Complex S_3 -symmetric 3HDM M. N. Rebelo CFTP/IST, U. Lisboa

Extended Scalar Sectors from all Angles

JHEP 07 (2023) 013 e-Print: 2302.07210 [hep-ph]

CERN, 21 October 2024

Work done in collaboration with A. Kunčinas, O. M. Ogreid and P. Osland,

Work Partially supported by:

FCT Fundação para a Ciência e a Tecnologia MINISTÉRIO DA EDUCAÇÃO E CIÊNCIA

European Union

QUADRO DE REFERÊNCIA ESTRATÉGICO NACIONAL ORTUGAL 2007.2013

Motivation for three Higgs doublets

New sources of CP violation in the scalar sector

spontaneous

Rich phenomenology, including DM candidates

Why not more? Three fermion generations may suggest three doublets

Symmetries are needed to stabilise DM

- Possibility of having a discrete symmetry and still have CP violation, explicit or

- Motivation for imposing discrete symmetries
- Symmetries reduce the number of free parameters leading to (testable) predictions
- Symmetries help control HFCNC (e.g. NFC or MFV suppression in BGL models)

Our work

We discuss a three-Higgs-doublet model with an underlying S_3 symmetry allowing in principle for complex couplings

specifying whether it can be explicit or spontaneous

without soft symmetry breaking terms

that are outlined in our work

vacua, which we identified

- We list all possible vacuum structures allowing for CP violation in the scalar sector
- This classification is based strictly on the exact S_3 -symmetric scalar potential
- Different regions of parameter space correspond to different vacua with implications

- In a previous work the scalar potential with real couplings was studied. In that case CP was explicitly conserved and could only be violated spontaneously for special
 - Emmanuel-Costa, Ogreid, Osland, M. N. R, 2016

The Scalar potential

S₃ is the permutation group involving three objects, ϕ_1, ϕ_2, ϕ_3

$$V_{2} = -\lambda \sum_{i} \phi_{i}^{\dagger} \phi_{i} + \frac{1}{2} \gamma \sum_{i < j} [\phi_{i}^{\dagger} \phi_{j} + hc]$$

$$V_{4} = A \sum_{i} (\phi_{i}^{\dagger} \phi_{i})^{2} + \sum_{i < j} \{C(\phi_{i}^{\dagger} \phi_{i})(\phi_{j}^{\dagger} \phi_{j}) + \bar{C}(\phi_{i}^{\dagger} \phi_{j})(\phi_{j}^{\dagger} \phi_{i}) + \frac{1}{2} D[(\phi_{i}^{\dagger} \phi_{j})^{2} + hc]\}$$

$$+ \frac{1}{2} E_{1} \sum_{i \neq j} [(\phi_{i}^{\dagger} \phi_{i})(\phi_{i}^{\dagger} \phi_{j}) + hc] + \sum_{i \neq j \neq k \neq i, j < k} \{\frac{1}{2} E_{2}[(\phi_{i}^{\dagger} \phi_{j})(\phi_{k}^{\dagger} \phi_{i}) + hc]\}$$

$$+\frac{1}{2}E_{3}[(\phi_{i}^{\dagger}\phi_{i})(\phi_{k}^{\dagger}\phi_{j}) + hc] + \frac{1}{2}E_{4}[(\phi_{i}^{\dagger}\phi_{j}) + hc] + \frac{1}{2}E_{4}[$$

here all fields appear on equal footing

doublet and singlet:

 $egin{array}{c} h_1\ h_2 \end{array}$

 $[\phi_i)(\phi_i^{\dagger}\phi_k) + \mathrm{hc}]\}$

Derman, 1979

this representation is not irreducible, for instance, the combination $\phi_1 + \phi_2 + \phi_3$

remains invariant, it splits into two irreducible representations,

),
$$h_S$$
 of S_3

Decomposition into these two irreducible representations

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_2 \end{pmatrix} \begin{pmatrix} \phi_2 \\ \phi_3 \end{pmatrix}$$

This definition does not treat equally ϕ_1, ϕ_2, ϕ_3 they could be interchanged

Harrison, Perkins and Scott, 1999 L,

 $\left(\sum_{sin}^{cos} h_{1}^{\dagger} h_{2}^{sin} h_{1}^{\dagger} h_{2}^{\dagger} h_{1}^{\dagger} h_{2}^{\dagger} h_{1}^{\dagger} h_{2}^{\dagger} h_{2}$ 2 $\hat{A}_{A2}^{2} = \pm_{2\lambda_{6}} [(h_{S}^{\dagger}h_{1})(h_{1}^{\dagger}h_{S}) + (h_{S}^{\dagger}h_{2})(h_{2}^{\dagger}h_{S})] \\ + \lambda_{5} (h_{S}^{\dagger}h_{S})(h_{1}^{\dagger}h_{1} + h_{1}^{\dagger}h_{2}^{\dagger}h_{2}) + \lambda_{6} [(h_{S}^{\dagger}h_{1})(h_{1}^{\dagger}h_{S}) + (h_{S}^{\dagger}h_{2})(h_{2}^{\dagger}h_{S})] \\ + \lambda_{6} [(h_{S}^{\dagger}h_{1})(h_{S}^{\dagger}h_{1}) + (h_{S}^{\dagger}h_{2})(h_{S}^{\dagger}h_{2}) + h.c.]$ $+ \frac{1}{4} \left(\left(h_{S}^{\dagger} h_{1}^{\dagger} h_{1}^{}$ $XM_S^2X^T = \Phi_1, \Phi_2, \Phi_3 = -B_S'$ acklossymphitetry solution to the approximation of the approximation λ_7 , S_3 w (singlet') and (λ oublet $t_1^2 + v_2^2$), $\frac{1}{2v_s}\lambda_1 = \frac{1}{2v_s}\lambda_1 + \frac{1}{2v_s}\lambda_$ $\frac{h^{\dagger}}{2} + \frac{1}{2} +$

