \rightarrow H \rightarrow \gamma\gamma$

Assume only SM particles contribute in the loops

 $\frac{\sigma \times BR(gg \to H \to \gamma\gamma)}{\sigma \times BR(gg \to H \to \gamma\gamma)_{SM}} = \kappa_g^2 \frac{\kappa_\gamma^2}{\kappa_H^2} = (1.040\kappa_t^2 + 0.002\kappa_b^2 - 0.038\kappa_t\kappa_b - 0.004\kappa_t^2)$

Nan Lu (USTC)

Extended Scalar Sectors From All Angles Workshop

Leading order framework to characterize possible deviations from the SM: assign coupling

https://doi.org/10.5170/ CERN-2013-004

<u>Nature 607, 52–59 (2022)</u>

$$\frac{1.589\kappa_W^2 + 0.072\kappa_t^2 - 0.674\kappa_W\kappa_t + 0.009\kappa_W\kappa_\tau + 0.008\kappa_W\kappa_b - 0.002\kappa_t\kappa_b -$$

Nan Lu (USTC)

Higgs boson couplings to massive gauge bosons vs fermions

• κ_V and κ_F , scaling the Higgs boson couplings to massive gauge bosons and to fermions κ_V and κ_F measured to be in agreement with SM prediction, within ~10% uncertainty

Extended Scalar Sectors From All Angles Workshop

- present analyses (κ_t , κ_b , κ_τ , κ_μ and κ_c)
- Predictions for processes in SM occur via loops of intermediate virtual particles computed in terms of κ_i

Nan Lu (USTC)

Measure coupling modifiers κ for the massive gauge bosons (κ_W and κ_Z) and fermions probed in the

CMS 138 fb⁻¹ (13 TeV) E_)⊲ m_н=125.38 GeV $\langle K_{v}$ OC 10⁻¹ K_f∃ 10^{-2} Vector bosons 3rd generation fermions 10^{-3} 2nd generation fermions SM Higgs boson 10^{-4} Ratio to SM **つ** 1.05 0.8 0.95 0.6 10² 10^{-1} 10 Particle mass (GeV)

Higgs Boson coupling results

Nan Lu (USTC)

\bigcirc Presence of non-SM particles in loop-induced process with effective coupling modifiers $\kappa_{g}, \kappa_{V}, \kappa_{ZV}$ CMS 138 fb⁻¹ (13 TeV)

Simplified Template Cross Sections (STXS)

STXS: a natural evolution from Run 1 signal strength measurements

- Measure production mode cross sections in exclusive phase space regions
 - In the second second
 - provide more finely-grained measurements
 - Solute BSM sensitive phase space
- Benefitting from **global combination**
 - Significant progress from ATLAS and CMS across accessible Higgs decays

Extended Scalar Sectors From All Angles Workshop

Nan Lu (USTC)

CMS STXS: recent result H→bb

- Full Run 2 measurement targeting VH production mechanism
- Dedicated category:
 - resolved topology: 2 b-tagged jets
 - boosted topology: large-radius $H \rightarrow bb$ jet

 > Iep.) × BR(H→ bb) [fb]
 10
 10 × BR(Vъ Ratio to SM 0

Nan Lu (USTC)

Phys. Rev. D 109 (2024) 092011

Most precise measurements and interpretations obtained from statistical combination of STXS measurements in production modes and decay channels:

- Statistical precision, in particular in most BSMsensitive regions is still limited: more data will help! [Nature volume 607, 52–59 (2022)
- Provide an indirect constraint of the Higgs boson self-coupling through NLO EW corrections [PLB 843(2023)137745, CMS HIG-19-005]
- Measurements interpreted using EFT framework and BSM models: [arXiv:2402.05742, CMS-PAS-HIG-23-013]

Example: STXS measurements in $H \rightarrow ZZ^*$, $H \rightarrow WW^*$ decay channels, overall good compatibility with SM

ATLAS STXS Combination - ggH production

 \bigcirc Input channels: $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^*$, $H \rightarrow WW^*$, $H \rightarrow Z\gamma$, $H \rightarrow bb$, $H \rightarrow \tau \tau$ and $H \rightarrow \mu \mu$

