Searching for Light New Scalars with Atomic and Nuclear Clocks

Fiona Kirk

QuantumFrontiers Cluster of Excellence l l Leibniz l o 2 Universität l o o 4 Hannover

based on work with

M. Door, C.-H. Yeh, M. Heinz, C. Lyu, T. Miyagi, J. C. Berengut, J. Bieroń, K. Blaum, L. S. Dreissen, S. Eliseev, P. Filianin, M. Filzinger, E. Fuchs, H. A. Fürst, G. Gaigalas, Z. Harman, J. Herkenhoff, N. Huntemann, C. H. Keitel, K. Kromer, D. Lange, A. Rischka, C. Schweiger, A. Schwenk, N. Shimizu, T. E. Mehlstäubler

E. Fuchs, Eric Madge, Chaitanya Paranjape, Ekkehard Peik, Gilad Perez, Wolfram Ratzinger, Johannes Tiedau

Extended Scalar Sectors from All Angles, CERN, 25th October 2024

Outline

What Are We Looking For?

Search With Atomic Clocks

Search With Nuclear Clock

Outline

What Are We Looking For?

Search With Atomic Clocks

Search With Nuclear Clock

Outline

What Are We Looking For?

Search With Atomic Clocks

Search With Nuclear Clock

Search With Atomic Clocks: Light Scalar

Coupling to Neutrons And Electrons

Why Atomic Clocks?

The most accurately measured numbers in physics are ratios of atomic clock transition frequencies:

- $\nu_{Al^+}/\nu_{Hg^+} = 1.052871833148990438(55)$ (NIST; $\sigma_{\nu}/\nu \sim 5.2 \times 10^{-17}$) [Rosenband et al. Science 319, 1808 (2008)]
- $\nu_{Yb}/\nu_{Sr} = 1.207507039343337749(55)$ (RIKEN; $\sigma_{\nu}/\nu \sim 4.6 \times 10^{-17}$) [Nemitz et al. Nat. Photonics 10, 258 (2016)]
- $\nu_{\text{E3}}/\nu_{\text{E2}} = 0.932829404530965376(32)$ (PTB; $\sigma_{\nu}/\nu \sim 3.4 \times 10^{-17}$) [Lange et al. PRL 126 011102 (2021)]
- $\nu_{ln^+}/\nu_{Yb^+} = 1.973773591557215789(9)$ (PTB; $\sigma_{\nu}/\nu \sim 4.4 \times 10^{-18}$) [Hausser et al. arXiv: 2402.16807 (2024)]

 \Rightarrow These are sensitive to "everything", but we cannot calculate the spectrum below around 1% accuracy.

So what can we do with these?

[based on slide by Julian Berengut]

Isotope shift:

$$\nu_i^{\mathcal{A}\mathcal{A}'} \equiv \nu_i^{\mathcal{A}} - \nu_i^{\mathcal{A}'}$$

$$\nu_i^{\mathcal{A}\mathcal{A}'} \equiv \nu_i^{\mathcal{A}} - \nu_i^{\mathcal{A}'}$$

 $\tilde{\nu}_i^{\mathbf{A}}$: data, K_{21}, F_{21} : linear fit

$$\begin{split} \tilde{\nu}_{2}^{AA'} = & K_{21} + F_{21} \tilde{\nu}_{1}^{AA'} \\ \tilde{\nu}_{2}^{AA''} = & K_{21} + F_{21} \tilde{\nu}_{1}^{AA''} \\ \tilde{\nu}_{2}^{AA'''} = & K_{21} + F_{21} \tilde{\nu}_{1}^{AA'''} \end{split}$$

Ytterbium's Stable Isotopes

PTB + MPIK = New Yb King Plot

Observed King plot nonlinearity: \sim 20.17(2) kHz

$$\nu_i^{\mathcal{A}\mathcal{A}'} \equiv \nu_i^{\mathcal{A}} - \nu_i^{\mathcal{A}}$$

 $\tilde{\nu}_i^{\mathbf{A}}$: data, K_{21}, F_{21} : linear fit

$$\begin{split} \tilde{\nu}_{2}^{AA'} = & K_{21} + F_{21} \tilde{\nu}_{1}^{AA'} \\ \tilde{\nu}_{2}^{AA''} = & K_{21} + F_{21} \tilde{\nu}_{1}^{AA''} \\ \tilde{\nu}_{2}^{AA'''} = & K_{21} + F_{21} \tilde{\nu}_{1}^{AA'''} \end{split}$$

$$\nu_i^{\mathbf{A}\mathbf{A}'} \equiv \nu_i^{\mathbf{A}} - \nu_i^{\mathbf{A}'}$$