he potential in the singlet and doublet had so that CP symmetry is not broken of the S₃ singlet and direction in the field space along which the potential becomes infinitely negative. The necessary and $V_{2}^{n} = sufficients on digital for the product of two Higgs-doublet models (2HDMs) [32]. For the$ $= \frac{1}{4} \frac$ Das and Dey, $20^{(44)}$ $\lambda_5 + 2\sqrt{\lambda_8(\lambda_1 + \lambda_3)} > (198)$ $\lambda_1 + \lambda_3 + \lambda_5 + \lambda_6 + 2\lambda_7 + \lambda_8 \quad \leq 192 \lambda_4 |.$ There are two could be complexed Hence, CP symmetry can be $\frac{1}{2a} \frac{1}{2a} \frac$

Choice of a suitable basis for the analysis of the complex scalar potential

- The most general approach of allowing for λ_4 and λ_7 to be complex together with two vacuum phases would yield redundant solutions
- In principle we could consider a basis with real vevs and complex couplings through: $h_i = e^{i\theta_i} h'_i$
- however, in this case $(\lambda_2 + \lambda_3)$ would get a phase and the potential would change form
- This can be avoided by choosing $\theta_1 = \theta_2 \equiv \theta$ in any rephasing of the Higgs doublets
- This phase can be chosen in such a way that either λ_4 or λ_7 become real
- so that, in general, we are left with two vacuum phases and one complex coupling
- We are only interested in cases with non-vanishing phases in the couplings since the cases with spontaneous CP violation were already analysed
- It is convenient to choose a basis with λ_4 the only complex coefficient rather than λ_7

,
$$i = \{1, 2\}.$$

Results obtained previously for the real potential

Vacuum	$ ho_1, ho_2, ho_3$	w_1, w_2, w_S
R-0	0, 0, 0	0, 0, 0
R-I-1	x, x, x	$0, 0, w_S$
R-I-2a	x, -x, 0	w, 0, 0
R-I-2b	x, 0, -x	$w, \sqrt{3}w, 0$
R-I-2c	0, x, -x	$w, -\sqrt{3}w, 0$
R-II-1a	x, x, y	$0, w, w_S$
R-II-1b	x, y, x	$w, -w/\sqrt{3}, w$
R-II-1c	y, x, x	$w, w/\sqrt{3}, w$
R-II-2	x, x, -2x	0, w, 0
R-II-3	x, y, -x - y	$w_1, w_2, 0$
R-III	$ ho_1, ho_2, ho_3$	w_1, w_2, w_S