Nan Lu (USTC)

ATLAS STXS Combination: VBFH, VH, tt/tH

Extended Scalar Sectors From All Angles Workshop

Nan Lu (USTC)

SMEFT and 2HDM and (h)MSSM interpretation of ATLAS STXS combination

Decay channel	Analysis Production mode	\mathcal{L} $[{ m fb}^{-1}]$	Reference	Binning	SMEFT	2HDM and (h)MSSM
$H \to \gamma \gamma$	$(ggF, VBF, WH, ZH, t\bar{t}H, tH)$	139	$\begin{bmatrix} 38 \\ 19 \end{bmatrix}$	STXS-1.2 differential	\checkmark (subset)	\checkmark
$H \to ZZ^*$	$(ZZ^* \to 4\ell: \text{ggF, VBF, }WH + ZH, t\bar{t}H + tH)$ $(ZZ^* \to \ell\ell\nu\bar{\nu}/\ell\ell q\bar{q}: t\bar{t}H \text{ multileptons})$	$\begin{array}{c} 139\\ 36.1 \end{array}$	$[22] \\ [18] \\ [27]$	STXS-1.2 differential $STXS-0^*$	\checkmark (subset)	\checkmark
$H \to \tau \tau$	$(ggF, VBF, WH + ZH, t\bar{t}H + tH)$ $(t\bar{t}H$ multileptons)	$\begin{array}{c} 139\\ 36.1 \end{array}$	$\begin{bmatrix} 39 \\ 27 \end{bmatrix}$	STXS-1.2 $STXS-0^*$	\checkmark	\checkmark
$H \to WW^*$	(ggF, VBF) (WH, ZH) $(t\bar{t}H$ multileptons)	$139 \\ 36.1 \\ 36.1$	$[40] \\ [41] \\ [27]$	$\begin{array}{c} \mathrm{STXS-1.2}\\ \mathrm{STXS-0}^{*}\\ \mathrm{STXS-0}^{*} \end{array}$	\checkmark	
$H \rightarrow bb$	(WH, ZH) (VBF) $(t\bar{t}H + tH)$ (boosted Higgs bosons: inclusive production)	$139\\126\\139\\139$	$\begin{matrix} [42,25] \\ [43] \\ [44] \\ [45] \end{matrix}$	STXS-1.2 STXS-1.2 STXS-1.2 STXS-1.2		
$\begin{array}{c} H \to Z\gamma \\ H \to \mu\mu \end{array}$	(inclusive production) (ggF + $t\bar{t}H$ + tH , VBF + WH + ZH)	$\begin{array}{c} 139 \\ 139 \end{array}$	[46] [47]	${ m STXS-0}^* { m STXS-0}^*$	\checkmark	\checkmark

Extended Scalar Sectors From All Angles Workshop

Nan Lu (USTC)

arXiv:2402.05742 submitted to JHEP

21

SMEFT interpretation of STXS combination

Nan Lu (USTC)

Extended Scalar Sectors From All Angles Workshop

arXiv:2402.05742 submitted to JHEP

Only d = 6 operators are considered, impact of d = 8 operators might be non-negligible.

> Taken into account the nonnegligible acceptance effects for operator C_{HW}, C_{HB}, C_{HWB} and $C^{(3)}_{HI}$ in the $H \rightarrow WW^*$ and

 $H \rightarrow ZZ^*$ decay modes

Fit basis for SMEFT interpretation

- · Definition of the fit basis coefficients in terms of the Warsaw basis Wilson coefficients.
- Achieves both fit stability and fit-parameter interpretability.

Nan Lu (USTC)

Extended Scalar Sectors From All Angles Workshop

larsaw basis Wilson coefficients.

arXiv:2402.05742 submitted to JHEP

Wilson coefficients

23

SMEFT interpretation of STXS combination

- SMEFT linear model vs SMEFT linear+quadratic results
- Linear+quadratic *p*-value **98.2%**, stronger constraints with linear+quadratic

arXiv:2402.05742 submitted to JHEP

Extended Scalar Sectors From All Angles Workshop

Best Fit — 68 % CL ----- 95 % CL

UV-complete models: 2HDM

arXiv:2402.05742 submitted to JHEP Comparison of the constraints in tan β , cos(β - α) plane, from the κ - and EFT-interpretations of Higgs boson production and decay rates.

