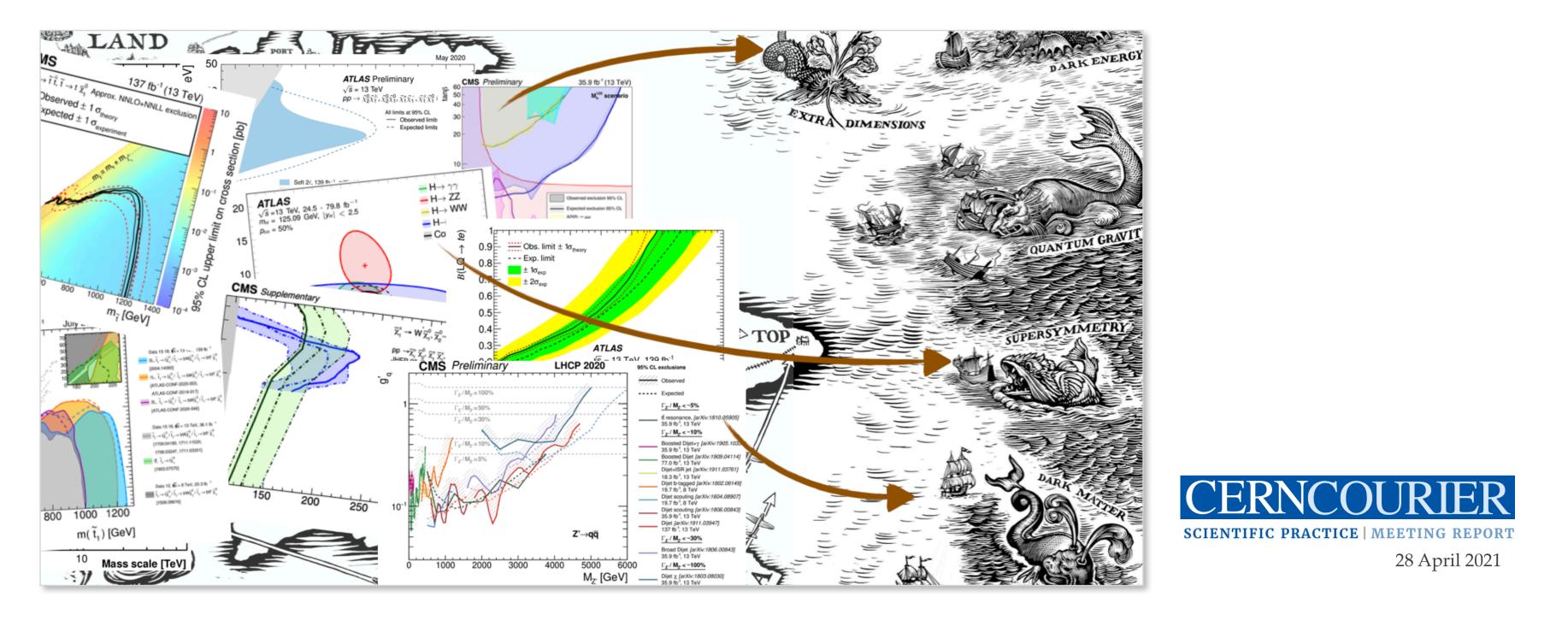


Lessons from recasting Sabine Kraml

Extended Scalar Sectors From All Angles



CERN, 24 Oct 2024

Motivation

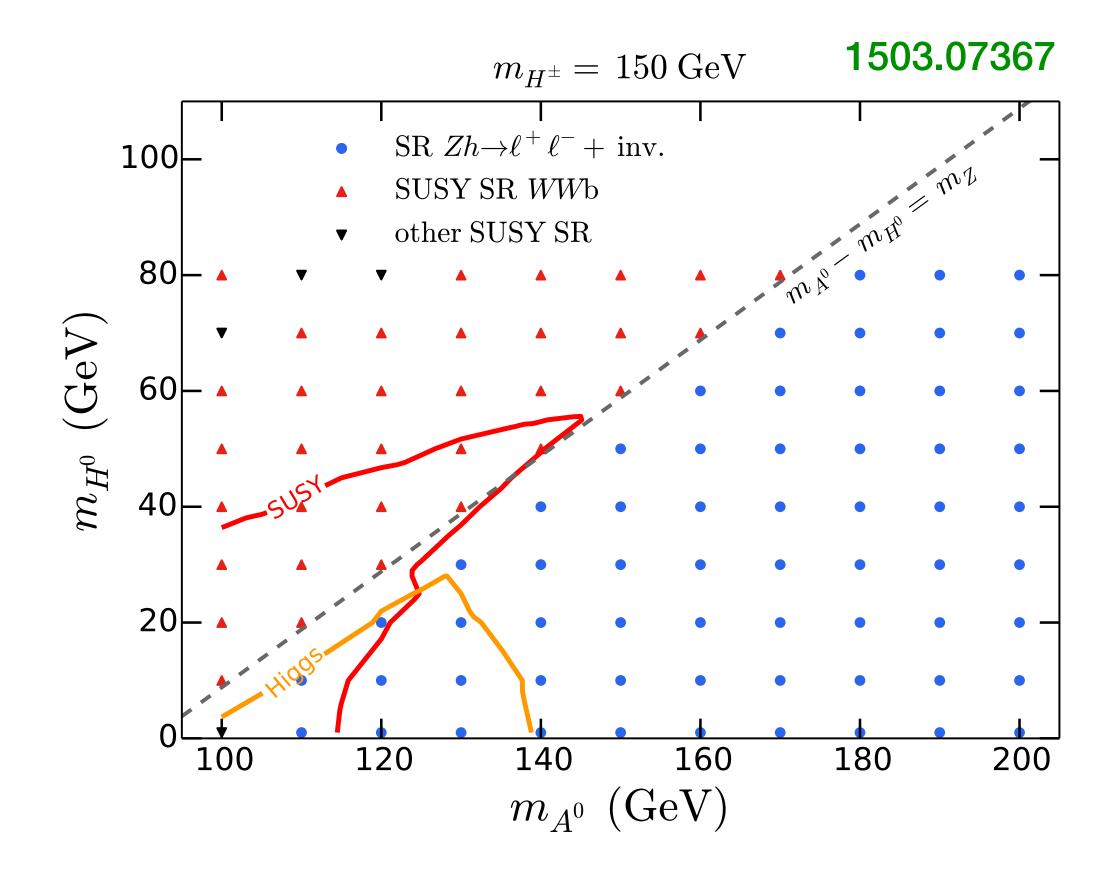
combinations than have so far been tested (or even been thought of).

We want to obtain a comprehensive view of how the plethora of LHC results constrain new physics in the context of different theoretical scenarios (incl. non-minimal/non-standard ones!)

Sabine Kraml

Extended scalar sectors from all angles, CERN, 24/10/2024

Experimental analyses at the LHC are sensitive to a far greater set of theories and parameter



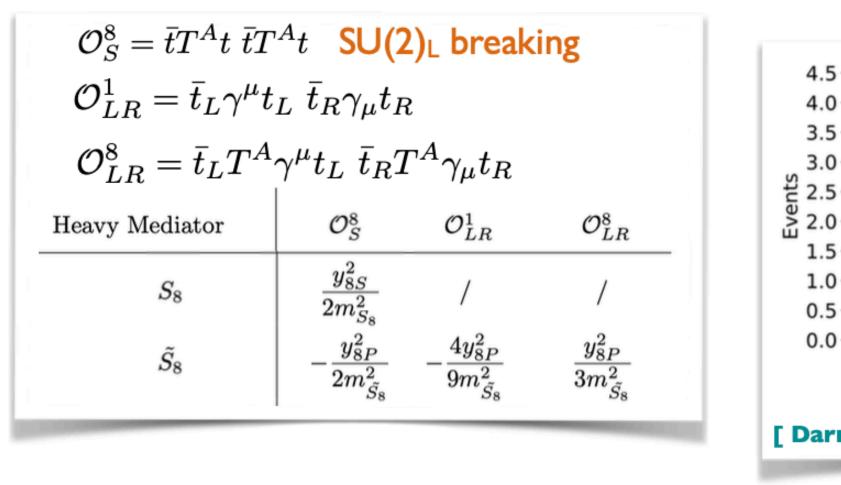
One of my favourite examples: IDM Inert Doublet Model

$$H = \begin{pmatrix} G^{+} \\ \frac{1}{\sqrt{2}} (v + h + iG^{0}) \end{pmatrix}$$
 SM Higgs
$$\Phi = \begin{pmatrix} H^{+} \\ \frac{1}{\sqrt{2}} (H^{0} + iA^{0}) \end{pmatrix}$$
 odd under a new Z₂ symmetry
M candidate (mH < mA)

Signature: OS di-leptons + MET

$$\begin{split} q\bar{q} &\to Z \to A^0 H^0 \to Z^{(*)} H^0 H^0 \to \ell^+ \ell^- H^0 H^0, \\ q\bar{q} \to Z \to H^{\pm} H^{\mp} \to W^{\pm (*)} H^0 W^{\mp (*)} H^0 \\ &\to \nu \ell^+ H^0 \nu \ell^- H^0, \\ q\bar{q} \to Z \to Z h^{(*)} \to \ell^+ \ell^- H^0 H^0, \\ q\bar{q} \to Z \to Z H^0 H^0 \to \ell^+ \ell^- H^0 H^0. \end{split}$$

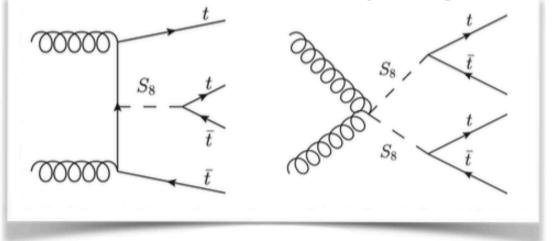
Constrained by leptons+MET SUSY and *Zh*, $h \rightarrow inv$. searches

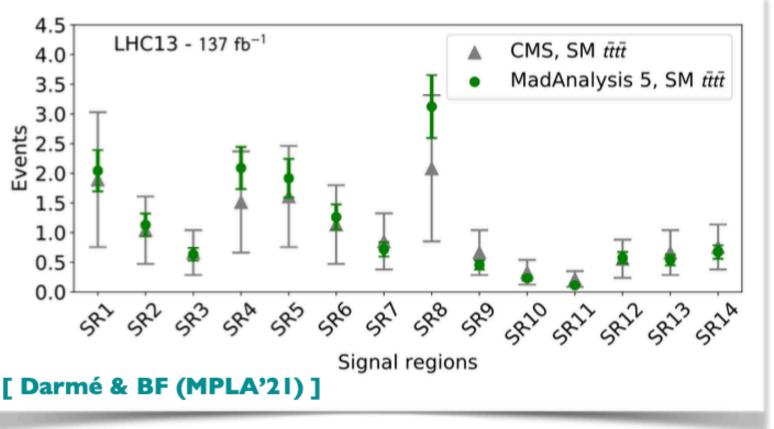

Another example: 4 tops

New top-philic particles

• Non-minimal SUSY: top-philic sgluon [(pseudo-)scalar colour-octet]

Heavy new states


• EFT operators (beyond the SMEFT)



Probing sgluons with four tops @ LHC

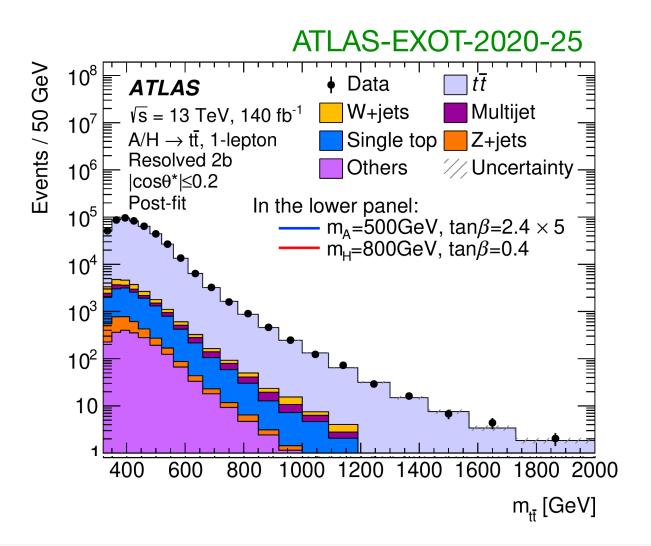
BSM impact on four-top production

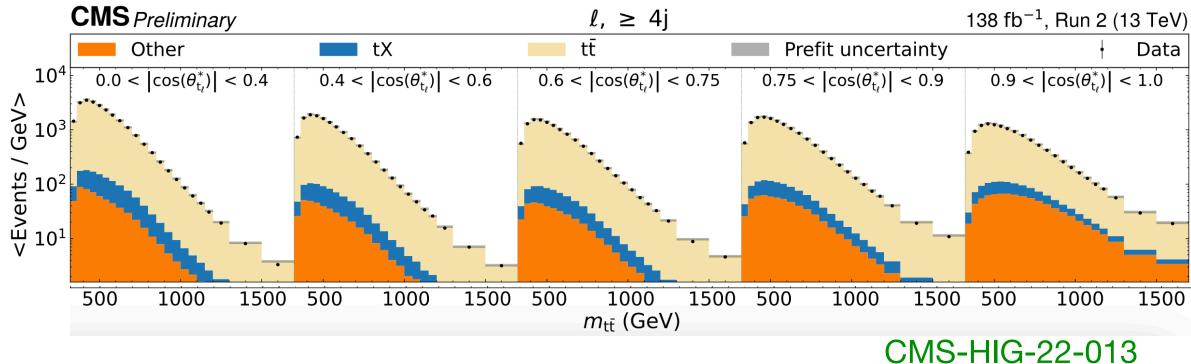
- Resonant effects (light states)
- → Associated and pair production contributions
- → Different kinematics ↔ two handles
- Non-resonant effects (heavy states)