 $\lambda_a = \lambda_b = 1$

$$\begin{tabular}{|c|c|c|c|c|} \hline Comment & \hline Not interesting & \hline $\mu_0^2 = -\lambda_8 w_S^2$ \\ \hline $\mu_1^2 = -(\lambda_1 + \lambda_3) w_1^2$ \\ \hline $\mu_1^2 = -\frac{4}{3} (\lambda_1 + \lambda_3) w_2^2$ \\ \hline $\mu_1^2 = -\frac{4}{3} (\lambda_1 + \lambda_3) w_2^2$ \\ \hline $\mu_1^2 = -\frac{4}{3} (\lambda_1 + \lambda_3) w_2^2$ \\ \hline $\mu_1^2 = -(\lambda_1 + \lambda_3) w_2^2 + \frac{3}{2} \lambda_4 w_2 w_S - \frac{1}{2} \lambda_a w_S^2$ \\ \hline $\mu_1^2 = -(\lambda_1 + \lambda_3) w_2^2 + \frac{3}{2} \lambda_4 w_2 w_S - \frac{1}{2} \lambda_a w_S^2$ \\ \hline $\mu_1^2 = -4 (\lambda_1 + \lambda_3) w_2^2 - 3 \lambda_4 w_2 w_S - \frac{1}{2} \lambda_a w_S^2$ \\ \hline $\mu_1^2 = -4 (\lambda_1 + \lambda_3) w_2^2 - 3 \lambda_4 w_2 w_S - \frac{1}{2} \lambda_a w_S^2$ \\ \hline $\mu_1^2 = -4 (\lambda_1 + \lambda_3) w_2^2 - 3 \lambda_4 w_2 w_S - \frac{1}{2} \lambda_a w_S^2$ \\ \hline $\mu_1^2 = -4 (\lambda_1 + \lambda_3) w_2^2 - 3 \lambda_4 w_2 w_S - \frac{1}{2} \lambda_a w_S^2$ \\ \hline $\mu_1^2 = -(\lambda_1 + \lambda_3) (w_1^2 + w_2^2) - \lambda_8 w_S^2$, \\ \hline $\mu_1^2 = -(\lambda_1 + \lambda_3) (w_1^2 + w_2^2) - \lambda_8 w_S^2$, \\ \hline $\mu_1^2 = -(\lambda_1 + \lambda_3) (w_1^2 + w_2^2) - \frac{1}{2} \lambda_a w_S^2$, \\ \hline $\mu_1^2 = -(\lambda_1 + \lambda_3) (w_1^2 + w_2^2) - \frac{1}{2} \lambda_a w_S^2$, \\ \hline $\mu_1^2 = -(\lambda_1 + \lambda_3) (w_1^2 + w_2^2) - \frac{1}{2} \lambda_a w_S^2$, \\ \hline $\mu_1^2 = -(\lambda_1 + \lambda_3) (w_1^2 + w_2^2) - \frac{1}{2} \lambda_a w_S^2$, \\ \hline $\mu_1^2 = -(\lambda_1 + \lambda_3) (w_1^2 + w_2^2) - \frac{1}{2} \lambda_a w_S^2$, \\ \hline $\mu_1^2 = -(\lambda_1 + \lambda_3) (w_1^2 + w_2^2) - \frac{1}{2} \lambda_a w_S^2$, \\ \hline $\mu_1^2 = -(\lambda_1 + \lambda_3) (w_1^2 + w_2^2) - \frac{1}{2} \lambda_a w_S^2$, \\ \hline $\mu_1^2 = -(\lambda_1 + \lambda_3) (w_1^2 + w_2^2) - \frac{1}{2} \lambda_a w_S^2$, \\ \hline $\mu_1^2 = -(\lambda_1 + \lambda_3) (w_1^2 + w_2^2) - \frac{1}{2} \lambda_a w_S^2$, \\ \hline $\mu_1^2 = -(\lambda_1 + \lambda_3) (w_1^2 + w_2^2) - \frac{1}{2} \lambda_a w_S^2$, \\ \hline $\mu_1^2 = -(\lambda_1 + \lambda_3) (w_1^2 + w_2^2) - \frac{1}{2} \lambda_a w_S^2$, \\ \hline $\mu_1^2 = -(\lambda_1 + \lambda_3) (w_1^2 + w_2^2) - \frac{1}{2} \lambda_a w_S^2$, \\ \hline $\mu_1^2 = -(\lambda_1 + \lambda_3) (w_1^2 + w_2^2) - \frac{1}{2} \lambda_a w_S^2$, \\ \hline $\mu_1^2 = -(\lambda_1 + \lambda_3) (w_1^2 + w_2^2) - \frac{1}{2} \lambda_a w_S^2$, \\ \hline $\mu_1^2 = -(\lambda_1 + \lambda_3) (w_1^2 + w_2^2) - \frac{1}{2} \lambda_a w_S^2$, \\ \hline $\mu_1^2 = -(\lambda_1 + \lambda_3) (w_1^2 + w_2^2) - \frac{1}{2} \lambda_a w_S^2$, \\ \hline $\mu_1^2 = -(\lambda_1 + \lambda_3) (w_1^2 + w_2^2) - \frac{1}{2} \lambda_a w_S^2$, \\ \hline $\mu_1^2 = -(\lambda_1 + \lambda_3) (w_1^2 + w_2^2) - \frac{1}{2} \lambda_a w_S^2$, \\ \hline $\mu_1^2 = -(\lambda_1 + \lambda_3) (w_1^2 + w_2^2) - \frac{1}{2} \lambda_a w_S^2$, \\ \hline $\mu_1^2 = -(\lambda_1 + \lambda_3) (w_1^2 + w_2^2)$$

$$\lambda_5 + \lambda_6 + 2\lambda_7,$$
$$\lambda_5 + \lambda_6 - 2\lambda_7.$$

Complex vacua

Table 2: Complex vacua. Notation: $\epsilon = 1$ and -1 for C-III-d and C-III-e, respectively; $\xi = \sqrt{-3\sin 2\rho_1/\sin 2\rho_2}, \ \psi = \sqrt{[3+3\cos(\rho_2-2\rho_1)]/(2\cos\rho_2)}$. With the constraints of Table 4 the vacua labelled with an asterisk (*) are in fact real.