 $\tilde{\nu}_i^{\mathbf{A}}$: data, K_{21}, F_{21} : linear fit

$$\tilde{\nu}_{2}^{AA'} = K_{21} + F_{21}\tilde{\nu}_{1}^{AA'} + ?$$

$$\tilde{\nu}_{2}^{AA''} = K_{21} + F_{21}\tilde{\nu}_{1}^{AA''} + ?$$

$$\tilde{\nu}_{2}^{AA'''} = K_{21} + F_{21}\tilde{\nu}_{1}^{AA'''} + ?$$

$$\nu_i^{\mathbf{A}\mathbf{A}'} \equiv \nu_i^{\mathbf{A}} - \nu_i^{\mathbf{A}'}$$

 $\tilde{\nu}_i^{\mathbf{A}}$: data, K_{21}, F_{21} : linear fit

$$\tilde{\nu}_{2}^{AA'} = K_{21} + F_{21}\tilde{\nu}_{1}^{AA'} + ?$$

$$\tilde{\nu}_{2}^{AA''} = K_{21} + F_{21}\tilde{\nu}_{1}^{AA''} + ?$$

$$\tilde{\nu}_{2}^{AA'''} = K_{21} + F_{21}\tilde{\nu}_{1}^{AA'''} + ?$$

The Nonlinearity Decomposition Plot

• Plane of King linearity: 1 = (1, 1, 1, 1), $\tilde{\nu}_i = (\tilde{\nu}_i^{AA'}, \tilde{\nu}_i^{AA''}, \tilde{\nu}_i^{AA'''}, \tilde{\nu}_i^{AA'''})$, i=1,2,...

$$\tilde{\boldsymbol{\nu}}_{j} \, pprox \, \boldsymbol{F}_{j1} \tilde{\boldsymbol{\nu}}_{1} + \boldsymbol{K}_{j1} \mathbf{1} \,, \qquad j > 1.$$

• Project isotope-shift data onto $\tilde{\nu}_1$, 1, Λ_+ , Λ_- with $\Lambda_{\pm} \perp (\tilde{\nu}_1, 1)$:

$$\tilde{\boldsymbol{\nu}}_{j} = (\tilde{\boldsymbol{\nu}}_{1}, \boldsymbol{1}, \boldsymbol{\Lambda}_{+}, \boldsymbol{\Lambda}_{-}) (F_{j1}, K_{j1}, \lambda_{+}, \lambda_{-})^{T}$$

In presence of just one nonlinearity,

$$\begin{split} \tilde{\boldsymbol{\nu}}_{j} &\approx F_{j1}\tilde{\boldsymbol{\nu}}_{1} + K_{j1}\mathbf{1} + G_{j1}^{(4)}\delta\widetilde{\langle \boldsymbol{r}^{4}\rangle}, \qquad j > 1.\\ \text{slope:} \ \frac{\lambda_{-}}{\lambda_{+}} &\equiv \frac{G_{j1}^{(4)}\delta\langle \tilde{\boldsymbol{r}^{4}}\rangle_{-}}{G_{j1}^{(4)}\delta\langle \tilde{\boldsymbol{r}^{4}}\rangle_{+}} = \frac{\delta\langle \tilde{\boldsymbol{r}^{4}}\rangle_{-}}{\delta\langle \tilde{\boldsymbol{r}^{4}}\rangle_{+}} \Rightarrow \text{transition-universal} \end{split}$$

[arXiv:2004.11383, arXiv:2201.03578]

The Nonlinearity Decomposition Plot

Extracting Nuclear Physics from Isotope-Shift Measurements

 Assuming δ(r⁴) dominates, what does the isotope-shift data tell us about the evolution of δ(r⁴) along the isotope chain?

blue, orange, green: Calculations by group of Prof. Achim Schwenk **black:** new spectroscopic method, fixed at *

King-Plot Method in Presence of Nuclear Effects: The Generalised King Plot [arXiv:1704.05068,2005.06144]

 \Rightarrow test King linearity

 \Rightarrow account for one King nonlinearity

 \Rightarrow put bound on 2nd

 \Rightarrow King-plot method also works in presence of nuclear effects.