CMS-TOP-18-003

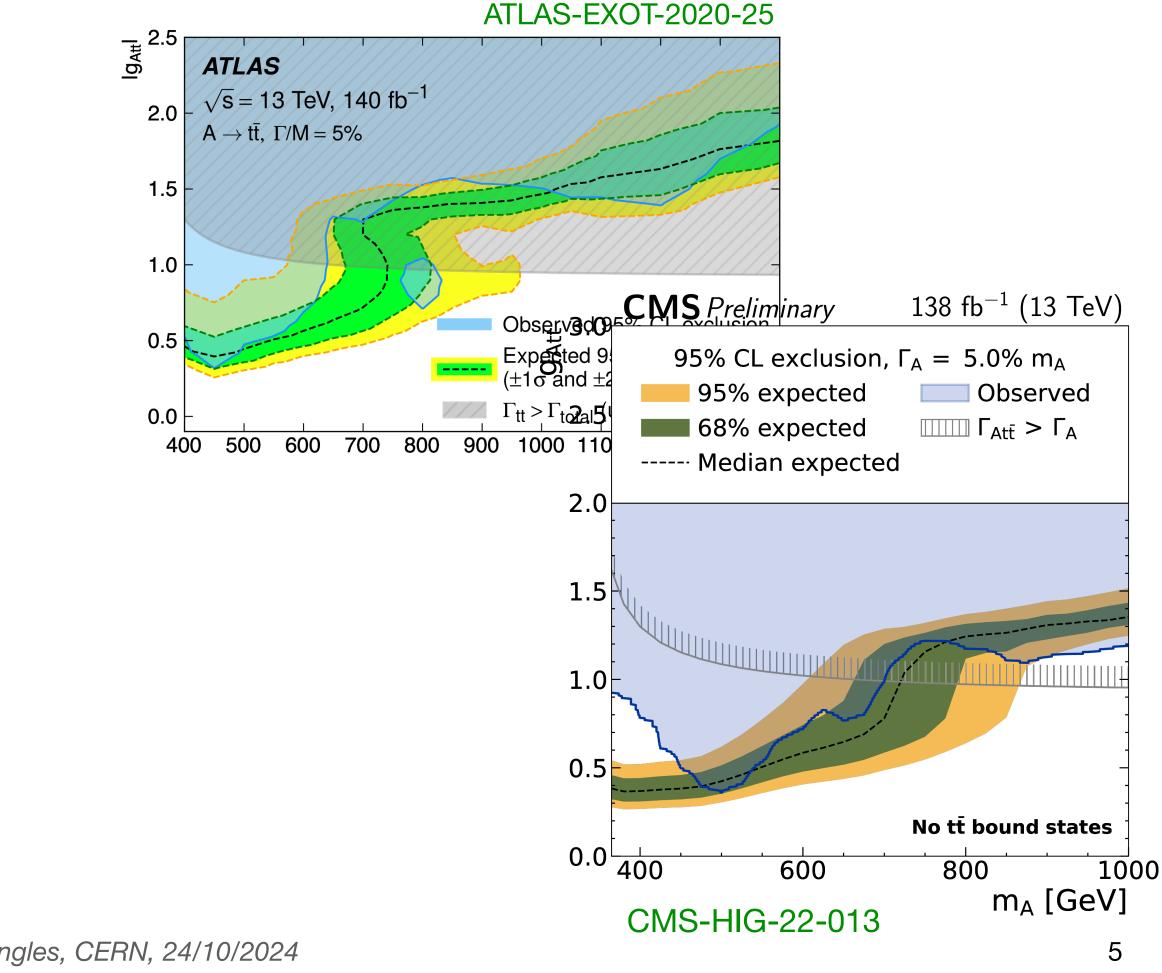
- Run 2 measurement of σ_{tttt}
- 14 SRs: cf. (b-)jet/lepton multiplicities
- H_T spectra measured
- \rightarrow BSM-improvement: high- H_T bin [Darmé, BF & Goodsell (PLB'18)]
- MADANALYSIS 5 implementation

from Benjamin Fuks @ SUSY'24

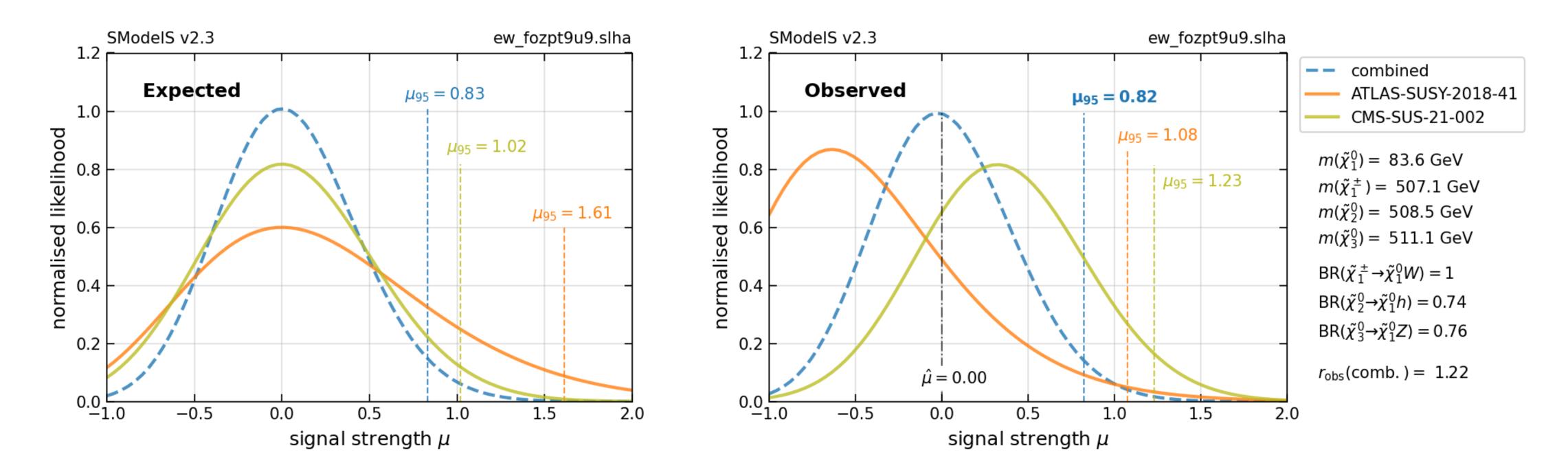

Experimental results vs. their interpretation


VS.

Data


1500

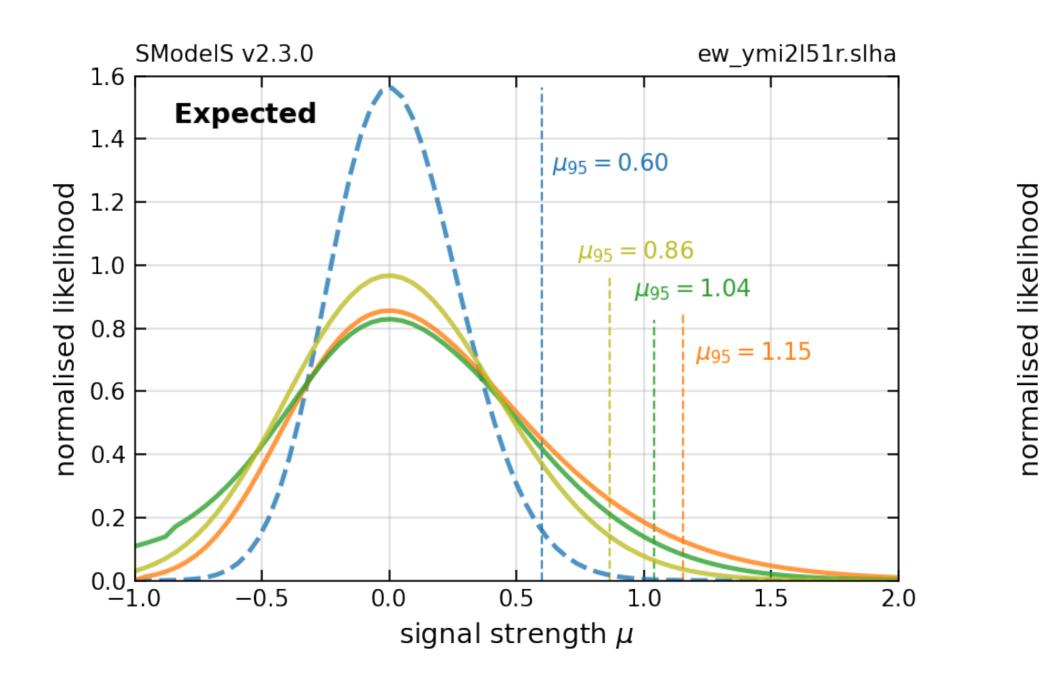
Empirical outcome, such as event counts or the measurement of some physical quantity

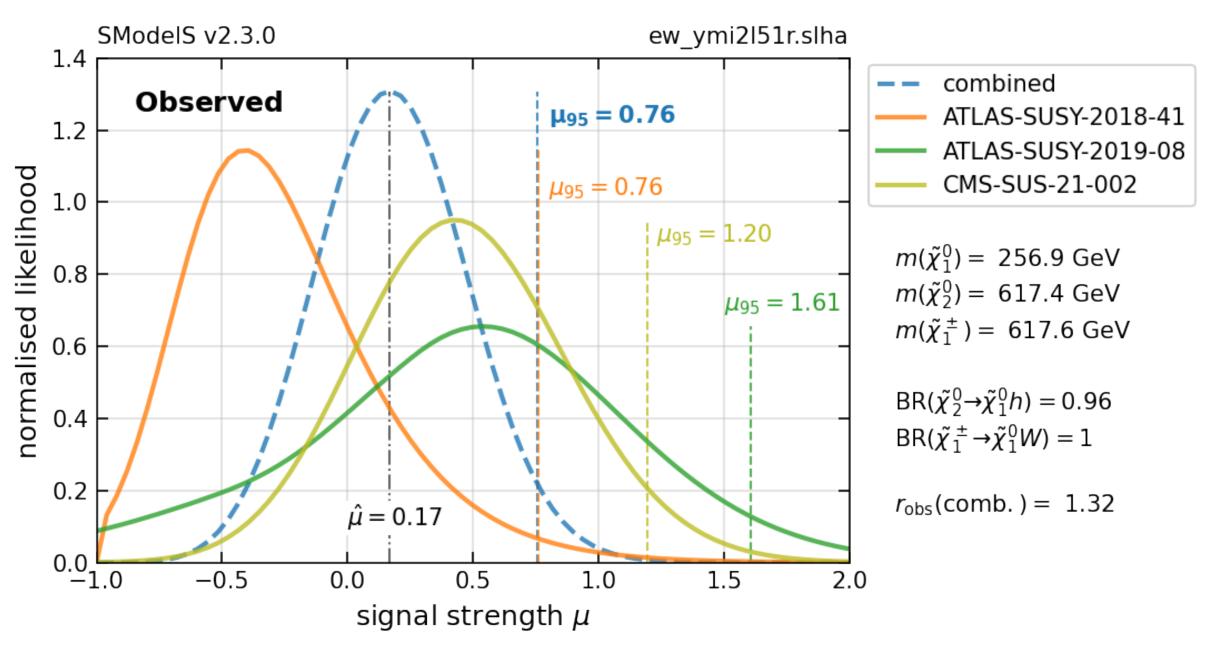


The act of comparing this empirical outcome to model predictions

(Global) likelihoods vs exclusion limits

95% CL limits only allow for binary decisions (excluded or not), but no rigorous statistical treatment. What we really need is likelihood information \rightarrow global analyses, global fits, etc.



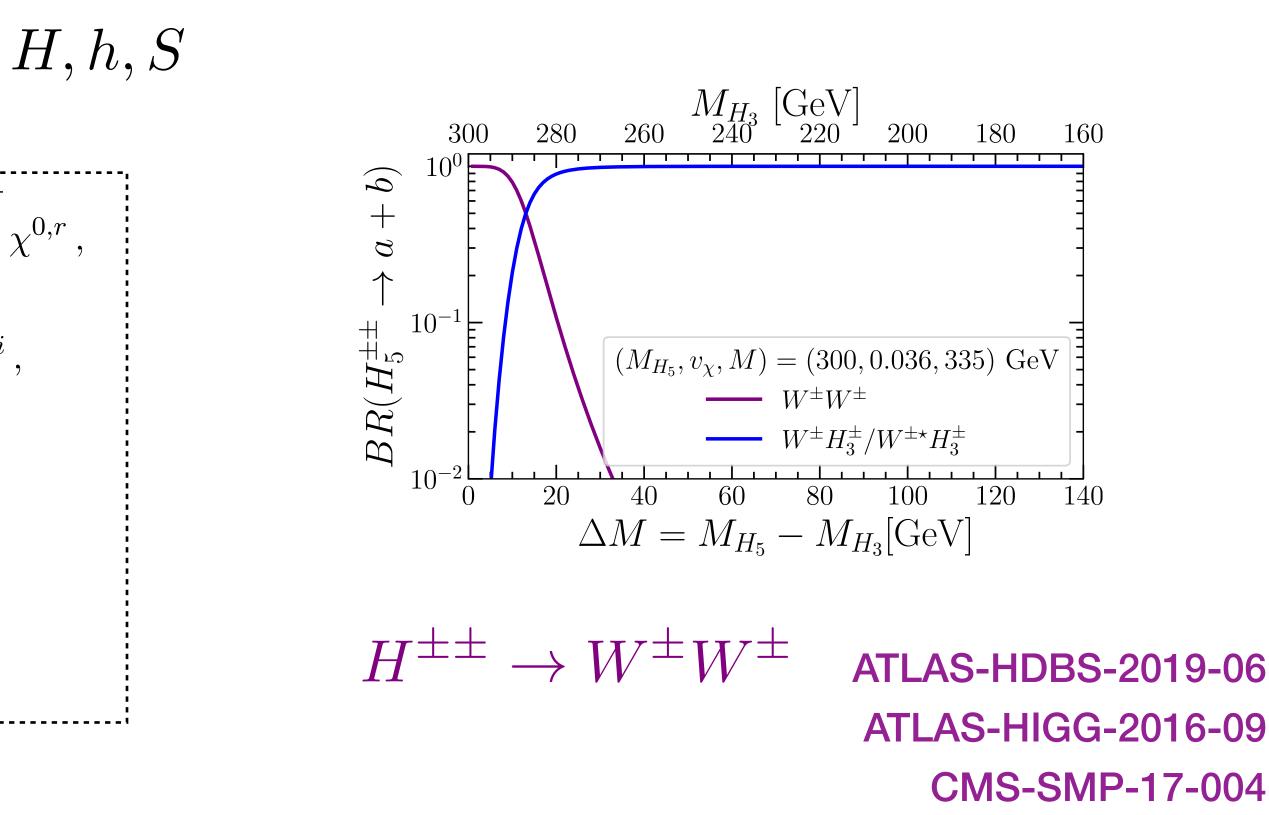

from 2306.17676 (see also 2312.16635)