	IRF (Irreducible Rep.)	RRF (Reducible Rep.)	
	w_1, w_2, w_S	$ ho_1, ho_2, ho_3$	
C-I-a	$\hat{w}_1, \pm i\hat{w}_1, 0$	$x, xe^{\pm \frac{2\pi i}{3}}, xe^{\pm \frac{2\pi i}{3}}$	
C-III-a	$0, \hat{w}_2 e^{i\sigma_2}, \hat{w}_S$	$y, y, xe^{i\tau}$	
C-III-b	$\pm i\hat{w}_1, 0, \hat{w}_S$	x + iy, x - iy, x	
C-III-c	$\hat{w}_1 e^{i\sigma_1}, \hat{w}_2 e^{i\sigma_2}, 0$ $x e^{i\rho} - \frac{y}{2}, -x e^{i\rho} - \frac{y}{2}, y$		
C-III-d,e	$\pm i\hat{w}_1,\epsilon\hat{w}_2,\hat{w}_S$	$xe^{i\tau}, xe^{-i\tau}, y$	
C-III-f	$\pm i\hat{w}_1, i\hat{w}_2, \hat{w}_S$	$re^{i\rho} \pm ix, re^{i\rho} \mp ix, \frac{3}{2}re^{-i\rho} - \frac{1}{2}re^{i\rho}$	
C-III-g	$\pm i\hat{w}_1, -i\hat{w}_2, \hat{w}_S$	$re^{-i\rho} \pm ix, re^{-i\rho} \mp ix, \frac{3}{2}re^{i\rho} - \frac{1}{2}re^{-i\rho}$	
C-III-h	$\sqrt{3}\hat{w}_2e^{i\sigma_2}, \pm\hat{w}_2e^{i\sigma_2}, \hat{w}_S$	$xe^{i au},y,y$	
		$y, xe^{i au}, y$	
C-III-i	$\sqrt{\frac{3(1+\tan^2\sigma_1)}{1+9\tan^2\sigma_1}}\hat{w}_2e^{i\sigma_1},$	$x, ye^{i\tau}, ye^{-i\tau}$	
	$ \begin{array}{c} & & & \\ \pm \hat{w}_2 e^{-i \arctan(3 \tan \sigma_1)}, \hat{w}_S \end{array} \end{array} $	$ye^{i\tau}, x, ye^{-i\tau}$	
C-IV-a*	$\hat{w}_1 e^{i\sigma_1}, 0, \hat{w}_S$	$re^{i\rho} + x, -re^{i\rho} + x, x$	
C-IV-b	$\hat{w}_1, \pm i\hat{w}_2, \hat{w}_S$	$re^{i\rho} + x, -re^{-i\rho} + x, -re^{i\rho} + re^{-i\rho} + x$	
C-IV-c	$\sqrt{1+2\cos^2\sigma_2}\hat{w}_2,$	$re^{i\rho} + r\sqrt{3(1+2\cos^2\rho)} + x,$	
	$\hat{w}_2 e^{i\sigma_2}, \hat{w}_S$	$re^{i\rho} - r\sqrt{3(1+2\cos^2\rho)} + x, -2re^{i\rho} + x$	
C-IV-d*	$\hat{w}_1 e^{i\sigma_1}, \pm \hat{w}_2 e^{i\sigma_1}, \hat{w}_S$	$r_1 e^{i\rho} + x, (r_2 - r_1) e^{i\rho} + x, -r_2 e^{i\rho} + x$	
C-IV-e	$\sqrt{-\frac{\sin 2\sigma_2}{\sin 2\sigma_1}}\hat{w}_2 e^{i\sigma_1},$	$re^{i\rho_2} + re^{i\rho_1}\xi + x, re^{i\rho_2} - re^{i\rho_1}\xi + x,$	
	$\hat{w}_2 e^{i\sigma_2}, \hat{w}_S$	$-2re^{i ho_2}+x$	
C-IV-f	$\sqrt{2 + \frac{\cos(\sigma_1 - 2\sigma_2)}{\cos \sigma_1}} \hat{w}_2 e^{i\sigma_1},$	$re^{i\rho_1} + re^{i\rho_2}\psi + x,$	
	$\hat{w}_2 e^{i\sigma_2}, \hat{w}_S$	$re^{i\rho_1} - re^{i\rho_2}\psi + x, -2re^{i\rho_1} + x$	
	$\hat{w}_1 e^{i\sigma_1}, \hat{w}_2 e^{i\sigma_2}, \hat{w}_S$	$xe^{i au_1}, ye^{i au_2}, z$	