The κ_{λ} constraint is included in the Type-I model interpretation. Type-I model

Nan Lu (USTC)

Extended Scalar Sectors From All Angles Workshop

25

UV-complete models: hMSSM

Extended Scalar Sectors From All Angles Workshop

Nan Lu (USTC)

arXiv:2402.05742 submitted to JHEP

Higgs boson differential measurements combination and interpretation

Differential distributions are sensitive to Higgs couplings through distortions in the SM predicted spectra. Two interpretations: κ -framework and SMEFT

Higgs p_T sensitive to many BSM effects: physics in the ggF loops, perturbative QCD calculations, Higgs couplings to charm and bottom quarks, ...

arXiv:2402.05742 submitted to JHEP

Nan Lu (USTC)

$K_c VS K_b$ constraint from $p_T(H)$ shape

Higgs boson combined differential measurements

Extended Scalar Sectors From All Angles Workshop

Nan Lu (USTC)

<u>CMS-PAS-HIG-23-013</u>

κ-framework interpretation of combined differential measurements

Nan Lu (USTC)

Extended Scalar Sectors From All Angles Workshop

<u>CMS-PAS-HIG-23-013</u>

29

SMEFT interpretation of combined differential measurements

pT(H) 2D scans of Wilson coefficients

<u>CMS-PAS-HIG-23-013</u>

Nan Lu (USTC)

Class	Operator	Wilson coefficient	Example pro
	$H^{\dagger}HG^{a}_{\mu u}G^{a\mu u}$	c_{HG}	$g \mathcal{F}$
	$H^{\dagger}H ilde{G}^{a}_{\mu u}G^{a\mu u}$	$ ilde{c}_{HG}$	
	$H^{\dagger}HB_{\mu\nu}B^{\mu\nu}$	c_{HB}	$q \qquad \qquad$
$\mathcal{L}_{c}^{(4)} - X^{2}H^{2}$	$_{2}$ $H^{\dagger}H\tilde{B}_{\mu\nu}B^{\mu\nu}$	${ ilde {\cal C}}_{HB}$	$q \xrightarrow{Z \stackrel{\uparrow}{\longrightarrow}} q \xrightarrow{H} H$
\sim_6 II II	$H^{\dagger}HW^{i}_{\mu u}W^{i\mu u}$	c_{HW}	$q \qquad \qquad$
	$H^{\dagger}H ilde{W}^{i}_{\mu u}W^{i\mu u}$	$ ilde{c}_{HW}$	$q \xrightarrow{W \leq} q \xrightarrow{H} q$
	$H^{\dagger}\sigma^{i}HW^{i}_{\mu\nu}B^{i\mu\nu}$	c_{HWB}	$q \xrightarrow{\gamma \leq} q$
	$H^{\dagger}\sigma^{i}H ilde{W}^{i}_{\mu u}B^{i\mu u}$	$ ilde{c}_{HWB}$	$q \xrightarrow{Z \searrow} q$

Fit pairs of CP-even and CP-odd Wilson coefficients to assess their impact on Higgs production and decay, all other coefficients set to their SM values of zero.

CMS-PAS-HIG-23-013

SMEFT interpretation of combined differential measurements

Summary of observed and expected confidence intervals at 68% and 95% CL for the first ten eigenvectors.