(Global) likelihoods vs exclusion limits

95% CL limits only allow for binary decisions (excluded or not), but no rigorous statistical treatment. What we really need is likelihood information \rightarrow global analyses, global fits, etc.

from 2306.17676 (see also 2312.16635)

Georgi-Machacek model with a scalar singlet


- and a real scalar S, which serves as a DM candidate
- Physical states: $H_5^{++}, H_5^+, H_5^0, H_3^+, H_3^0, H, h, S$

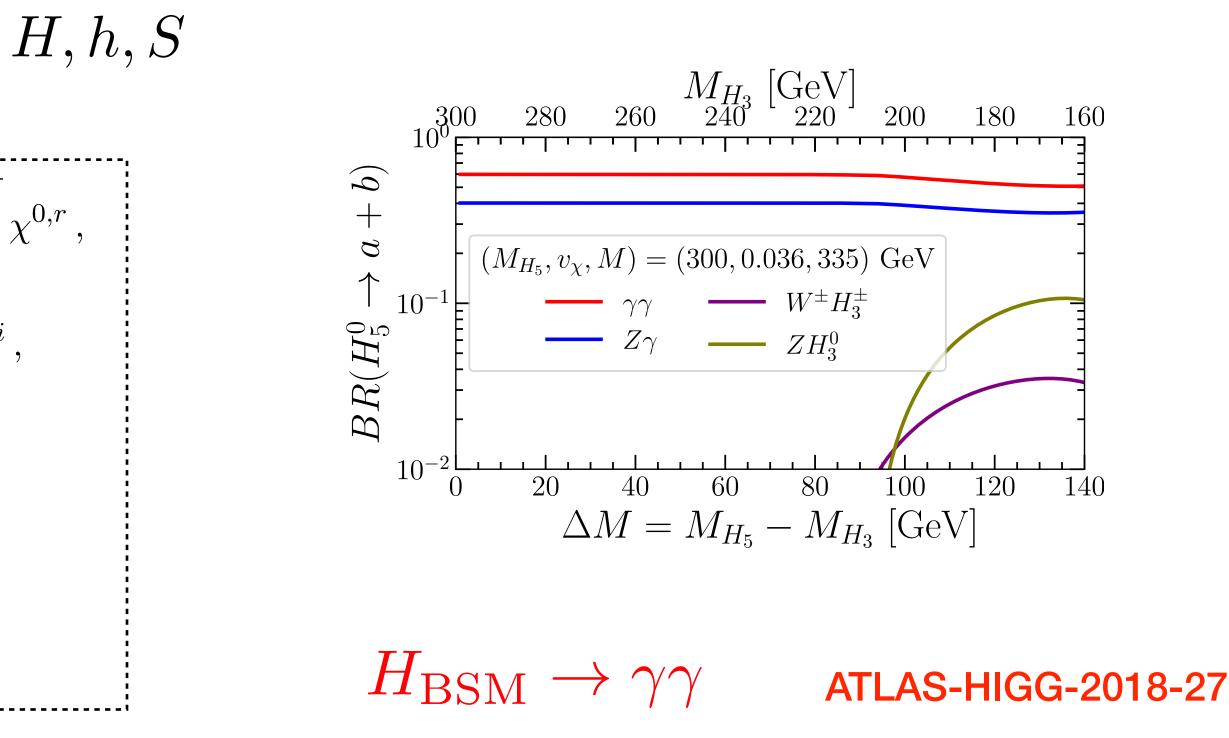
$$H_{5}^{++} = \chi^{++}, \quad H_{5}^{+} = \frac{1}{\sqrt{2}} \left(\chi^{+} - \xi^{+} \right), \quad H_{5}^{0} = \sqrt{\frac{2}{3}} \xi^{0,r} - \sqrt{\frac{1}{3}}$$
$$H_{3}^{+} = -s_{H} \phi^{+} + \frac{1}{\sqrt{2}} c_{H} \left(\xi^{+} + \chi^{+} \right), \quad H_{3}^{0} = -s_{H} \phi^{0,i} + c_{H} \chi^{0,i}$$
$$h = c_{\alpha} \phi^{0,r} - s_{\alpha} H_{1}^{0'}, \quad H_{1}^{0'} = \sqrt{\frac{1}{3}} \xi^{0,r} + \sqrt{\frac{2}{3}} \chi^{0,r}.$$
$$H = s_{\alpha} \phi^{0,r} + c_{\alpha} H_{1}^{0'}, \quad H_{1}^{0'} = \sqrt{\frac{1}{3}} \xi^{0,r} + \sqrt{\frac{2}{3}} \chi^{0,r}.$$
$$c_{H} \equiv \cos \theta_{H} = \frac{v_{\phi}}{v}, \quad s_{H} \equiv \sin \theta_{H} = \frac{2\sqrt{2}v_{\chi}}{v}.$$
$$\left\langle \xi^{0} \right\rangle = \left\langle \chi^{0} \right\rangle = v_{\chi}.$$

Sabine Kraml

G. Belanger et al., 2405.18332

• Scalar sector consisting of SM doublet Φ , two triplets $\xi = (\xi^{++}, \xi^0, \xi^-)^T$ and $\chi = (\chi^{++}, \chi^+, \chi^0)^T$,

Georgi-Machacek model with a scalar singlet

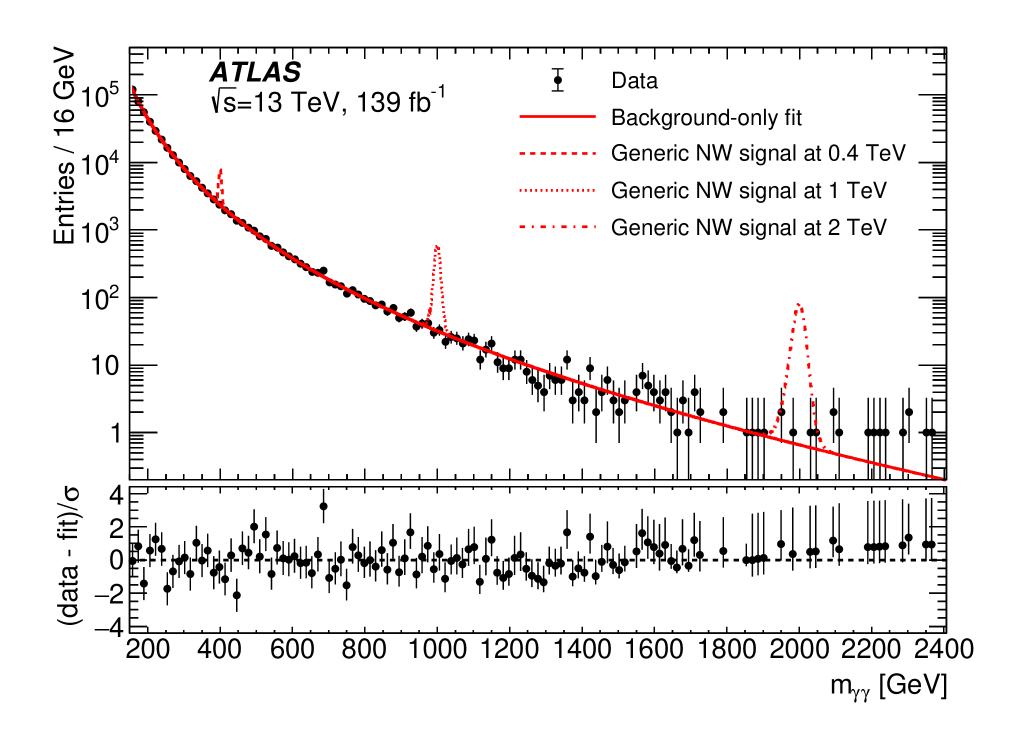

- and a real scalar S, which serves as a DM candidate
- Physical states: $H_5^{++}, H_5^+, H_5^0, H_3^+, H_3^0, H, h, S$

$$H_{5}^{++} = \chi^{++}, \quad H_{5}^{+} = \frac{1}{\sqrt{2}} \left(\chi^{+} - \xi^{+} \right), \quad H_{5}^{0} = \sqrt{\frac{2}{3}} \xi^{0,r} - \sqrt{\frac{1}{3}}$$
$$H_{3}^{+} = -s_{H} \phi^{+} + \frac{1}{\sqrt{2}} c_{H} \left(\xi^{+} + \chi^{+} \right), \quad H_{3}^{0} = -s_{H} \phi^{0,i} + c_{H} \chi^{0,i}$$
$$h = c_{\alpha} \phi^{0,r} - s_{\alpha} H_{1}^{0'}, \quad H_{1}^{0'} = \sqrt{\frac{1}{3}} \xi^{0,r} + \sqrt{\frac{2}{3}} \chi^{0,r}.$$
$$H = s_{\alpha} \phi^{0,r} + c_{\alpha} H_{1}^{0'}, \quad H_{1}^{0'} = \sqrt{\frac{1}{3}} \xi^{0,r} + \sqrt{\frac{2}{3}} \chi^{0,r}.$$
$$c_{H} \equiv \cos \theta_{H} = \frac{v_{\phi}}{v}, \quad s_{H} \equiv \sin \theta_{H} = \frac{2\sqrt{2}v_{\chi}}{v}.$$
$$\left\langle \xi^{0} \right\rangle = \left\langle \chi^{0} \right\rangle = v_{\chi}.$$

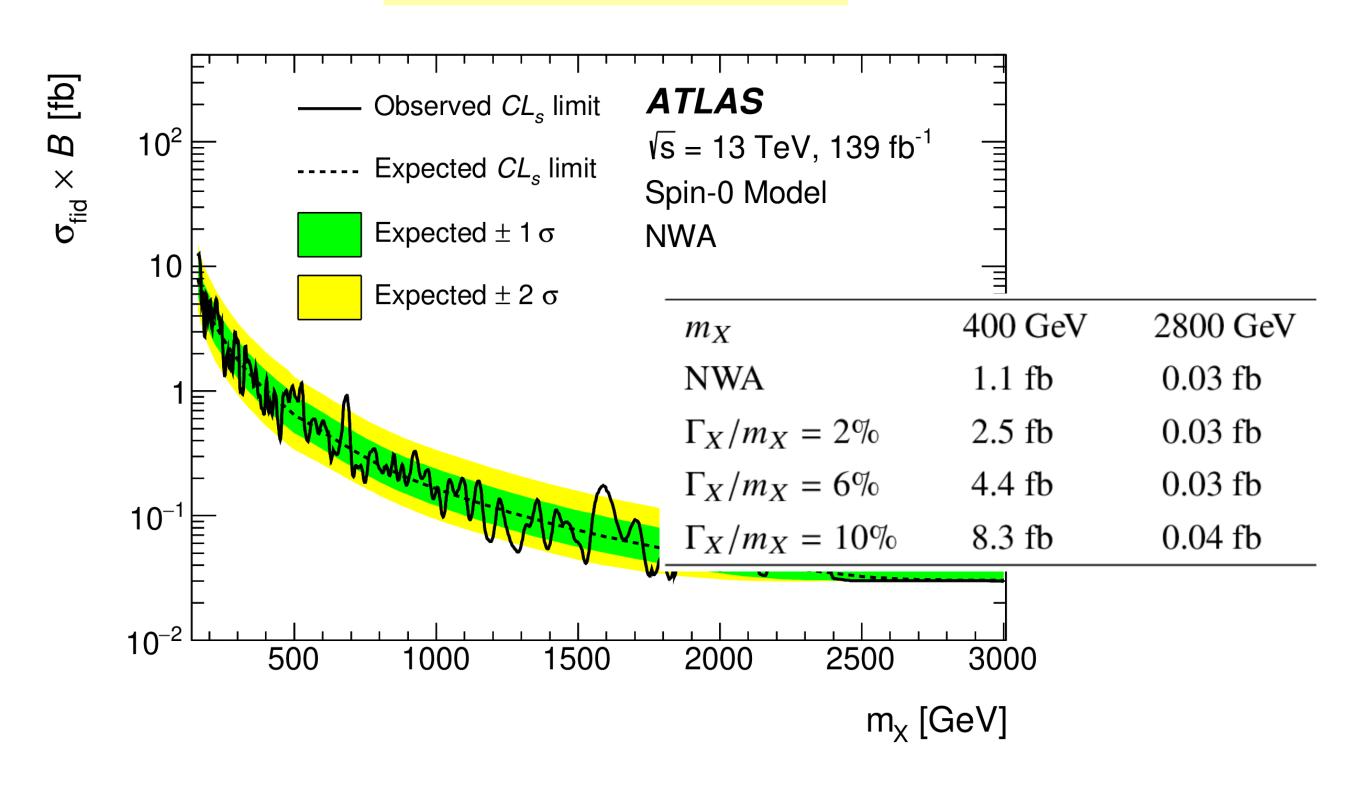
Sabine Kraml

G. Belanger et al., 2405.18332

• Scalar sector consisting of SM doublet Φ , two triplets $\xi = (\xi^{++}, \xi^0, \xi^-)^T$ and $\chi = (\chi^{++}, \chi^+, \chi^0)^T$,