Constraints

Vacuum	Constraints		
C-I-a	$\mu_1^2 = -2\left(\lambda_1 - \lambda_2\right)\hat{w}_1^2$		
C-III-a	$\mu_0^2 = -\frac{1}{2}\lambda_b \hat{w}_2^2 - \lambda_8 \hat{w}_S^2,$		
	$\mu_1^2 = -(\lambda_1 + \lambda_3) \hat{w}_2^2 - \frac{1}{2} (\lambda_b - 8\cos^2\sigma_2\lambda_7) \hat{w}_S^2,$		
	$\lambda_4 = \frac{4\cos\sigma_2\hat{w}_S}{\hat{w}_2}\lambda_7$ $\mu_0^2 = -\frac{1}{2}\lambda_b\hat{w}_1^2 - \lambda_8\hat{w}_S^2,$		
C-III-b			
	$\mu_1^2 = -(\lambda_1 + \lambda_3)\hat{w}_1^2 - \frac{1}{2}\lambda_b\hat{w}_S^2,$		
	$\lambda_4 = 0$		
C-III-c	$\mu_1^2 = -(\lambda_1 + \lambda_3)(\hat{w}_1^2 + \hat{w}_2^2),$		
	$\lambda_2 + \lambda_3 = 0, \lambda_4 = 0$		
C-III-d,e	$\mu_0^2 = (\lambda_2 + \lambda_3) \frac{(\hat{w}_1^2 - \hat{w}_2^2)^2}{\hat{w}_S^2} - \epsilon \lambda_4 \frac{(\hat{w}_1^2 - \hat{w}_2^2)(\hat{w}_1^2 - 3\hat{w}_2^2)}{4\hat{w}_2\hat{w}_S}$		
	$-\frac{1}{2} (\lambda_5 + \lambda_6) \tilde{(}\hat{w}_1^2 + \hat{w}_2^2) - \lambda_8 \hat{w}_S^2,$		
	$\mu_1^2 = -(\lambda_1 - \lambda_2) \left(\hat{w}_1^2 + \hat{w}_2^2 \right) - \epsilon \lambda_4 \frac{\hat{w}_S(\hat{w}_1^2 - \hat{w}_2^2)}{4\hat{w}_2} - \frac{1}{2} \left(\lambda_5 + \lambda_6 \right) \hat{w}_S^2,$		
	$\lambda_{7} = \frac{\hat{w}_{1}^{2} - \hat{w}_{2}^{2}}{\hat{w}_{S}^{2}} (\lambda_{2} + \lambda_{3}) - \epsilon \frac{(\hat{w}_{1}^{2} - 5\hat{w}_{2}^{2})}{4\hat{w}_{2}\hat{w}_{S}} \lambda_{4}$		
C-III-f,g	$\mu_0^2 = -\frac{1}{2}\lambda_b \left(\hat{w}_1^2 + \hat{w}_2^2\right) - \lambda_8 \hat{w}_S^2,$		
	$ \mu_1^2 = -(\lambda_1 + \bar{\lambda_3}) \left(\hat{w}_1^2 + \hat{w}_2^2 \right) - \frac{1}{2} \lambda_b \hat{w}_S^2, \lambda_4 = 0 $ $ \mu_0^2 = -2\lambda_b \hat{w}_2^2 - \lambda_8 \hat{w}_S^2, $		
C-III-h			
	$\mu_1^2 = -4 \left(\lambda_1 + \lambda_3\right) \hat{w}_2^2 - \frac{1}{2} \left(\lambda_b - 8\cos^2 \sigma_2 \lambda_7\right) \hat{w}_S^2,$		
	$\lambda_4 = \mp \frac{2\cos\sigma_2 \hat{w}_S}{\hat{w}_2} \lambda_7$		
C-III-i	$\mu_0^2 = \frac{16(1-3\tan^2\sigma_1)^2}{(1+9\tan^2\sigma_1)^2} (\lambda_2 + \lambda_3) \frac{\hat{w}_2^4}{\hat{w}_S^2} \pm \frac{6(1-\tan^2\sigma_1)(1-3\tan^2\sigma_1)}{(1+9\tan^2\sigma_1)^{\frac{3}{2}}} \lambda_4 \frac{\hat{w}_2^3}{\hat{w}_S}$		
	$-\frac{2(1+3\tan^2\sigma_1)}{1+9\tan^2\sigma_1}(\lambda_5+\lambda_6)\hat{w}_2^2-\lambda_8\hat{w}_S^2,$		
	$\mu_1^2 = -\frac{4(1+3\tan^2\sigma_1)}{1+9\tan^2\sigma_1}(\lambda_1 - \lambda_2)\hat{w}_2^2 \mp \frac{(1-3\tan^2\sigma_1)}{2\sqrt{1+9\tan^2\sigma_1}}\lambda_4\hat{w}_2\hat{w}_S$		
	$-rac{1}{2}(\lambda_5+\lambda_6)\hat{w}_S^2,$		
	$\lambda_7 = -\frac{4(1-3\tan^2\sigma_1)\hat{w}_2^2}{(1+9\tan^2\sigma_1)\hat{w}_S^2}(\lambda_2+\lambda_3) \mp \frac{(5-3\tan^2\sigma_1)\hat{w}_2}{2\sqrt{1+9\tan^2\sigma_1}\hat{w}_S}\lambda_4$		