Nan Lu (USTC)

Extended Scalar Sectors From All Angles Workshop

SMEFT interpretation of combined differential measurements

<u>CMS-PAS-HIG-23-013</u>

95% CL limits for each Wilson coefficient, others fixed to their SM value of zero, interpreted in terms of the energy scale Λ for three different assumptions for the value of the coefficient

$$ev^{[1]} = 0.999c_{HG} - 0.035c_{tG} - 0.003c_{tH}$$

$$ev^{[2]} = 0.035c_{HG} + 0.978c_{tG} + 0.205c_{tH}$$

$$ev^{[3]} = -0.005c_{HG} - 0.205c_{tG} + 0.979c_{tH}$$

$$ev^{[3]}$$

The large sensitivity difference observed for $ev^{[2]}$ originates from the separate measurements of ggF and ttH production in the STXS framework

Comparison of SMEFT interpretation: STXS vs differential combination

arXiv:2402.05742 submitted to JHEP

Run 3: $HH \rightarrow ZZ^* \rightarrow 4I$ at 13.6 TeV

- Measurements of inclusive and differential cross sections
- Using 34.7 fb⁻¹ from 2022, dominated by data statistics

Extended Scalar Sectors From All Angles Workshop

Nan Lu (USTC)

HIG-24-013

 $H \rightarrow ZZ$ $\sigma_{\rm fid} = 2.94^{+0.53}_{-0.49} \,(\text{stat.})^{+0.29}_{-0.22} \,(\text{syst.}) \,\text{fb}$

34

Run 3: $H \rightarrow \gamma \gamma$ at 13.6 TeV

- Using 34.7 fb⁻¹ from 2022, dominated by data statistics •
- Measurements of fiducial and differential cross sections

Nan Lu (USTC)

<u>HIG-23-01</u>

Extended Scalar Sectors From All Angles Workshop

35

Run 3: $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$ at 13.6 TeV

- Fiducial cross section measurements.
- Using 13.6 fb⁻¹ from 2022, dominated by data statistics

Nan Lu (USTC)

Extended Scalar Sectors From All Angles Workshop

Eur. Phys. J. C 84 (2024) 78

Run 3: combination of $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$ at 13.6 TeV

- Total and fiducial cross-section measurements
- Using 13.6 fb⁻¹ from 2022, dominated by data statistics

Eur. Phys. J. C 84 (2024) 78

Total cross-section measurement: $H \rightarrow \gamma \gamma: 67^{+12}_{-11} \text{ pb},$ $H \rightarrow ZZ$: 46 ± 12 pb combined: of 58.2 ± 8.7 pb to be compared with the Standard Model prediction of 59.9 ± 2.6 pb.

Conclusion and outlook

- Precision measurements of Higgs boson properties so far agree with SM, hints for new physics could be unravelled as data accumulates and analysis advance
 - Higgs boson mass 0.1% precision
 - Significant progress in fiducial/differential and STXS measurements and reinterpretation in k-framework and SMEFT
 - Significance progress in partial Run 3 results
- Looking forward to LHC Run 3 and beyond

Projection for HL-LHC: <u>arXiv:1902.00134</u>

Apologies for all I could not cover

Thank you!

Higgs boson production and decay rates

Extended Scalar Sectors From All Angles Workshop

Nan Lu (USTC)

A	
ATL	AS

Production	Effective	Daram
cross section	coupling	r al al l
$\sigma(ggF)$	κ_g^2	1.040
$\sigma(\mathrm{VBF})$	-	0.733
$\sigma(qq/qg \rightarrow ZH)$	-	κ_Z^2
$\sigma(gg \to ZH)$	-	2.456
$\sigma(WH)$	-	κ_W^2
$\sigma(t\bar{t}H)$	-	κ_t^2
$\sigma(tHW)$	_	2.909
$\sigma(tHq)$	-	2.633
$\sigma(bar{b}H)$	-	κ_b^2
Partial decay width		
Γ^{bb}	_	κ_{b}^{2}
Γ^{WW}	-	κ_W^2
Γ^{gg}	κ_g^2	1.111
$\Gamma^{ au au}$	-	κ_{τ}^2
Γ^{ZZ}	-	κ_Z^2
Γ^{cc}	-	κ_c^2 (=
$\Gamma\gamma\gamma$	ν^2	1.589
1 ' '	κ_{γ}	+0.00
$\Gamma^{Z\gamma}$	$\kappa_{Z\gamma}^2$	1.118
Γ^{ss}	_	κ_s^2 (=
$\Gamma^{\mu\mu}$	-	κ^2_{μ}
Total width ($B_{inv.} =$	$B_{\rm u.} = 0)$	
Г	.,2	0.581
тН	ĸН	+0.00