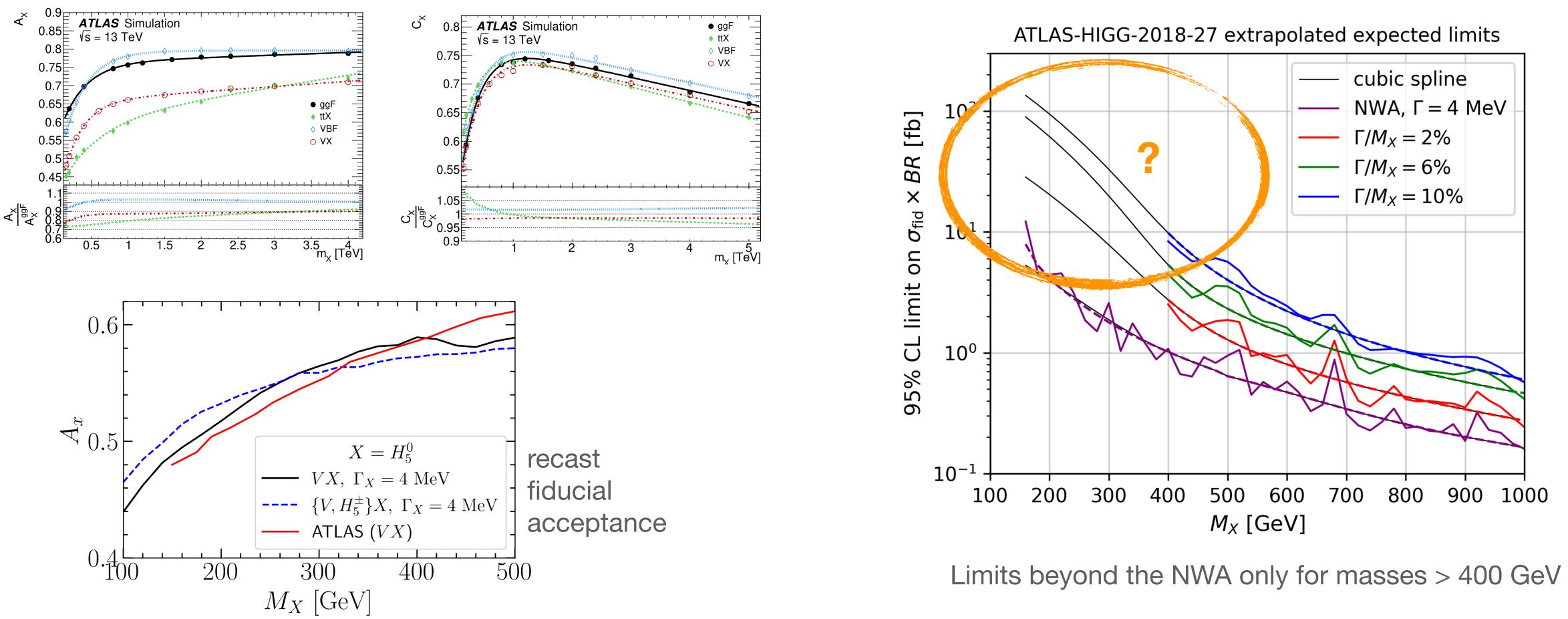


- 9


Georgi-Machacek model with a scalar singlet: constraints from ATLAS-HIGG-2018-27 ($H_{\rm BSM} \rightarrow \gamma \gamma$)

within a $\Delta R = 0.4$ cone around the photon direction, is required to be less than $0.05E_{\rm T} + 6$ GeV.

2405.18332


The fiducial volume for the spin-0 interpretation is defined by requiring two photons at generator level with $|\eta| < 2.37$, and $E_T/m_{\gamma\gamma} > 0.3$ and $E_T/m_{\gamma\gamma} > 0.25$ for the leading and subleading photons, respectively. The particle isolation, defined as the scalar sum of $p_{\rm T}$ of all the stable particles (except neutrinos) found

Georgi-Machacek model with a scalar singlet: constraints from ATLAS-HIGG-2018-27 ($H_{\rm BSM} \rightarrow \gamma \gamma$)

Auxiliary material: fiducial acceptance and truth-to-reco level correction

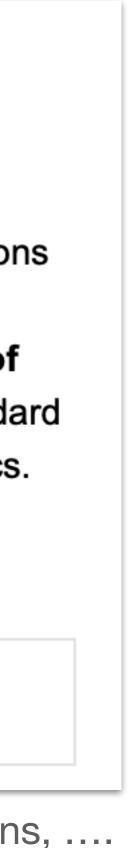
Sabine Kraml

2405.18332

BSM Reinterpretation Forum (RiF)

TWiki > InterpretingLHCPhysics Web > LHCPhysics > InterpretingLHCresults (2024-09-11, SabineKraml)

Forum on the Interpretation of the LHC Results for BSM studies


The quest for new physics beyond the Standard Model is arguably the driving topic for the physics Runs of the LHC. Indeed, the LHC collaborations are pursuing searches for new physics in a vast variety of channels. While the collaborations typically provide themselves interpretations of their results, for instance in terms of simplified models, the full understanding of the implications of these searches requires the interpretation of the experimental results in the context of all kinds of theoretical models. In addition, measurements primarily aimed at understanding Standard Model processes can have a high degree of model independence and implicitly contain information about potential contributions from new physics. Again, this requires the (re)interpretation of the experimental results in the context of new models. All this is a very active field, with close theoryexperiment interaction and with several public tools being developed.

With this forum, we want to provide a platform for continued discussion of topics related to the BSM (re)interpretation of LHC data, including the development of the necessary public Recasting Tools and related infrastructure. The forum was initiated in 2016 and has been active since.

WG with > 100 participants; recurrent workshops; white papers formulating recommendations,

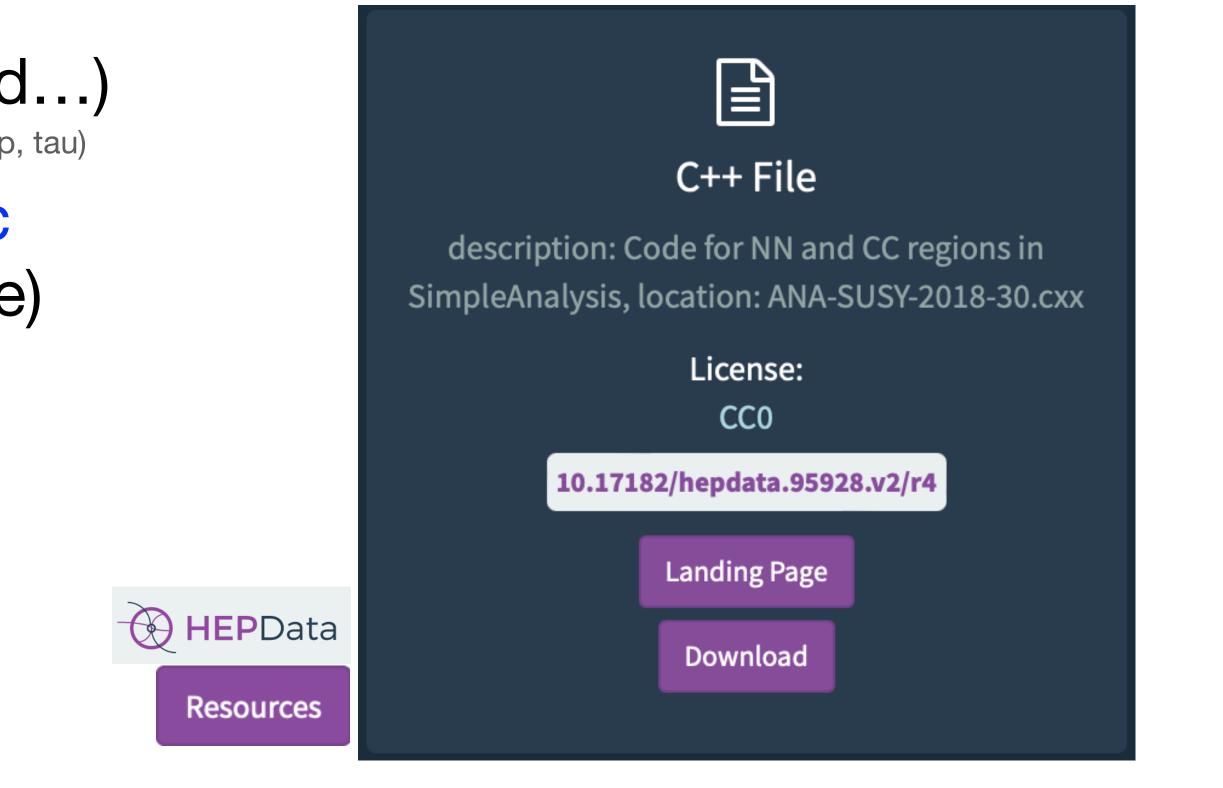
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/InterpretingLHCresults

Extended scalar sectors from all angles, CERN, 24/10/2024

What ATLAS/CMS analyses nowadays should (and increasingly do) provide

Extended scalar sectors from all angles, CERN, 24/10/2024

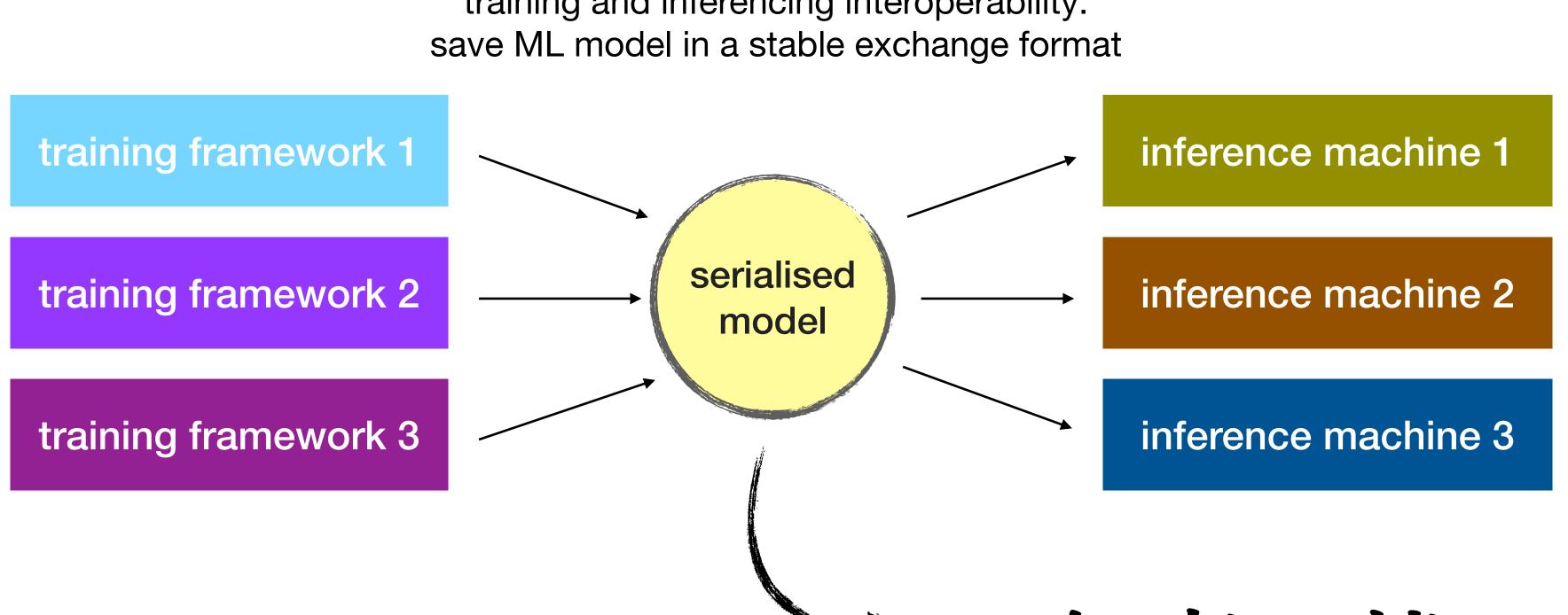
Sabine Kraml


Good practice:

Object definitions and signal selection

- Clear and unambiguous object definitions
- Precise reco efficiencies (parametrised...) ML-based taggers are still a problem (top, tau)
- Clear and unambiguous analysis logic (signal selection `cuts', tabulated/code)
- Cutflows !!!
- Other validation material:
 - input models (UFO...)
 - run cards
 - SLHA files of benchmarks
 - event samples?

(pseudo)code helps !


ATLAS SimpleAnalysis: ATL-PHYS-PUB-2022-017

Not necessarily; solutions exist

ML-based analyses — a dead end for recasting ?

training and inferencing interoperability:

make this public

together with a clear description of inputs and output

ML-based analyses

SUSY-2018-22	Search for squarks and glu BDT weights in XML format
SUSY-2019-04	RPV SUSY search, leptons + ONNX files for 5 NNs (4-8 jet
SUSY-2018-30	SUSY search with MET and r simpleAnalysis implementatic
EXOT-2019-23	Search for neutral LLPs with preserved NNs as ONNX, BE also 6d efficiency maps param
HDBS-2019-23	Anomaly detection search for VRNN python code + post-tr

Extended scalar sectors from all angles, CERN, 24/10/2024

Some ATLAS analyses have indeed started to provide their learned models in serialised form.