Vacuum	Constraints		
C-IV-a*	$\mu_0^2 = -\frac{1}{2} \left(\lambda_5 + \lambda_6\right) \hat{w}_1^2 - \lambda_8 \hat{w}_S^2,$		
	$\mu_1^2 = -(\lambda_1 + \lambda_3)\hat{w}_1^2 - \frac{1}{2}(\lambda_5 + \lambda_6)\hat{w}_S^2,$		
	$\lambda_4 = 0, \lambda_7 = 0$		
C-IV-b	$\mu_0^2 = (\lambda_2 + \lambda_3) \frac{(\hat{w}_1^2 - \hat{w}_2^2)^2}{\hat{w}_S^2} - \frac{1}{2} (\lambda_5 + \lambda_6) (\hat{w}_1^2 + \hat{w}_2^2) - \lambda_8 \hat{w}_S^2,$		
	$\mu_1^2 = -(\lambda_1 - \tilde{\lambda}_2) \left(\hat{w}_1^2 + \hat{w}_2^2 \right) - \frac{1}{2} \left(\lambda_5 + \lambda_6 \right) \hat{w}_S^2,$		
	$\lambda_4 = 0, \lambda_7 = -\frac{\left(\hat{w}_1^2 - \hat{w}_2^2\right)}{\hat{w}_S^2} \left(\lambda_2 + \lambda_3\right)$		
C-IV-c	$\mu_0^2 = 2\cos^2 \sigma_2 \left(1 + \cos^2 \sigma_2\right) \left(\lambda_2 + \lambda_3\right) \frac{\hat{w}_2^4}{\hat{w}_S^2}$		
	$-\left(1+\cos^2\sigma_2\right)\left(\lambda_5+\lambda_6\right)\hat{w}_2^2-\lambda_8\hat{w}_S^2,$		
	$\mu_1^2 = -\left[2\left(1 + \cos^2 \sigma_2\right)\lambda_1 - \left(2 + 3\cos^2 \sigma_2\right)\lambda_2 - \cos^2 \sigma_2\lambda_3\right]\hat{w}_2^2$		
	$-\frac{1}{2} \left(\lambda_5 + \lambda_6\right) \hat{w}_S^2,$ $2 \cos \sigma_2 \hat{w}_2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \hat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \widehat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 \widehat{w}_2^2 \left(\lambda_5 + \lambda_6\right) + \lambda_6 \sum_{\alpha} \cos^2 \sigma_2 $		
	$\lambda_4 = -\frac{2\cos\sigma_2\hat{w}_2}{\hat{w}_S} \left(\lambda_2 + \lambda_3\right), \lambda_7 = \frac{\cos^2\sigma_2\hat{w}_2^2}{\hat{w}_S^2} \left(\lambda_2 + \lambda_3\right)$		
C-IV-d*	$\mu_0^2 = -\frac{1}{2} \left(\lambda_5 + \lambda_6\right) \left(\hat{w}_1^2 + \hat{w}_2^2\right) - \lambda_8 \hat{w}_S^2, \\ \mu_1^2 = -\left(\lambda_1 + \lambda_3\right) \left(\hat{w}_1^2 + \hat{w}_2^2\right) - \frac{1}{2} \left(\lambda_5 + \lambda_6\right) \hat{w}_S^2,$		
	$ \mu_1 = (\lambda_1 + \lambda_3)(\omega_1 + \omega_2) - (\lambda_5 + \lambda_6)\omega_S, \lambda_4 = 0, \lambda_7 = 0 $		
C-IV-e	$\mu_0^2 = \frac{\sin^2(2(\sigma_1 - \sigma_2))}{\sin^2(2\sigma_1)} \left(\lambda_2 + \lambda_3\right) \frac{\hat{w}_2^4}{\hat{w}_2^2}$		
	$-\frac{1}{2}\left(1-\frac{\sin 2\sigma_2}{\sin 2\sigma_1}\right)\left(\lambda_5+\lambda_6\right)\hat{w}_2^2-\lambda_8\hat{w}_S^2,$		
	$\mu_1^2 = -\left(1 - \frac{\sin 2\sigma_2}{\sin 2\sigma_1}\right) \left(\lambda_1 - \lambda_2\right) \hat{w}_2^2 - \frac{1}{2} \left(\lambda_5 + \lambda_6\right) \hat{w}_S^2,$		
	$\lambda_4 = 0, \lambda_7 = -\frac{\sin(2(\sigma_1 - \sigma_2))\hat{w}_2^2}{\sin 2\sigma_1 \hat{w}_S^2} \left(\lambda_2 + \lambda_3\right)$		
C-IV-f	$\mu_0^2 = -\frac{(\cos(\sigma_1 - 2\sigma_2) + 3\cos\sigma_1)\cos(\sigma_2 - \sigma_1)}{2\cos^2\sigma_1}\lambda_4 \frac{\hat{w}_2^3}{\hat{w}_S}$		
	$-\frac{\cos(\sigma_1-2\sigma_2)+3\cos\sigma_1}{2\cos\sigma_1}\left(\lambda_5+\lambda_6\right)\hat{w}_2^2-\lambda_8\hat{w}_S^2,$		
	$\mu_1^2 = -\frac{\cos(\sigma_1 - 2\sigma_2) + 3\cos\sigma_1}{\cos\sigma_1} \left(\lambda_1 + \lambda_3\right) \hat{w}_2^2$		
	$-\frac{3\cos 2\sigma_1 + 2\cos(2(\sigma_1 - \sigma_2)) + \cos 2\tilde{\sigma_2} + 4}{4\cos(\sigma_1 - \sigma_2)\cos\sigma_1}\lambda_4\hat{w}_2\hat{w}_S - \frac{1}{2}\left(\lambda_5 + \lambda_6\right)\hat{w}_S^2,$		
	$\lambda_2 + \lambda_3 = -\frac{\cos\sigma_1\hat{w}_S}{2\cos(\sigma_2 - \sigma_1)\hat{w}_2}\lambda_4, \lambda_7 = -\frac{\cos(\sigma_2 - \sigma_1)\hat{w}_2}{2\cos\sigma_1\hat{w}_S}\lambda_4$		
$C-V^*$	$\mu_0^2 = -\frac{1}{2} \left(\lambda_5 + \lambda_6\right) \left(\hat{w}_1^2 + \hat{w}_2^2\right) - \lambda_8 \hat{w}_S^2,$		
	$\mu_1^2 = -(\lambda_1 + \lambda_3) \left(\hat{w}_1^2 + \hat{w}_2^2 \right) - \frac{1}{2} \left(\lambda_5 + \lambda_6 \right) \hat{w}_S^2,$		
	$\lambda_2 + \lambda_3 = 0, \lambda_4 = 0, \lambda_7 = 0$		

liscussion de ist hage heverBian hat SCa Kand Hig sugans nchiefenf63 on in satisfy previous of incesting transformation formation that the kille his case the most general CP transformation this case the most general CP transformation $\frac{1}{\sqrt{3w_2e^{i\sigma_2}}}$ • C-IV-c $\left(\sqrt{1+2\cos^2}\right)$

Volume 136B, number 5,6

• C-IV-f $\left(\sqrt{2 + \frac{\cos(\sigma_1 - 2\sigma_2)}{\cos\sigma_1}}\hat{w}_2 e^{i\sigma_1}, \hat{w}_2 e^{i\sigma_2}, \hat{w}_S\right);$

PHYSICS LETTERS

Coming back to the complex potential

Compact notation:

$$V_{2} = Y_{ab} \left(h_{a}^{\dagger} h_{b} \right)$$
$$V_{4} = \frac{1}{2} Z_{abcd} \left(h_{a}^{\dagger} \right)$$

$$Y_{11} = Y_{22} = \mu_1^2,$$

$$Z_{1111} = Z_{2222} = 2\lambda_1 + 2\lambda_3,$$

$$Z_{1122} = Z_{2211} = 2\lambda_1 - 2\lambda_3,$$

$$Z_{1221} = Z_{2112} = -2\lambda_2 + 2\lambda_3,$$

$$Z_{1212} = Z_{2121} = 2\lambda_2 + 2\lambda_3,$$

$$Z_{1123} = Z_{1213} = Z_{1312} = Z_{1321} = Z_{22131}$$

$$Z_{1132} = Z_{1231} = Z_{2131} = Z_{3112} = Z_{3112} = Z_{3112}$$

Explicit CP violation

$(h_a^{\dagger}h_b)\left(h_c^{\dagger}h_d\right),$

)