King-Plot Bounds on New Bosons [arXiv:1704.05068,2005.06144]

New effective Yukawa-potential

$$V_{\phi}(r) = -lpha_{\mathrm{NP}}(A-Z) rac{e^{-m_{\phi}r}}{r}$$

Induces new term in the isotope shift:

$$\tilde{\nu}_{i}^{\mathcal{A}\mathcal{A}'} = \mathcal{K}_{i}\tilde{\mu}^{\mathcal{A}\mathcal{A}'} + \mathcal{F}_{i}\delta\langle\tilde{r^{2}}\rangle^{\mathcal{A}\mathcal{A}'} + \mathcal{G}_{i}^{(4)}\delta\langle\tilde{r^{4}}\rangle^{\mathcal{A}\mathcal{A}'} + \alpha_{\mathrm{NP}}X_{i}\tilde{\gamma}^{\mathcal{A}\mathcal{A}'}$$

 \Rightarrow Extract α_{NP} from fraction of volumes spanned by frequency vectors:

$$\alpha_{\rm NP} = \frac{Vol.}{Vol.|_{th,\alpha_{\rm NP}}=1} = \frac{2! \det\left(\vec{\nu}_1, \vec{\nu}_2, \vec{\nu}_3, \vec{\mu}\right)}{\varepsilon_{ijkl} \det\left(X_i \vec{\gamma}, \vec{\nu}_j, \vec{\nu}_k, \vec{\nu}_l\right)}$$

 $\{ec{
u}_i\}$: data vectors in isotope-pair space, $ec{\mu}\equiv(1,1,1,1)$, X_i , $ec{\gamma}$: th. input

New Spectroscopy Bounds on New Physics

 $m_{\phi}
ightarrow$ 0: > size atom

- $m_{\phi}
 ightarrow \infty$: not sensitive to contact interactions
- "Peaks" due to cancellations among electronic coefficients

Outline

What Are We Looking For?

Search With Atomic Clocks

Search With Nuclear Clock

Search With Nuclear Clock: Ultralight Scalar Coupling to QCD

Fine-Tuning in Thorium-229?

Progression of precision $\delta \nu / \nu$:

 10^{-1} (2020), 10^{-3} (2022, ISOLDE), 10^{-6} (March 2024, PTB), 10^{-11} (June 2024, JILA)

Nuclear Lineshape Analysis

First laser-excitation of a nuclear transition: PTB 2024 [PRL 132, 182501]

Nuclear Lineshape Analysis

Nuclear Lineshape Analysis

Bounds on Ultralight Scalar Coupling to QCD

$$\mathcal{L}_{\phi} \supset -d_{g} \frac{\phi}{M_{\mathsf{Pl}}} \frac{\sqrt{\pi \beta_{\mathsf{S}}}}{g_{\mathsf{S}}} G^{\mathsf{a}}_{\mu\nu} G^{\mathsf{a}\mu\nu}$$

Conclusions

Atomic and nuclear clocks are sensitive probes of light new scalars:

Light scalar coupling to $e^- \& n$

Isotope shift spectroscopy

Ultralight scalar coupling to QCD

Nuclear line-shape analysis

... And on the way we can learn about

Nuclear deformation

Fine-tuning in thorium

Check out our papers on the arXiv:

- Yb King plot: https://arxiv.org/abs/2403.07792
- Th-229 & ULDM: https://arxiv.org/abs/2407.15924

Stay tuned for:

- Kifit: Global King-plot analysis
- King-plot analysis of highly-charged Ca ions

Thank you for your attention.

Backup slides

How?

- Spontaneous breaking of exact symmetries \rightarrow massless particles
 - $\circ~$ Approximate symmetries broken \rightarrow low-mass particles
- Traditional example: pion \sim Goldstone boson of spontaneously broken chiral symmetry \Rightarrow much lighter than other mesons

Historic Example for Light New Physics: β Decay

- β decay was assumed to involve only nucleons and electrons: $n \rightarrow p + e$
- ⇒ Expect discrete energy spectrum for e but continuous spectrum observed
 - Pauli proposed a radical solution involving a neutrino: $n \rightarrow p + e + \bar{\nu}_e$
 - Example of a **"hidden sector"** involving light new physics:
 - New light particle
 - · Electrically neutral, weakly interacting
 - Manifests itself through a "portal": weak interaction

[Slide inspired by Philippe Mermod, Flavour 2015, Munich, 3 June 2015]

Examples of well-motivated light new particles:

- Sterile neutrino (neutrino masses, Dark Matter, matter-antimatter asymmetry)
- Axion (strong CP problem)
- Dark photon (mediator to Dark Matter)

Dark Portals / Portals to Dark Matter?