uinos: jets+MET at on HEPData + simpleAnalysis implementation

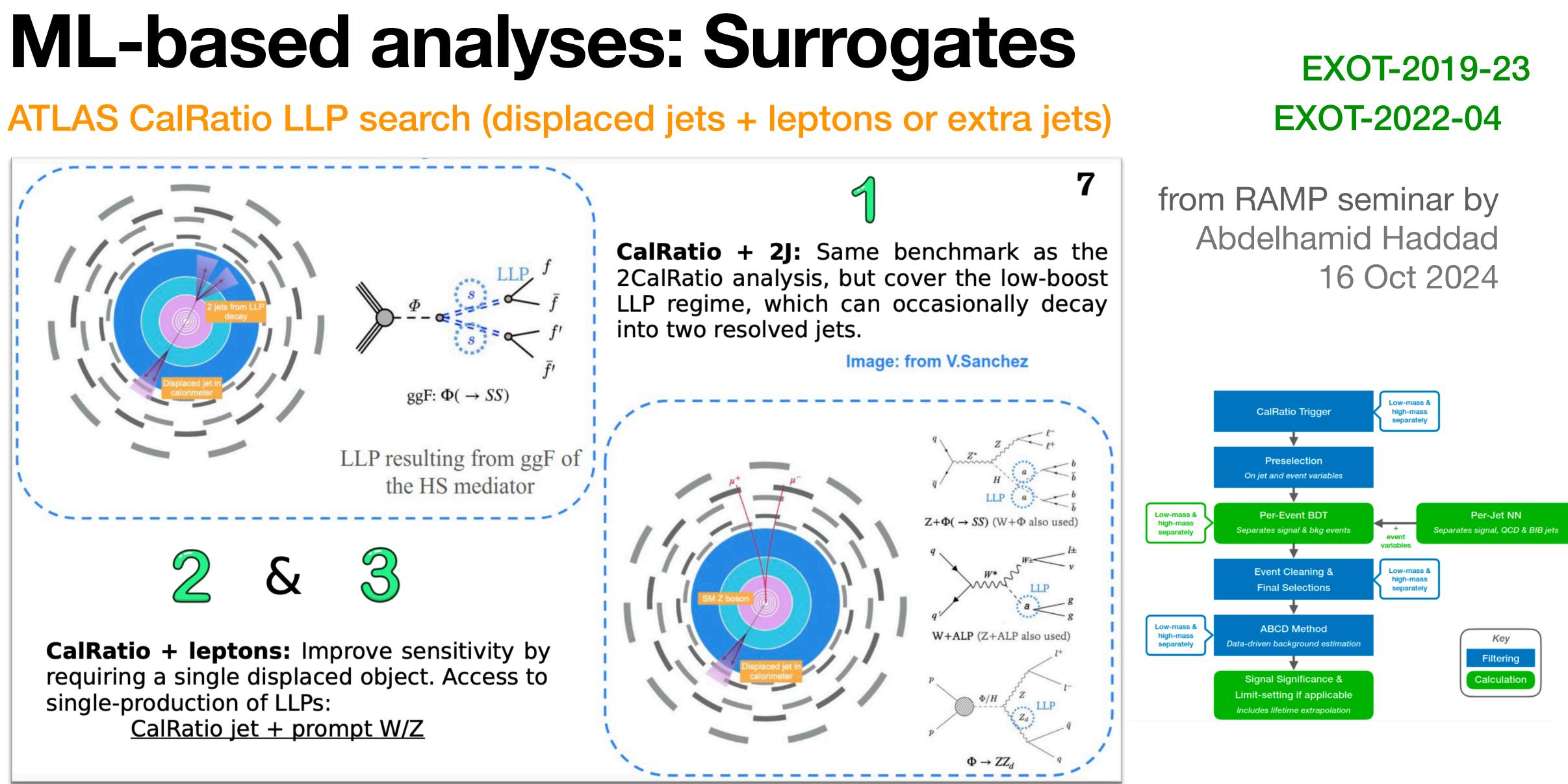
- many jets ts SRs) on HEPData + simpleAnalysis implementation

many b-jets on with ONNX-serialised NN model

displaced hadronic jets ("CalRatio LLP search") DTs as executables with petrify-bdt; low level inputs; ametrising the BDT+NN selection + example code

or new resonances $Y \rightarrow X+H$ in hadronic final states raining weights (PyTorch .pth file)

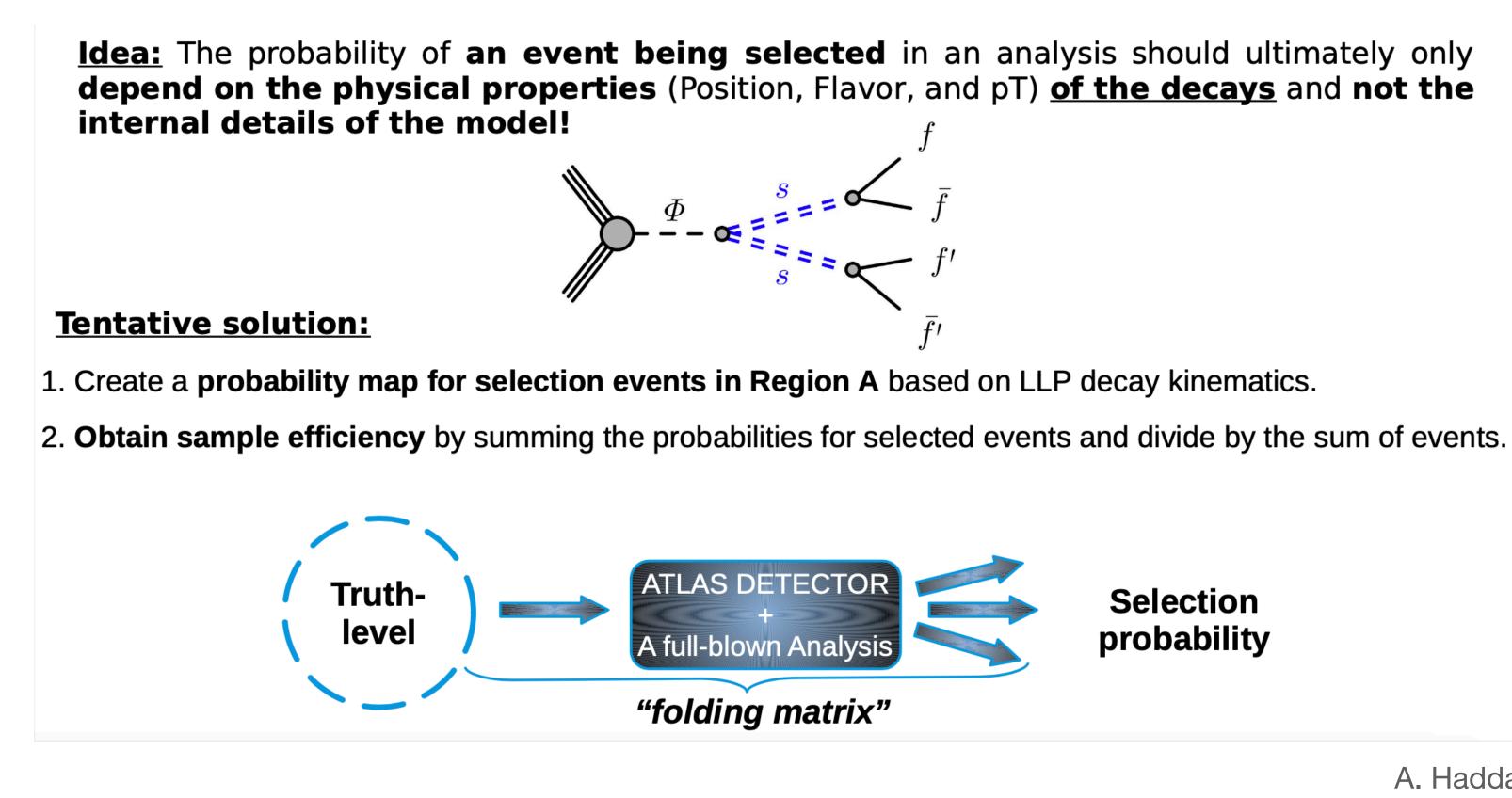
→ CheckMATE, MadAnalysis5 and RIVET have developed interfaces.



Guidelines for reusable ML models

Analysis Design	choice archite
Documentation	clear d code/f
Validation	materia (cut-flo
Surrogates	anothe the out parame

- e of framework, preservation format, ecture, input features
- definition of all input & output variables; framework version and dependencies
- ial enabling to verify performance ows, plots of in/out variables, runcards)
- er ML model trained to approx. replicate Itput of the original one (or simple netrised efficiencies)



ML-based analyses: Surrogates

ATLAS CalRatio LLP search (displaced jets + leptons or extra jets)

A. Haddad

EXOT-2019-23

6d efficiency maps parametrising the BDT+NN selection + example code

> RAMP seminar by Louie Corpe 16 Jan 2023

EXOT-2022-04

Trained BDT to give overall selection probability in ABCD plane, using truth-level (Lxy, Lz, η , p_T , E_T , Child ID); pickle files + sample code

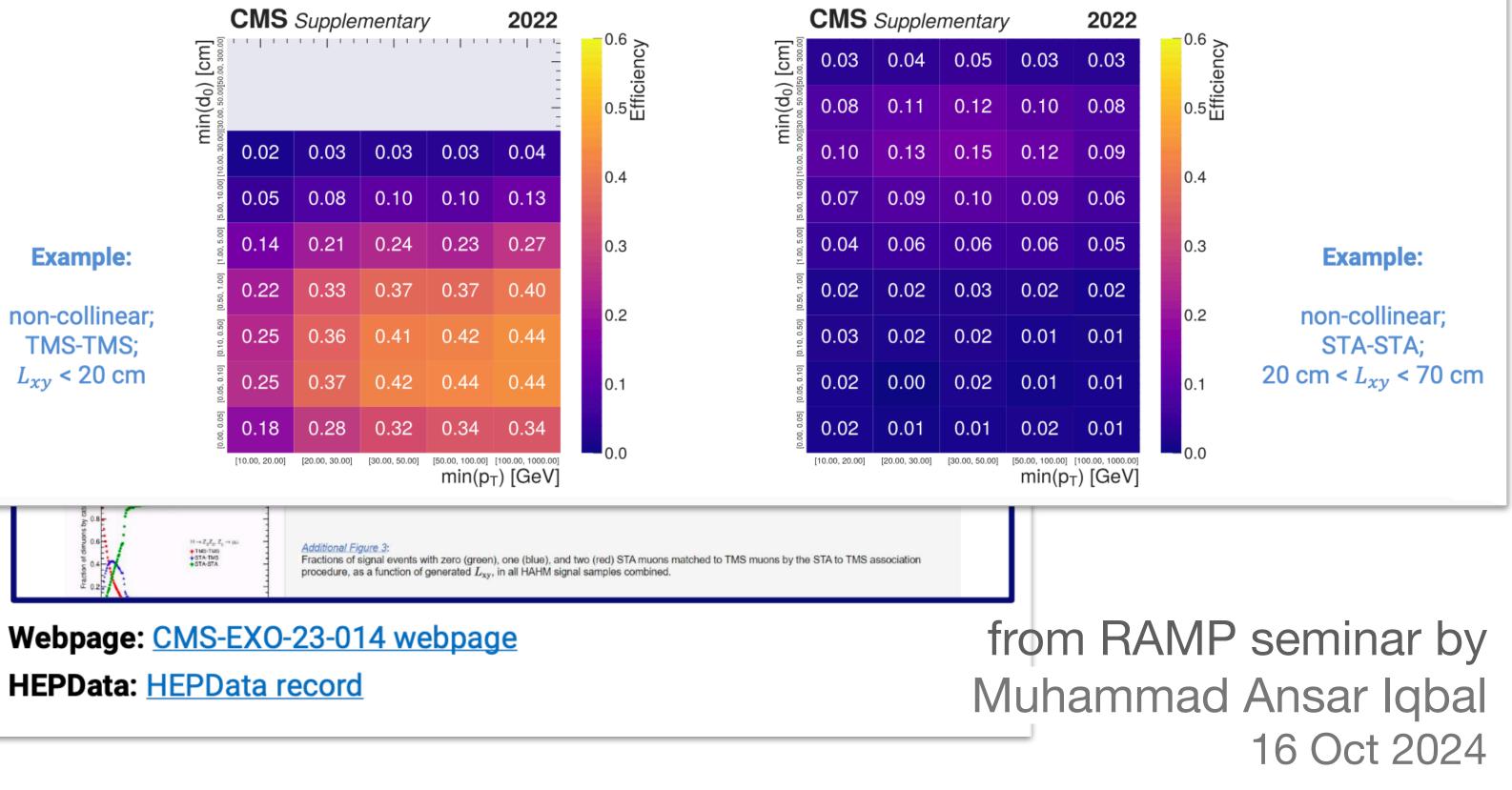
> RAMP seminar by Abdelhamid Haddad 16 Oct 2024

Similar approach in CMS displaced di-muon search

Available material

To go with the paper, we provide:

Auxiliary material, on the paper webpage


- Trigger and overall selection efficiencies as a function of $c\tau_{LLP}$, m_{uu} for the signals considered in the paper.
- **Comparisons** of the final 95% CL constraints with other results.
- **Reinterpretation recipe** (instructions similar and transferrable to the Run 2 paper).
- Reinterpretation: signal efficiency maps as a function of generator-level quantities.

HEPData

Digitised and tabulated paper and auxiliary material plots, including reinterpretation material (+ recipe).

 \Rightarrow Three-dimensional efficiency maps in (min($p_{\rm T}$), min(d_0), L_{xy}).

, with geometric acceptance: min(d_0) < 300 cm, L_{xy} < 500 cm, L_z < 800 cm for the dimuon and $|\eta|$ < 2.0 for each muon. * Efficiencies are corrected by data-to-sim. scale factors, described in the paper.

CMS-EXO-23-014

N(simulated signal dimuons in the bin passing trigger and selection) Efficiency in each bin =N(simulated signal dimuons in the bin within geometric acceptance)

What ATLAS/CMS analyses nowadays should (and increasingly do) provide

Extended scalar sectors from all angles, CERN, 24/10/2024

Sabine Kraml

Good practice:

Statistical models

The complete probability model for the analysis includes dependence on the data x,y, the parameters of interest µ and nuisance parameters θ, access to the individual terms and the ability to generate pseudo-data ("toy Monte Carlo").

$$p(n, x, y | \mu, \theta) = \prod_{i=1}^{N_c} \left[\text{Pois}(n_i \mid \nu_i(\mu, \theta)) \prod_{j=1}^{n_i} p_i(x_{ij} | \mu, \theta) \right] p(y | \theta) \rightarrow L(\mu, \theta)$$
Likelihood: The value of the statistical model for a given fixed dataset as a function of the parameters
$$pdf \text{ of auxiliary data } y$$
Access to the individual components v_{ik} and ρ_{ik} is needed for certain types of reinterpretations, e.g.
$$pdf \text{ of auxiliary data } y$$

$$p_i(x_{ij} | \mu, \theta) = \sum_k \frac{\nu_{ik}(\mu, \theta)}{\nu_i(\mu, \theta)} p_{ik}(x_{ij} | \mu, \theta), \quad \text{The probability to measure xij in channel i event j}$$

$$\nu_i(\mu, \theta) = \sum_k \nu_{ik}(\mu, \theta)$$

$$p_i(\mu, \theta) = \sum_k \nu_{ik}(\mu, \theta)$$

$$p_i(\mu, \theta) = \sum_k \nu_{ik}(\mu, \theta)$$

Full statistical models: ATLAS

ATLAS started in 2019 to publish plain-text serialisation of HistFactory workspaces in JSON format

Provides background estimates, changes under systematic variations, and observed data counts at the same fidelity as used in the experiment.