Extended Scalar Sectors From All Angles Workshop

Nan Lu (USTC)

netrization in terms of coupling strength modifiers

$$\kappa_t^2 + 0.002 \kappa_b^2 - 0.038 \kappa_t \kappa_b - 0.005 \kappa_t \kappa_c$$

$$\kappa_W^2 + 0.267 \kappa_Z^2$$

 $\delta \kappa_Z^2 + 0.456 \kappa_t^2 - 1.903 \kappa_Z \kappa_t - 0.011 \kappa_Z \kappa_b + 0.003 \kappa_t \kappa_b$

$$\kappa_t^2 + 2.310 \kappa_W^2 - 4.220 \kappa_t \kappa_W$$

 $\kappa_t^2 + 3.578 \kappa_W^2 - 5.211 \kappa_t \kappa_W$

 $\kappa_t^2 + 0.012 \kappa_b^2 - 0.123 \kappa_t \kappa_b$

Nature 607, 52–59 (2022)

$$\begin{aligned} \kappa_t^2 \\ \kappa_W^2 + 0.072 \,\kappa_t^2 &- 0.674 \,\kappa_W \kappa_t \\ 09 \,\kappa_W \kappa_\tau + 0.008 \,\kappa_W \kappa_b &- 0.002 \,\kappa_t \kappa_b - 0.002 \,\kappa_t \kappa_\tau \\ \kappa_W^2 &- 0.125 \,\kappa_W \kappa_t + 0.004 \,\kappa_t^2 + 0.003 \,\kappa_W \kappa_b \\ \kappa_b^2 \end{aligned}$$

 $\kappa_b^2 + 0.215 \kappa_W^2 + 0.082 \kappa_g^2 + 0.063 \kappa_\tau^2 + 0.026 \kappa_Z^2 + 0.029 \kappa_c^2$ $023 \kappa_{\gamma}^2 + 0.0015 \kappa_{Z\gamma}^2 + 0.0004 \kappa_s^2 + 0.00022 \kappa_{\mu}^2$

Higgs boson production and decay rates

Nan Lu (USTC)

Extended Scalar Sectors From All Angles Workshop

37

CMS STXS: recent result H→bb

		•
STXS bin	Expected $\sigma \mathcal{B}$ [fb]	Observed $\sigma \mathcal{B}$ [f
ZH 75 < $p_{\rm T}(Z)$ < 150 GeV	50.0 ± 5.3	71 ± 38
ZH $150 < p_T(Z) < 250$ GeV 0 jets	9.0 ± 1.4	3.8 ± 4.1
ZH $150 < p_T(Z) < 250 \text{ GeV} \ge 1 \text{ jets}$	10.1 ± 2.2	<0
ZH 250 < $p_{\rm T}(Z)$ < 400 GeV	4.5 ± 0.9	6.9 ± 2.2
ZH $p_{\rm T}(Z) > 400 {\rm GeV}$	0.9 ± 0.1	1.6 ± 0.6
WH $150 < p_{\rm T}(W) < 250 {\rm ~GeV}$	24.9 ± 1.8	6 ± 16
WH $250 < p_{\rm T}(W) < 400 {\rm GeV}$	6.3 ± 0.5	11.9 ± 3.8
WH $p_{\rm T}(W) > 400 {\rm ~GeV}$	1.4 ± 0.1	2.7 ± 1.1

SMEFT interpretation of STXS combination

SMEFT linear model result *p*-value: corresponding to **94.5%**

Statistical uncertainty dominates.

Nan Lu (USTC)

arXiv:2402.05742 submitted to JHEP

UV-complete models

boson production and decay rates.

The κ_{λ} constraint is included in the Type-I model interpretation. Lepton-specific model

Nan Lu (USTC)

arXiv:2402.05742 submitted to JHEP Comparison of the constraints in tan β , cos(β - α) plane, from the κ - and EFT-interpretations of Higgs

Flipped model

45