Portal	Coupling
Scalar (Dark Higgs) <i>S</i>	$(\mu S + \lambda S^2) H^\dagger H$
Vector (Dark Photon) A'_{μ}	$-rac{arepsilon}{2}F_{\mu u}^{\prime}F^{\mu u}$
Spinor (Sterile Neutrino) N	y _N LHN
Pseudoscalar (Axion) a	$\frac{a}{f_a}F_{\mu\nu}\tilde{F}^{\mu\nu}, \ \frac{a}{f_a}G_{\mu\nu}\tilde{G}^{\mu\nu}, \ \frac{\partial_{\mu}a}{f_a}\bar{\psi}\gamma^{\mu}\gamma^5\psi$

Dark Portals and Isotope Shift Measurements

$$\nu_i^{AA'} = K_i \mu^{AA'} + F_i \delta \langle r^2 \rangle^{AA'} + \dots$$

Mass Shift

Different motion of the nuclei \Rightarrow Correction to e^- kin. energy

Field Shift

Different nucl. charge distrib. \Rightarrow Different contact interactions betw. e^- & nuclei

$$\delta \langle r^2 \rangle^{\mathbf{A}\mathbf{A}'} = \langle r^2 \rangle^{\mathbf{A}} - \langle r^2 \rangle^{\mathbf{A}'}$$

Factorisation of electronic and nuclear contributions.

Isotope shifts:

$$\nu_i^{\mathcal{A}\mathcal{A}'} = \mathbf{K}_i \mu^{\mathcal{A}\mathcal{A}'} + \mathbf{F}_i \delta \langle r^2 \rangle^{\mathcal{A}\mathcal{A}'} + \dots$$

$$\nu_i^{AA'} \equiv \nu_i^A - \nu_i^{A'}$$

i: transition index AA': isotope pair index K_i, F_i, \ldots : electronic coeffs. $\mu^{AA'}, \delta \langle r^2 \rangle^{AA'}, \ldots$: nuclear coeffs. *Z*: number of protons N, N': number of neutrons in A, A'

The King-Plot: Trade Data for Nuclear Physics

[W. King, J. Opt. Soc. Am. 53, 638 (1963)]

Issue: Large uncertainty on charge radius variance $\delta \langle r^2 \rangle^{AA'}$

 \Rightarrow Measure isotope shifts for 2 transitions

 $\nu_{1}^{AA'} = K_{1}\mu^{AA'} + F_{1}\delta\langle r^{2}\rangle^{AA'}$ $\nu_{2}^{AA'} = K_{2}\mu^{AA'} + F_{2}\delta\langle r^{2}\rangle^{AA'}$

 $\tilde{\nu}_{2}$ $F_{21} \bullet_{(\tilde{\nu}_{1}^{AA''}, \tilde{\nu}_{2}^{AA''})}$ K_{21} $\tilde{\nu}_{1}$

 \Rightarrow Eliminate charge radius variance $\delta \langle r^2 \rangle^{AA'}$

 $\tilde{\nu}_2^{AA'} = \mathbf{K}_{21} + \mathbf{F}_{21}\tilde{\nu}_1^{AA'}$

$$\begin{split} \tilde{\nu}_i^{AA'} &\equiv \nu_i^{AA'} / \mu^{AA'} \quad \Rightarrow \mathsf{data} \\ F_{21} &\equiv F_2 / F_1 \quad K_{21} &\equiv K_2 - F_{21} K_1 \quad \Rightarrow \mathsf{fit} \end{split}$$

King-Plot Bounds on New Bosons [arXiv:1704.05068,2005.06144]

with $\alpha_{
m NP}=(-1)^{s}rac{y_{e}y_{n}}{4\pi}$, s=0,1,2 (spin)

Induces new term in the King-relation:

$$\tilde{\nu}_{2}^{\mathcal{A}\mathcal{A}'} = \mathcal{K}_{21}\tilde{\mu}^{\mathcal{A}\mathcal{A}'} + \mathcal{F}_{21}\tilde{\nu}_{1}^{\mathcal{A}\mathcal{A}'} + \alpha_{\mathsf{NP}}\boldsymbol{X}_{21}\tilde{\boldsymbol{\gamma}}^{\mathcal{A}\mathcal{A}'}$$

 $X_{21} = X_2 - F_{21}X_1$: NP electronic coefficient $\tilde{\gamma}^{AA'} \equiv (A - A')/\mu^{AA'}$: NP nucl. coeff.