	Description	Modification	Constraint Term c_{χ}
constrained	Uncorrelated Shape Correlated Shape Normalisation Unc. MC Stat. Uncertainty Luminosity	$\begin{aligned} \kappa_{scb}(\gamma_b) &= \gamma_b \\ \Delta_{scb}(\alpha) &= f_p \left(\alpha \middle \Delta_{scb,\alpha=-1}, \Delta_{scb,\alpha=1} \right) \\ \kappa_{scb}(\alpha) &= g_p \left(\alpha \middle \kappa_{scb,\alpha=-1}, \kappa_{scb,\alpha=1} \right) \\ \kappa_{scb}(\gamma_b) &= \gamma_b \\ \kappa_{scb}(\lambda) &= \lambda \end{aligned}$	$ \prod_{b} \operatorname{Pois} \left(r_{b} = \sigma_{b}^{-2} \middle \rho_{b} = \sigma_{b}^{-2} \gamma_{b} \right) $ $ \operatorname{Gaus} \left(a = 0 \middle \alpha, \sigma = 1 \right) $ $ \operatorname{Gaus} \left(a = 0 \middle \alpha, \sigma = 1 \right) $ $ \prod_{b} \operatorname{Gaus} \left(a_{\gamma_{b}} = 1 \middle \gamma_{b}, \delta_{b} \right) $ $ \operatorname{Gaus} \left(l = \lambda_{0} \middle \lambda, \sigma_{\lambda} \right) $
free	Normalisation Data-driven Shape	$\begin{aligned} \kappa_{scb}(\mu_b) &= \mu_b \\ \kappa_{scb}(\gamma_b) &= \gamma_b \end{aligned}$	

Rate modifications defined in HistFactory for bin b, sample s, channel c.

- Usage: RooFit, **pyhf**
- Target: long-term data/analysis preservation, reinterpretation purposes

ATL-PHYS-PUB-2019-029

Input
σ_b
$\Delta_{scb,\alpha=\pm 1}$
$ \begin{aligned} \kappa_{scb,\alpha=\pm 1} \\ \delta_b^2 &= \sum_s \delta_{sb}^2 \\ \lambda_0, \sigma_\lambda \end{aligned} $

ATLAS PUB Note ATL-PHYS-PUB-2019-029 21st October 2019

Reproducing searches for new physics with the ATLAS experiment through publication of full statistical likelihoods

The ATLAS Collaboration

The ATLAS Collaboration is starting to publicly provide likelihoods associated with statistical fits used in searches for new physics on HEPData. These likelihoods adhere to a specification first defined by the HistFactory p.d.f. template. This note introduces a JSON schema that fully describes the HistFactory statistical model and is sufficient to reproduce key results from published ATLAS analyses. This is per-se independent of its implementation in ROOT and it can be used to run statistical analysis outside of the ROOT and RooStats/RooFit framework. The first of these likelihoods published on HEPData is from a search for bottom-squark pair production. Using two independent implementations of the model, one in ROOT and one in pure Python, the limits on the bottom-squark mass are reproduced, underscoring the implementation independence and long-term viability of the archived data.

Full statistical models: ATLAS

ATLAS started in 2019 to publish plain-text serialisation of HistFactory workspaces in JSON format

Provides background estimates, changes under systematic variations, and observed data counts at the same fidelity as used in the experiment.

	Description	Modification	Constraint Term c_{χ}
constrained	Uncorrelated Shape Correlated Shape Normalisation Unc. MC Stat. Uncertainty Luminosity	$\begin{aligned} \kappa_{scb}(\gamma_b) &= \gamma_b \\ \Delta_{scb}(\alpha) &= f_p \left(\alpha \middle \Delta_{scb,\alpha=-1}, \Delta_{scb,\alpha=1} \right) \\ \kappa_{scb}(\alpha) &= g_p \left(\alpha \middle \kappa_{scb,\alpha=-1}, \kappa_{scb,\alpha=1} \right) \\ \kappa_{scb}(\gamma_b) &= \gamma_b \\ \kappa_{scb}(\lambda) &= \lambda \end{aligned}$	$ \prod_{b} \operatorname{Pois} \left(r_{b} = \sigma_{b}^{-2} \middle \rho_{b} = \sigma_{b}^{-2} \gamma_{b} \right) $ $ \operatorname{Gaus} \left(a = 0 \middle \alpha, \sigma = 1 \right) $ $ \operatorname{Gaus} \left(a = 0 \middle \alpha, \sigma = 1 \right) $ $ \prod_{b} \operatorname{Gaus} \left(a_{\gamma_{b}} = 1 \middle \gamma_{b}, \delta_{b} \right) $ $ \operatorname{Gaus} \left(l = \lambda_{0} \middle \lambda, \sigma_{\lambda} \right) $
free	Normalisation Data-driven Shape	$\begin{aligned} \kappa_{scb}(\mu_b) &= \mu_b \\ \kappa_{scb}(\gamma_b) &= \gamma_b \end{aligned}$	

Rate modifications defined in HistFactory for bin b, sample s, channel c.

- Usage: RooFit, **pyhf**
- Target: long-term data/analysis preservation, reinterpretation purposes

ATL-PHYS-PUB-2019-029

Input
σ_b
$\Delta_{scb,\alpha=\pm 1}$
$\kappa_{scb,\alpha=\pm 1}$ $\delta_b^2 = \sum_s \delta_{sb}^2$ $\lambda_0, \sigma_\lambda$

	ata	Resourc	es	
HistFactory File				
Archive of full likelihoods in the HistFactory JSON format described in ATL-PHYS-PUB-2019-029 Provided are 3 statiscal models labeled RegionA RegionB and RegionC respectively each in their own sub-directory. For each model the background-only model is found i the file named BkgOnly.json' For each model a set of patches fo various signal points is provided				
10.17182	۷/hepdata.	89408.v3/r2		
	Downloa	d		

Full statistical models: ATLAS

ATLAS started in 2019 to publish plain-text serialisation of HistFactory workspaces in JSON format

Provides background estimates, changes under systematic variations, and observed data counts at the same fidelity as used in the experiment.

	Description	Modification	Constraint Term c_{χ}
constrained	Uncorrelated Shape Correlated Shape Normalisation Unc. MC Stat. Uncertainty Luminosity	$\begin{aligned} \kappa_{scb}(\gamma_b) &= \gamma_b \\ \Delta_{scb}(\alpha) &= f_p \left(\alpha \middle \Delta_{scb,\alpha=-1}, \Delta_{scb,\alpha=1} \right) \\ \kappa_{scb}(\alpha) &= g_p \left(\alpha \middle \kappa_{scb,\alpha=-1}, \kappa_{scb,\alpha=1} \right) \\ \kappa_{scb}(\gamma_b) &= \gamma_b \\ \kappa_{scb}(\lambda) &= \lambda \end{aligned}$	$\begin{aligned} \prod_{b} \operatorname{Pois} \left(r_{b} = \sigma_{b}^{-2} \middle \rho_{b} = \sigma_{b}^{-2} \gamma_{b} \right) \\ \operatorname{Gaus} \left(a = 0 \middle \alpha, \sigma = 1 \right) \\ \operatorname{Gaus} \left(a = 0 \middle \alpha, \sigma = 1 \right) \\ \prod_{b} \operatorname{Gaus} \left(a_{\gamma_{b}} = 1 \middle \gamma_{b}, \delta_{b} \right) \\ \operatorname{Gaus} \left(l = \lambda_{0} \middle \lambda, \sigma_{\lambda} \right) \end{aligned}$
free	Normalisation Data-driven Shape	$\begin{aligned} \kappa_{scb}(\mu_b) &= \mu_b \\ \kappa_{scb}(\gamma_b) &= \gamma_b \end{aligned}$	

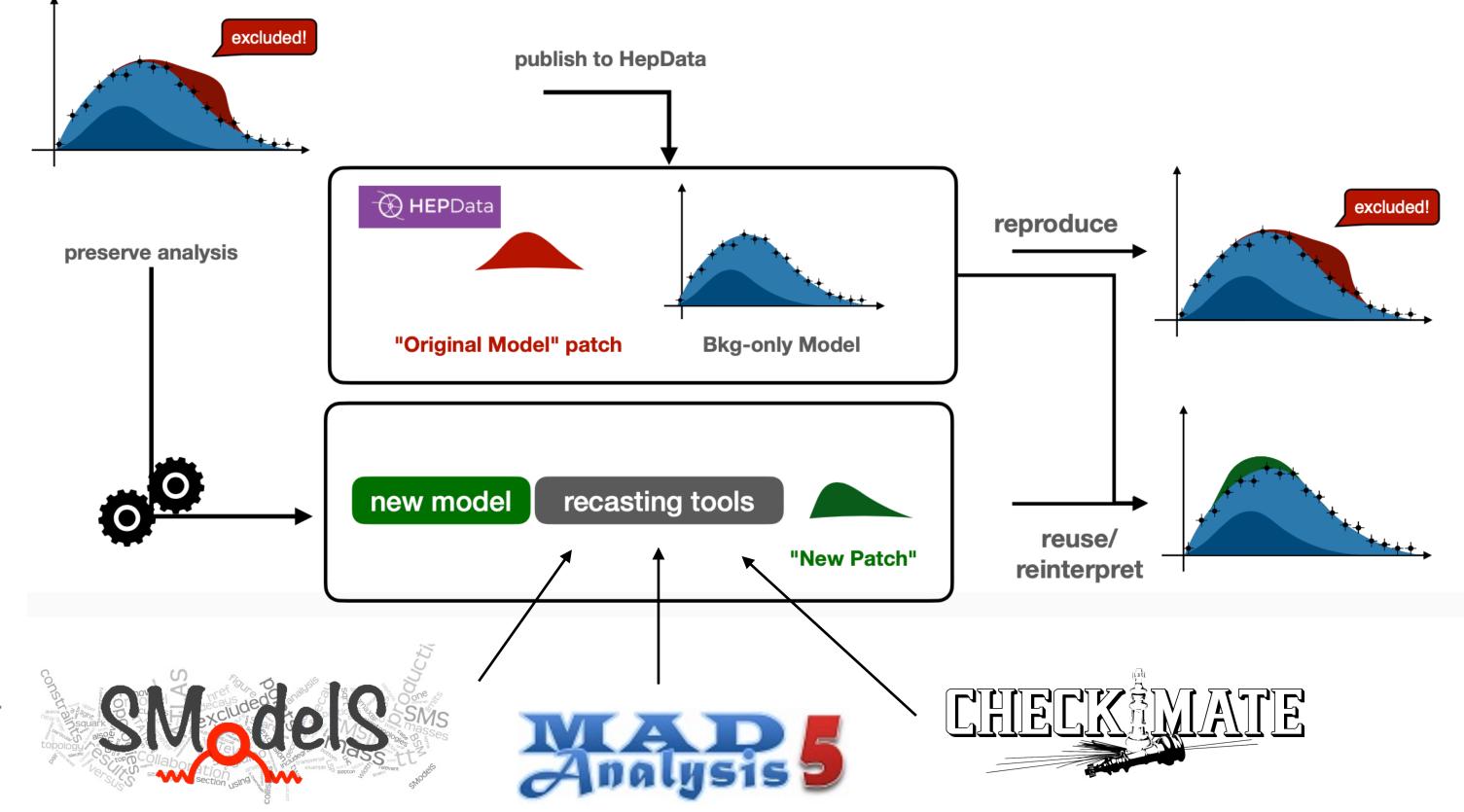
Rate modifications defined in HistFactory for bin b, sample s, channel c.

- Usage: RooFit, pyhf
- Target: long-term data/analysis preservation, reinterpretation purposes

ATL-PHYS-PUB-2019-029

Input σ_b $\Delta_{scb,\alpha=\pm 1}$ $\kappa_{scb,\alpha=\pm 1}$ $\delta_{h}^{2} = \sum_{s} \delta_{s}^{2}$ $\lambda_0, \sigma_\lambda$