Branco, Lavoura, Silva 1999

 $Y_{33} = \mu_0^2,$ $_{3333}=2\lambda_8,$ $_{133} = Z_{2233} = Z_{3311} = Z_{3322} = \lambda_5,$ $Z_{331} = Z_{2332} = Z_{3113} = Z_{3223} = \lambda_6,$ $Z_{313} = Z_{2323} = Z_{3131} = Z_{3232} = 2\lambda_7,$ $Z_{2113} = Z_{2311} = -Z_{2223} = -Z_{2322} = \lambda_4^{\mathrm{R}} - i\lambda_4^{\mathrm{I}},$

Powerful and elegant tool: CP odd Higgs basis invariants built from Y- and Z- tensors See references [65-71] in our paper

$$I_{5Z}^{(1)} = \mathbb{Im} \left[Z_{aabc} Z_{dbef} Z_{cghe} Z_{idgh} Z_{fijj} \right],$$

$$I_{5Z}^{(2)} = \mathbb{Im} \left[Z_{abbc} Z_{daef} Z_{cghe} Z_{idgh} Z_{fjji} \right],$$

$$I_{6Z}^{(1)} = \mathbb{Im} \left[Z_{abcd} Z_{baef} Z_{gchi} Z_{djke} Z_{fkil} Z_{jglh} \right],$$

$$I_{6Z}^{(2)} = \mathbb{Im} \left[Z_{abcd} Z_{baef} Z_{gchi} Z_{dejk} Z_{fhkl} Z_{lgij} \right],$$

$$I_{7Z} = \mathbb{Im} \left[Z_{abcd} Z_{eafc} Z_{bgdh} Z_{iejk} Z_{gflm} Z_{hlkn} Z_{m} \right]$$

$I_{2Y3Z} = \mathbb{Im} \left[Z_{abcd} Z_{befq} Z_{dchf} Y_{qa} Y_{eh} \right].$

Complex computation due to high number of contraction of indices requiring special simplification techniques!

Anton Kunčinas

Explicit CP violation

ninj],

Odd Magne Ogreid

Theorem 1. The quadrilinear part of the S_3 -symmetric 3HDM potential, V_4 , explicitly conserves CP if and only if $I_{5Z}^{(1)} = I_{5Z}^{(2)} = I_{6Z}^{(1)} = I_{6Z}^{(2)} = I_{7Z} = 0.$

- Solution 0: $\lambda_4^{\mathrm{I}} = 0;$
- Solution 1: $\lambda_4^R = 0;$
- Solution 2: $\lambda_7 = 0$;
- Solution 3 $(\lambda_4^R \lambda_4^I \lambda_7 \neq 0)$:

$$\left(\lambda_4^{\rm R}\right)^2 = -\frac{(\lambda_{23} - \lambda_7)(2\lambda_{23} + \lambda_7)^2}{\lambda_7},$$
$$\left(\lambda_4^{\rm I}\right)^2 = \frac{(\lambda_{23} + \lambda_7)(2\lambda_{23} - \lambda_7)^2}{\lambda_7},$$

For each of these solutions we were able to show that there exists a real basis for V_4

Explicit CP violation

$$\lambda_{23} \equiv \lambda_2 + \lambda_3$$
$$\lambda_5 = 2(\lambda_1 + \lambda_2),$$
$$\lambda_6 = 4\lambda_3,$$
$$\lambda_8 = \lambda_1 - \lambda_2.$$

Theorem 2. The S₃-symmetric 3HDM potential, $V = V_2 + V_4$, explicitly conserves CP if and only if $I_{5Z}^{(1)} = I_{5Z}^{(2)} = I_{6Z}^{(1)} = I_{6Z}^{(2)} = I_{7Z} = I_{2Y3Z} = 0$.

• Solution 3' $(\lambda_4^R \lambda_4^I \lambda_7 \neq 0)$:

$$\mu_1^2 = \mu_0^2,$$

$$\left(\lambda_4^{\rm R}\right)^2 = -\frac{(\lambda_{23} - \lambda_7)(2\lambda_{23} - \lambda_7)}{\lambda_7}$$

$$\left(\lambda_4^{\rm I}\right)^2 = \frac{(\lambda_{23} + \lambda_7)(2\lambda_{23} - \lambda_7)}{\lambda_7}$$

For each of the solutions we were able to show that there exists a real basis for V No additional continuous symmetries for solution 3'de Medeiros Varzielas, Ivanov 2019 The potential has the structure of the $\Delta(54)$ -symmetric

Explicit CP violation

For the general 3HDM, the necessary and sufficient set of CP-odd invariants needed for explicit CP conservation has not yet been identified