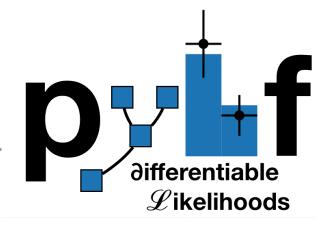
Search for charginos and neutralinos in all-hadronic final states SUSY Accepted by T7-AUG-21 13 1 4-lop xace measurement TOPR Accepted by 22-JUN-21 13 1 Search for displaced leptrons, stops and electroweakings in RPV models in find states with 1L and many jets Susy Accepted by 17-JUN-21 13 1 Search for charginos and neutralinos in final states with 3L and MET SUSY Accepted by 03-JUN-21 13 1 Mesurement of tIZ cross sections in Run 2 TOPR Eur. Phys. J. C.B1 23-MAR 13 1 Search for third-generation scalar leptoquarks decaying to a lop quark and a talepton Eur. First. J. C.B1 24-MAR 13 1 Search for displaced leptons SUSY Law, Run-1 13 1 Search for displaced leptons SUSY Phys. Rev. Lett. 127-0CT-20 13 1 Search for displaced leptons SUSY Phys. Rev. D 101 22-NOV-20 13 1 Messurement of the tibar promet lobre as section in the lepton-less chausel at talk and seleaced muon SUSY Phys. Rev. D 101 10		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
Heip vasc measurement 10HQ JHEP 22-JUN-21 13 1 Search for gluinos, stops and electroweakinos in RPV models in SUSY Accepted by 17-JUN-21 13 1 Search for charginos and neutralinos in final states with 3L and SUSY Accepted by 03-JUN-21 13 1 Measurement of tiZ cross sections in Run 2 TOPO Eur Phys. J. C 61 23-JUN-21 13 1 Search for charginos and neutralinos in final states with 3L and SUSY Accepted by 03-JUN-21 13 1 Measurement of tiZ cross sections in Run 2 TOPO Eur Phys. J. C 61 23-JUN-21 13 1 Search for squarks and gluinos in final states 1L, jets and MET SUSY Eur Phys. Rev. 103 20-NOV-20 13 1 Search for squarks and gluinos in final states 1L, jets and MET SUSY Phys. Rev. Lett. 13 1 Search for squarks and gluinos in final states thrule is and SUSY Phys. Rev. Lett. 13 1 Search for squarks and gluinos in final states thrule is and SUSY Phys. Rev. Lett. 13 1 Mesurement of the thar procellulors instacted thrule is and SUSY Phys. R	١	atic	Search for charginos and neutralinos in all-hadronic final states	SUSY	Accepted by PRD	17-AUG-21	13	1
If mail states with 1L and many jets SUSY EPJC FPJC 17.JUR21 13 1 Search for charginos and neutralinos in final states with 3L and MET SUSY EPJC Cocopied by EPJC 03-JUN-21 1 Measurement of ttZ cross sections in Run 2 TOPQ Eur. Phys. J. C.81 (2021) 737 23-MARE 13 1 Search for third-generation scalar leptoquarks decaying to a top quark and a tau lepton EXCT JHEP 06 (2021) J. J. MARE 13 1 Search for charginos and neutralinos in final states 1L, jets and MET SUSY Super Rive 103, 20-NOV-20 13 1 Search for charginos and neutralinos in RPV models in final states with 3L (or more) SUSY SUSY SUSY SUSY SUSY MET 127 (2021) 13-NOV-20 13 1 Search for displaced leptons SUSY MET JHEP 02 (2021) 13-NOV-20 13 1 Measurement of the tibar protection substates that jub Sand MET SUSY MET JHEP 02 (2021) 13-NOV-20 13 1 Neasurement of the tibar protection substates that jub Sand MET SUSY MED (2020) 135797 24-JUN-20 13 1 Chargino-neutralino pair, 3 leptons, weak-scale mass splittings SUSY Measurement of the tibar protection substates 2 bipts and 1 (2020) 072001 <th colspan="2">ty as</th> <th>4-top xsec measurement</th> <th>TOPQ</th> <th></th> <th>22-JUN-21</th> <th>13</th> <th>1</th>	ty as		4-top xsec measurement	TOPQ		22-JUN-21	13	1
MET SUSY EPuC (03-UM-21) 1 Measurement of titZ cross sections in Run 2 TOPQ Eur. Phys. J. C. 81 23-MARE 1 Search for third-generation scalar leptoquarks decaying to a top quark and a tau lepton EXOT JHEP 06 (2021) 32-MARE 13 1 Search for squarks and gluinos in final states 1L, jets and MET SUSY Eur. PhylU 05-JAN-21 13 1 Search for charginos and neutralinos in RPV models in final states with 3L (or more) SUSY Phys. Rev. Left. 127 (2021) 13-NOV-20 13 1 Search for displaced leptons SUSY Phys. Rev. Left. 127 (2021) 13-NOV-20 13 1 Search for displaced leptons SUSY Phys. Rev. Left. 127 (2021) 13-NOV-20 13 1 Measurement of the titbar profetions passection in the MET TOPQ (2021) 135797 24-JUN-20 13 1 Stop profetions wak-scale mass splittings SUSY Phys. Rev. D.102 (2020) 135797 24-JUN-20 13 1 Chargino-neutralino pair, slepton pair, soft leptons SUSY Phys. Rev. D.101 (2020) 032006 26-MAR-20 13<				SUSY		17-JUN-21	13	1
Measurement of N2 cross sections in Ruh 2 10Pul (2021) 737 25-MAR 3 1 Search for third-generation scalar leptoquarks decaying to a top quark and a tau lepton EXOT 11FP 06 (2021) 3 (AAv1 1) 13 1 Search for squarks and gluinos in final states 1L, jets and MET SUSY Eur Rh 1-2 05-JAN-21 13 1 Search for charginos and neutralinos in RPV models in final states 1L, jets and MET SUSY Eur Rh 2-2 03 20-NOV-20 13 1 Search for displaced leptons SUSY Phys. Rev. Left. 13-NOV-20 13 1 Search for displaced leptons SUSY Phys. Rev. Left. 13-NOV-20 13 1 Measurement of the tibar proteitoms persocion in the top Q201) 15797 24-JUN-20 13 1 Measurement of the tibar proteitoms persocion in the top Q201) 155797 24-JUN-20 13 1 Importance of the tibar proteitoms persocion in the top Q201) 155797 24-JUN-20 13 1 Chargino-neutralino pair; 3 leptons, weak-scale mass splittings SUSY Phys. Rev. D 101 22-NOV-19 13 1 Chargino-neutralino pair; 3 leptons, weak-scale mass splittings SUSY Phys. Rev. D 101				SUSY		03-JUN-21	17	1
quark and a tau lepton EX01 179 1,0,000-1 13 1 Search for squarks and gluinos in final states 1L, jets and MET SUSY Eur, RN1-1 05-JAN-21 13 1 Search for charginos and neutralinos in RPV models in final states with 3L (or more) SUSY G2027), Rev. 0 103, (2021) 112003 20-NOV-20 13 1 Search for displaced leptons SUSY Phys. Rev. 1 dttt, 127 (2021) 13-NOV-20 13 1 Measurement of the titbar propertitions servection in the lepton+jets changel at each 1 TOPQ Phys. Lett. B 810 (2020) 135797 24-JUN-20 13 1 Stop particinal endisplaced vertex and displaced muon SUSY Phys. Rev. D 102 (2020) 135797 24-JUN-20 13 1 Stop particinal endisplaced vertex and displaced muon SUSY Phys. Rev. D 101 (2020) 032006 26-MAR-20 13 1 Chargino-neutralino pair; 3 leptons, weak-scale mass splittings SUSY Phys. Rev. D 101 (2020) 032005 28-NOV-19 13 1 Chargino-neutralino pair; Higgs boson in final state, 2 b-jets and 1 SUSY Phys. Rev. D 101 (2020) 032005 18-NOV-19 13 1 Chargino-neutralino pair; Higgs boson in final state, 2 b-jets and 1 SUSY<			Measurement of ttZ cross sections in Run 2	TOPQ		23-MARC	3	1
Search for squarks and gluinos in final states 1L, jets and ME1 SUSY (2025) 05-JAN-21 13 1 Search for charginos and neutralinos in RPV models in final states with 3L (or more) SUSY (221) 112003 20-NOV-20 13 1 Search for displaced leptons SUSY (27021) 13-NOV-20 13 1 Search for displaced leptons SUSY (27021) 13-NOV-20 13 1 Search for squarks and gluinos in final states with 10 jets and MET SUSY (2020) 27-OCT-20 13 1 MET Measurement of the tibar promotioner sestection in the lepton+jets chaugel at effect TOPQ (2020) 13507 24-JUN-20 13 1 NET Toppo (2020) 13507 24-JUN-20 13 1 1 Measurement of the tibar promotioner sestection in the lepton+jets chaugel at effect TOPQ (2020) 13507 24-JUN-20 13 1 Chargino-neutralino pair, 3 leptons, weak-scale mass splittings SUSY Phys. Rev. D 101 (2020) 032006 26-NAR-20 13 1 Chargino-neutralino pair, slepton pair, soft leptons SUSY Phys. Rev. D 101 (2020) 052005 28-NOV-19 13 1 Chargino-neutralino pair, Higgs boson in final state, 2 b-jets and 1 lepton SUSY <th></th> <th></th> <th></th> <th>EXOT</th> <th></th> <th>2. JAN 21</th> <th>13</th> <th>1</th>				EXOT		2. JAN 21	13	1
states with 3L (or more) SUP (2021) 112003 20-NOV-20 13 1 Search for displaced leptons SUSY Phys. Rev. Lett. 127 (2021) 13-NOV-20 13 1 Search for displaced leptons SUSY Phys. Rev. Lett. 127 (2021) 13-NOV-20 13 1 Search for squarks and gluinos in final stans with 1, jels and MET SUSY JHEP 02 (2021) 143 27-OCT-20 13 1 Measurement of the tibar protection in the lepton+jets changel at the state TOPQ Phys. Lett. B 810 (2020) 135797 24-JUN-20 13 1 Stop protons be displaced vertex and displaced muon SUSY Phys. Rev. D 102 (2020) 032006 26-MAR-20 13 1 Chargino-neutralino pair; 3 leptons, weak-scale mass splittings SUSY Phys. Rev. D 101 (2020) 052005 28-NOV-19 13 1 Chargino-neutralino pair; soft leptons SUSY Phys. Rev. D 101 (2020) 032006 18-DEC-19 13 1 Chargino-neutralino pair; Higgs boson in final state, 2 b-jets and 1 SUSY Eur. Phys. J. C 80 (2020) 032005 19-SEP-19 13 1 Chargino-neutralino pair; Higgs boson in final state, 2 b-jets and 1 SUSY Eur. Phys. J.			Search for squarks and gluinos in final states 1L, jets and MET	SUSY	······	05-JAN-21	13	1
Search for displaced leptons SUSY 127 (2021) 13-NOV-20 13 1 Search for squarks and gluinos in final states tith in jets and MET SUSY JHEP 02 (2021) 13-OCT-20 13 1 Measurement of the tibar productions is sessection in the lepton+jets changel at order TOPQ Phys. Lett. B 810 24-JUN-20 13 1 Stop prodons of displaced vertex and displaced muon SUSY Phys. Rev. D 102 26-MAR-20 13 1 Chargino-neutralino pair; 3 leptons, weak-scale mass splittings SUSY Phys. Rev. D 101 18-DEC-19 13 1 Chargino-neutralino pair; soft leptons SUSY Phys. Rev. D 101 28-NOV-19 13 1 Chargino-neutralino pair; soft leptons SUSY Phys. Rev. D 101 18-DEC-19 13 1 Chargino-neutralino pair; soft leptons SUSY Phys. Rev. D 101 18-DEC-19 13 1 Chargino-neutralino pair; Higgs boson in final state, 2 b-jets and 1 SUSY Phys. Rev. D 101 18-DEP-19 13 1 Stop pair, sbottom pair; Higgs boson in final state, 2 b-jets and 1 SUSY Eur. Phys. J. C 80 19-SEP-19 13 1 Stop p				SU		20-NOV-20	13	1
MET SUSY 143 2/-OCI-20 13 1 Measurement of the tibar protection of the tibar protection measurement of the			Search for displaced leptons	SUSY	127 (2021)	13-NOV-20	13	1
Importation IMPO Impo <th></th> <th></th> <th></th> <th>SUSY</th> <th></th> <th>27-OCT-20</th> <th>13</th> <th>1</th>				SUSY		27-OCT-20	13	1
Stop randoms endisplaced vertex and displaced muon SUSY (2020) 032006 26-MAR-20 13 1 Chargino traino pair; 3 leptons, weak-scale mass splittings SUSY Phys. Rev. D 101 (2020) 072001 18-DEC-19 13 1 Chargino neutralino pair; 3 lepton pair; soft leptons SUSY Phys. Rev. D 101 (2020) 052005 28-NOV-19 13 1 Chargino neutralino pair; slepton pair; soft leptons SUSY Phys. Rev. D 101 (2020) 052005 28-NOV-19 13 1 Chargino neutralino pair; Higgs boson in final state, 2 b-jets and 1 lepton SUSY Phys. Rev. D 101 (2020) 032009 15-NOV-19 13 1 Stop pair, sbottom pair; gluino pair; two same-sign leptons or three leptons SUSY JHEP 06 (2020) 46 18-SEP-19 13 1 Sbottom; b-jets Susy JHEP 12 (2019) 08-AUG-19 13 1				TOPQ		24-JUN-20	13	1
Chargino 2 Itraino pair; 3 leptons, weak-scale mass splittings SUSY (2020) 072001 18-DEC-19 13 1 Chargino-neutralino pair, slepton pair; soft leptons SUSY Phys. Rev. D 101 28-NOV-19 13 1 Chargino-neutralino pair, slepton pair; soft leptons SUSY Phys. Rev. D 101 28-NOV-19 13 1 Chargino-neutralino pair, slepton pair; soft leptons SUSY Phys. Rev. D 101 15-NOV-19 13 1 Chargino-neutralino pair, Higgs boson in final state, 2 b-jets and 1 SUSY Eur. Phys. J. C 80 19-SEP-19 13 1 Chargino-neutralino pair, gluino pair; two same-sign leptons or three leptons SUSY JHEP 06 (2020) 46 18-SEP-19 13 1			Stop providing the displaced vertex and displaced muon	SUSY		26-MAR-20	13	1
Chargino-neutralino pair, slepton pair; soft leptons SUSY (2020) 052005 28-NOV-19 13 1 HEPData Staus; taus SUSY Phys. Rev. D 101 (2020) 032009 15-NOV-19 13 1 Chargino-neutralino pair, Higgs boson in final state, 2 b-jets and 1 lepton SUSY Phys. J. C 80 (2020) 691 19-SEP-19 13 1 Stop pair, sbottom pair, gluino pair; two same-sign leptons or three leptons SUSY JHEP 06 (2020) 46 18-SEP-19 13 1			Charging tralino pair; 3 leptons, weak-scale mass splittings	SUSY		18-DEC-19	13	1
HEPDataStaus; tausSUSY(2020) 03200915-NOV-19131Chargino-neutralino pair; Higgs boson in final state, 2 b-jets and 1 leptonSUSYEur. Phys. J. C 80 (2020) 69119-SEP-19131Stop pair, sbottom pair, gluino pair; two same-sign leptons or three leptonsSUSYJHEP 06 (2020) 4618-SEP-19131Sbottom; b-jetsSusyJHEP 12 (2019) 08-AUG-1908-AUG-19131			Chargino-neutralino pair, slepton pair; soft leptons	SUSY		28-NOV-19	13	1
ResourcesSUSY(2020) 69119-SEP-19131Stop pair, sbottom pair, gluino pair; two same-sign leptons or three leptonsSUSYJHEP 06 (2020) 4618-SEP-19131Sbottom; b-ietsSUSYJHEP 12 (2019) 08-AUG-1908-AUG-19131)	HEP Data	Staus; taus	SUSY		15-NOV-19	13	1
Store Store Here leptons Here leptons Here leptons 10-SEP-19 13 1 Sbottom; b-iets SUSY JHEP 12 (2019) 08-AUG-19 13 1	-	_		SUSY		19-SEP-19	13	1
Substraining Subst		Resources		SUSY		18-SEP-19	13	1
			Sbottom; b-jets	SUSY		08-AUG-19	13	1


Extended scalar sectors from all angles, CERN, 24/10/2024

25

139 fb⁻¹

ATLAS full statistical models HistFactory JSON format


Alguero, Araz, Fuks, SK, arXiv:2206.14870

The <u>Simplify</u> python tool can be used to create simplified statistical models from full ones by merging all background contributions and combining all nuisance parameters into a single one; may yield equivalent results at much lower CPU cost — needs testing case-by-case!

Alguero, SK, Waltenberger arXiv:2009.01809

\rightarrow statistical evaluation through JSON patching

Illustration by Lukas Heinrich Hands-on workshop 8 Nov 2021

Full statistical models: CMS

CMS recently published their Combine software and released the data cards describing the early measurements of the Higgs boson.

This includes the combination of all the Higgs boson searches that established the 2012 discovery of the Higgs boson.

- Combine is available as a container image
- Data cards for more, new analyses to come (hopefully)
- pyhf <-> combine conversion tool is being worked on

CMS-CAT-23-001

Published April 15, 2024 | Version v1.0

CMS Higgs boson observation statistical model

CMS Collaboration

Introduction

This resource contains the full statistical model from the Higgs Run-1 combination, which led to the Higgs boson discovery, in the format of **Combine** datacards. The instructions below include a few basic examples on how to extract the significance and signal strength measurements, for more details please consult the **Combine** documentation.

Datacards

Datacards for the combination (and per-decay channel sub-combinations) leading to the Higgs-boson discovery at CMS are in the 125.5 folder. The nuisance parameters corresponding to different sources of systematic uncertainties are described in the ***.html** files located in that folder.

For the full combination of decay channels, the relevant datacard is 125.5/comb.txt. The individual datacards for each of the analyses in CMS targeting the main Higgs boson decay modes are also in the 125.5 folder.

Software instructions

General installation instructions for **Combine** can be found in the **Combine** documentation.

27

Copen

Sabine Kraml

Good practice:

How do we get more of this ?

Signal selection (signal/bkg discrimination)

Statistical eval. (hypo test, interpretation)

Interact

Use and cite what exists already, give feedback to the exp. collaborations

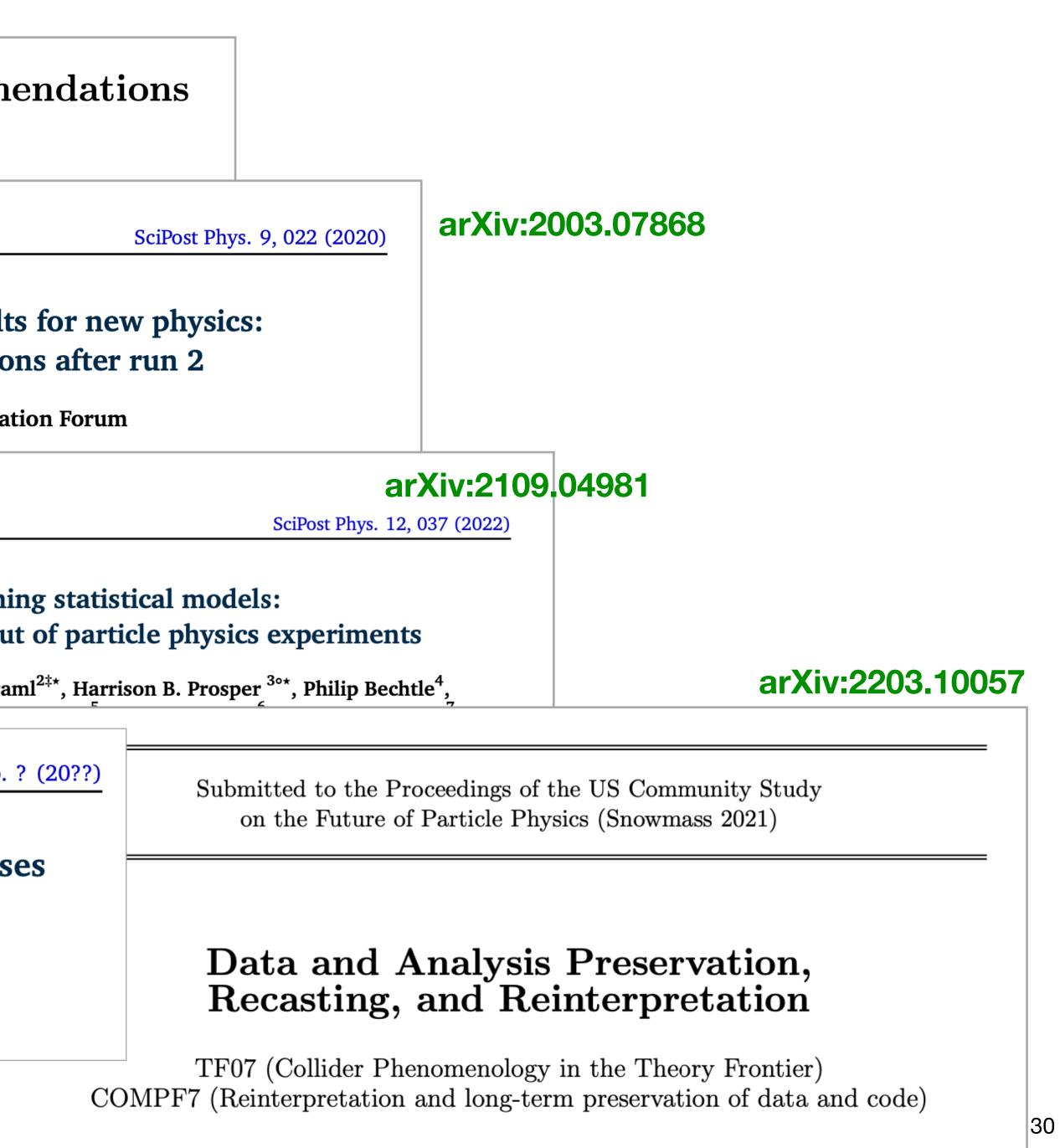
Extended scalar sectors from all angles, CERN, 24/10/2024

Sabine Kraml

Searches for New Physics: Les Houches Recommendations for the Presentation of LHC Results

S. Kraml ¹ , B.C. Allanach C. Balazs ⁵ , A. Barr ⁶ , F M. Campanelli ¹² , K. Crar M. Felcini ¹⁷ , B. Fuks ¹ J. Hewett ¹⁵ , A. Ismail ¹⁵ , S.P. Martin ^{25,26,27} , T. Riz	Rein s	terpretation of LHC result status and recommendation The LHC BSM Reinterpretat
arXiv:1203.2489	Abstract	Sci Post
arXiv:2312.14575	We report on the surements at the Reinterpretation I new particles, me set of recommend to better enable re	Publishi Getting the most ou Kyle Cranmer ^{1†*} , Sabine Kran Florian U. Bernlochner ⁴ , Ita

Sci Post


SciPost Phys. Comm. Rep. ? (20??)

Les Houches guide to reusable ML models in LHC analyses

Jack Y. Araz¹, Andy Buckley², Gregor Kasieczka³, Jan Kieseler⁴, Sabine Kraml⁵, Anders Kvellestad⁶, Andre Lessa⁷, Tomasz Procter², Are Raklev⁶, Humberto Reyes-Gonzalez^{8,9,10}, Krzysztof Rolbiecki¹¹, Sezen Sekmen¹² and Gokhan Unel¹³

> In this paper, we make the scienti models and discuss the technical a variety of physics cases — inclu surements, effective field theory

Sabine Kraml

Stephen Bailey \mathbb{D}^1 . Christian Bierlich \mathbb{D}^2 . And Buckley \mathbb{D}^3 . Jon Butterworth \mathbb{D}^4 .

RAMP seminars

RAMP (Reinterpretation Auxiliary Material Presentation) is a series of short, online seminars, where young experimentalists (ECRs) present the material for their analyses in a ~20 min talk, followed by a discussion with potential (re)users.

The aim is to create more direct experiment-theory interaction, and to give more visibility and recognition to the effort of preparing and providing extensive material for reinterpretation.

The presentations are recorded and made available for interested people, e.g. in other time zones, who cannot attend live.

https://indico.cern.ch/category/14155/

next RiF workshop

(Re)interpretation of the LHC results for new physics

Overview

Timetable

Registration

Call for Abstracts

Participant List

Code of Conduct

Practical information

This is the 9th general workshop of the "Forum on the interpretation of the LHC results for BSM studies", or LHC Reinterpretation Forum (RIF) for short. Its aim is to review new developments on the tools, phenomenology, and the experimental sides, regarding the questions of data and analysis preservation and reuse.

Emphasis at this workshop will be given to current and future developments regarding analysis preservation and reuse, and recommendations of best practises, in particular with regards to the upcoming European Strategy for Particle Physics Update. Moreover, an extensive session will be devoted to recent reinterpretation studies. Cross-talks with various LHC working groups will be appreciated.

https://indico.cern.ch/event/1466101/

Enter your search term

Q

Conclusions

It is important to enable reinterpretation and reuse of LHC analyses ...

e.g., updating constraints, testing new hypotheses, performing combinations and/or fits, etc.

→ new research based on existing data and analyses

longer shelf life & more scientific impact

Snowmass 2021

US Community Study on the Future of Particle Physics

To achieve their full scientific impact, HEP experiments need to integrate **extensive** data and analysis preservation efforts into their publication processes, alongside the communication of results in reusable form and preservation of data products, and making event-level data publicly available.

Without this, the influence of the hundreds of published analyses from the LHC, HL-LHC, EIC, and other future experiments will be limited mainly to the physics ideas in vogue at the time the collaboration collected their data. The public investment in experimental programs underscores the importance of going beyond the original paper publication and ensuring that analyses continue providing scientific value in perpetuity.

Executive summary from "Data and Analysis Preservation, Recasting and Reinterpretation" arXiv:2203.10057

Snowmass white paper on data and analysis preservation and reinterpretation

Analysis Preservation Recommendations

- **3.1:** Ensure use of interoperable systems to maximise the preservability and reusablility of experiment simulation and analysis software chains. This includes the use of version control, archival systems, containerisation, common software interfaces and data formats, and commitments from experimental collaborations and their host laboratories to maintain documentation and provide long-term support.
- **3.2:** Ensure that all operational and in-preparation experiments have a planned and resourced programme for capture and long-term reproduction of their complete computational processing chain, including validation regression-tests.
- **3.3:** Ensure commu process to maximise analysis impact. umenta for community consumption.

3.4: Support continuing development and uptake of new technologies for increasingly framework-independent analysis specifications, such as via declarative domainspecific analysis description languages.

S. Bailey et al., arXiv:2203.10057

Ensure that release of analysis preservation logic via public frameworks for the community to use is integrated with experiment publication and data-release processes,

Snowmass white paper on data and analysis preservation and reinterpretation

Reinterpretation and Recasting Recommendations

- 5.1: Encourage that reinterpretability and reuse be kept in mind early on in the
 - ar M
 - \mathbf{te}
 - nc
 - th
- 5.2: De

ucts, such as statistical models, with reinterpretation use-cases in mind.

- 5.3: Improve the coordination among the different public reinterpretation frameworks with the goal of a centralised database of recast codes, common input/output formats, and a unified statistical treatment.
- **5.4:** Encourage the FAIR-ification of codes and data products from (theory) reinterpretation studies outside the experimental collaborations at the same level of sophistication as asked for experimental analyses and results. Suitable repositories are, e.g., GitHub and Zenodo; appropriate versioning is essential.

S. Bailey et al., arXiv:2203.10057

Encourage that reinterpretability and reuse be kept in mind early on in the analysis design. This concerns, for instance, the **choice of input parameters in ML models**, the full specification of the fiducial phase space of a measurement in terms of the final state, including any vetos applied, and generally the **choice of non-overlapping regions** and standard naming of shared nuisances to facilitate the combination of analyses.

Solutions for neural nets (e.g.)

Lightweight Trained Neural Network

- Designed to take tensorflow/sk-learn trained NNs and run them in C++
- Originally developed for ATLAS trigger; used internally in the collaboration
- Minimal dependencies: Eigen and Boost only; 20 operators.
- Human-readable JSON files

lwtnn

and more ... see e.g. talk by Dan Guest at Reinterpretation Forum 2022

Open Neural Network Exchange

- Designed to allow NNs trained in one context to be run in a completely different one
- Industry standard, developed by Facebook and Microsoft
- Supports tensorflow, pytorch, sk-learn and more; almost 200 operators
- Binary ONNX files

Analysis Design Guidelines

Use an open-source framework (tensorflow, pytorch, etc.)

- Proprietary packages, such as NeuroBayes or Matlab-based packages, can make reuse difficult
- If the network or tree can be saved in a useful preservation format for inference (e.g. ONNX or lwtnn).
 - ► Just leaving a `.h5` file or `.pkl` file is unlikely to be stable

Be considerate with choice of inputs (can they be reproduced?)

- Tomasz: "If a tagger depends entirely on detector level inputs, that's fine (but please provide) detailed efficiencies – including misstags – or surrogates), but 10 truth-level quantities + pseudo-continuous b-score is frustrating."
- Avoid over-complexity in the network design heavily customised layers or activation functions, e.g. TensorFlow lambdas, may not be well preserved (test!)

Documentation Guidelines

It is the second sec variables that go into and come out of the ML model.

- Definitions include:
- Units (GeV vs MeV, ...)
- Normalisations

- ...

- Phi conventions: $[0, 2\pi]$ vs $[-\pi, \pi]$
- Input and output ordering
- A validated **analysis code** (rivet, simpleAnalysis) automatically supplies much of this information.
- A short explanatory note uploaded alongside the ML model (e.g., in the form of a README file) is always a good idea; include all relevant version info!

nb. ONNX interpreter must match ONXX version

Validation Guidelines

- Where cuts depend on the ML model output, like for every other cut-based analysis, setp-by-step cutflows are a vital validation tool.
 - cut-flow information both before and after any ML-based selections
- Image of the second straight of the second most important features) are also useful.
- **I** Full details of the physics models used to generate the information above are essential for any serious validation, e.g. SLHA files and generator run cards, or directly event samples
- Some understanding of feature importance is not only physically interesting, but can be essential in debugging.

Efficiencies and Surrogate Models

If an ML-model requires very experiment-specific inputs which cannot be reproduced outside the collaboration (low-level detector quantities, hits, tracks, ...)

If possible, provide parametrised efficiencies in terms of physics quantities accessible in simulation outside the collaboration

- can use truth-, parton- or reco-level inputs
- mimic output score of original model case by case ----
- need to determine level of accuracy of the surrogate

May or may not have access to the "true" answer (e.g. does the jet really contain a top quark?).

Train another network approx. replicating the output of the original one

Same analysis design, documentation and validation guidelines as above apply