Summary of different CP violating models

Scalar potential	Vacuum	vevs	CPV	\mathcal{L}_Y
complex	R-I-1	$(0, 0, w_S)$	explicit	trivial
complex	R-I-2a	$(w_1, 0, 0)$	explicit	_
complex	R-I-2b,c	$(w_1, \pm \sqrt{3}w_1, 0)$	explicit	_
complex	C-I-a	$(\hat{w}_1, \pm i\hat{w}_1, 0)$	explicit	_
complex	C-III-a	C-III-a $(0, \hat{w}_2 e^{i\sigma_2}, \hat{w}_S)$	explicit	trivial
real		$(0, w_2c, w_S)$	spontaneous	
complex	C-III-h	$(\sqrt{3}\hat{w}_2e^{i\sigma_2},\pm\hat{w}_2e^{i\sigma_2},\hat{w}_S)$	explicit	trivial
real			spontaneous	
$real^{\alpha}$	C-IV-c	$\left(\sqrt{1+2\cos^2\sigma_2}\hat{w}_2,\hat{w}_2e^{i\sigma_2},\hat{w}_S\right)$	spontaneous	any
$\operatorname{real}^{\alpha}$	C-IV-f	$\left(\sqrt{2 + \frac{\cos(\sigma_1 - 2\sigma_2)}{\cos\sigma_1}}\hat{w}_2 e^{i\sigma_1}, \hat{w}_2 e^{i\sigma_2}, \hat{w}_S\right)$	spontaneous	any
$complex^{\beta}$	C-IV-g	$(\hat{w}_1 e^{i\sigma_1}, \pm i\hat{w}_1 e^{i\sigma_1}, \hat{w}_S)$	explicit	any
complex	C-V	$(\hat{w}_1e^{i\sigma_1},\hat{w}_2e^{i\sigma_2},\hat{w}_S)$	explicit	any

 $^{\alpha}$ In C-IV-c and C-IV-f there is a massless scalar present. Soft symmetry breaking would remove the massless scalar.

 $^\beta$ C-IV-g results in at least two negative mass-squared eigenvalues. Introduction of soft symmetry breaking terms might solve the issue.

It is possible to have CP violation without breaking S_3 (see R-I-1)

entries with "-" indicate that it is not possible to generate realistic masses and mixing

- **R-I-1** mass-degenerate states
- C-III-a realistic masses and mixing require the fermions to transform trivially under the symmetry and require complex Yukawa couplings. Has a viable DM candidate for a real potential
- C-III-h realistic masses and mixing require the fermions to transform trivially under the symmetry and require complex Yukawa couplings
- C-IV-c possible to fit both fermion masses and the CKM matrix however, there is an accidental massless scalar state in the model
- C-IV-f this vacuum is a generalisation of C-IV-c but a massless scalar state is also present
- C-IV-g possible to fit both fermion masses and mixing however, there are negative mass-squared scalars
- possible to fit both fermion masses and the CKM matrix; can also yield a C-V realistic scalar sector. Remarkable possibility of having light neutral scalars of order a few Mev escaping detection. More details in our paper.

there is a pair of charged mass degenerate states and two pairs of neutral

Potentially realistic models with real Yukawa couplings C-IV-c C-IV-f C-IV-g C-V due to unrealistic scalar spectrum

A numerical study of C-V was performed fitting several parameters

- Masses of the up- and down-quarks;
- The absolute values, arguments of the unitarity triangle $(\alpha, \sin 2\beta, \gamma)$ and independent measure of CP violation (J) [89, 90] of the CKM matrix;
- Interactions of the SM-like Higgs boson with fermions. We assume the Higgs boson signal strength in the b-quark channel [91-93] as a reference point and apply the corresponding limits to other channels;
- Suppressed scalar mediated FCNC [94, 95];
- CP properties of the SM-like Higgs boson [96, 97];
- not kinematically suppressed [98, 99];

only C-V survives without the need for soft breaking terms

• Upper limit on the decay of the t-quark into lighter charged scalars when decays are

Figure 2. Scatter plots of masses that satisfy constraints in the C-V model. Top: the charged sector, H_i^{\pm} . Bottom: the active sector, H_i . In the neutral sector the red line indicates a 125 GeV state.

Conclusions

- Potential DM candidates exist as was shown in previous works of ours
- Khater, Kunčinas, Ogreid, Osland, MNR, 2021 Kunčinas, Ogreid, Osland, MNR, 2022
 - Many important studies of 3HDM have appeared in the literature, and several of them are cited in our paper.
 - Still many important questions remain open
 - Multi-Higgs models are at present a fertile ground of research
 - The LHC may bring important news for this field in the near future

Many interesting aspects of the models presented here remain to be analysed

Back-up slide

We have the following S_3 doublets: $\begin{pmatrix} Q_1\\ \bar{Q}_2 \end{pmatrix}$,

and singlets:

As a result, the mass matrix will have the structure

$$\begin{pmatrix} u_1 \\ u_2 \end{pmatrix}_R, \quad \begin{pmatrix} d_1 \\ d_2 \end{pmatrix}_R, \quad (h_1 \ h_2)$$

\bar{Q}_{3L} , u_{3R} , d_{3R} , h_S ,

where indices 1,2,3 on quark fields Q, u, d label the families. Mass terms arise from the following generic structures: $\bar{Q}_L \phi d_R$ or $\bar{Q}_L \phi \bar{\psi} u_R$, where ϕ and $\tilde{\phi} = -i [\phi^{\dagger} \sigma_2]^T$ are scalar SU(2) doublets.

 $\mathcal{M} = \begin{pmatrix} y_1^d w_S + y_2^d w_2 & y_2^d w_1 & y_4^d w_1 \\ y_2^d w_1 & y_1^d w_S - y_2^d w_2 & y_4^d w_2 \\ y_5^d w_1 & y_5^d w_2 & y_3^d w_S \end{pmatrix}$