 \Rightarrow Extract α_{NP} from fraction of volumes spanned by frequency vectors:

$$\alpha_{\rm NP} = \frac{Vol.}{Vol.|_{th,\alpha_{\rm NP}=1}} = \frac{\det\left(\vec{\vec{\nu}}_1, \vec{\vec{\nu}}_2, \vec{\vec{\mu}}\right)}{\varepsilon_{ijk} \det\left(X_i \vec{\vec{\gamma}}, \vec{\nu}_j, \vec{\nu}_k\right)}$$

 $\{ec{
u}_i\}$: data vectors in isotope-pair space, $ec{\mu}\equiv(1,1,1)$, X_i , $ec{\gamma}$: theory input

(No-Mass King-Plot:)

$$\begin{split} \vec{\nu_1} = & K_1 \vec{\mu} + F_1 \overrightarrow{\delta\langle r^2 \rangle} + \alpha_{\text{NP}} X_1 \vec{\gamma} \\ \vec{\nu_2} = & K_2 \vec{\mu} + F_2 \overrightarrow{\delta\langle r^2 \rangle} + \alpha_{\text{NP}} X_2 \vec{\gamma} \\ \vec{\nu_3} = & K_3 \vec{\mu} + F_3 \overrightarrow{\delta\langle r^2 \rangle} + \alpha_{\text{NP}} X_3 \vec{\gamma} \\ \Rightarrow \det(\vec{\nu_1}, \vec{\nu_2}, \vec{\nu_3}) = & \alpha_{\text{NP}} \det(\vec{K}, \vec{F}, \vec{X}) \det(\vec{\mu}, \overrightarrow{\delta\langle r^2 \rangle}, \vec{\gamma}) \\ \Rightarrow & \alpha_{\text{NP}} = \frac{Vol}{Vol|_{th,\alpha_{\text{NP}}=1}} = \frac{\det(\vec{\nu_1}, \vec{\nu_2}, \vec{\nu_3})}{\det(\vec{K}, \vec{F}, \vec{X}) \det(\vec{\mu}, \overrightarrow{\delta\langle r^2 \rangle}, \vec{\gamma})} \\ = \frac{\det(\vec{\nu_1}, \vec{\nu_2}, \vec{\nu_3})}{\frac{1}{2}\varepsilon_{ijk} \det(X_i \vec{\gamma}, \vec{\nu_j}, \vec{\nu_k})} \end{split}$$

Choose your King-Plot

Extraction of $\alpha_{\rm NP}$ using the "determinant method" requires

Type of King-Plot	Isotope-Pairs	Transitions	
Generalised King-Plot:	п	n-1	[PRR 2, 043444 (2020)]
No-Mass King-Plot:	п	п	[PRR 2, 043444 (2020)]

 $n \ge 3$ (else cannot search for nonlinearities)

$$\begin{aligned} \alpha_{\mathrm{NP}} &= \frac{V}{V|_{\mathrm{th},\alpha_{\mathrm{NP}}=1}} = \frac{(n-2)! \det\left(\vec{\nu}_{1},\ldots,\vec{\nu}_{n-1},\vec{\mu}\right)}{\varepsilon_{i_{1},\ldots,i_{n-1}} \det\left(X_{i_{1}}\vec{\gamma},\vec{\nu}_{i_{2}},\ldots,\vec{\nu}_{i_{n-1}},\vec{\mu}_{i_{n}}\right)} \\ \alpha_{\mathrm{NP}} &= \frac{v}{v|_{\mathrm{th},\alpha_{\mathrm{NP}}=1}} = \frac{(n-1)! \det\left(\vec{\nu}_{1},\vec{\nu}_{2},\ldots,\vec{\nu}_{n}\right)}{\varepsilon_{i_{1},i_{2},\ldots,i_{n}} \det\left(X_{i_{1}}\vec{\gamma},\vec{\nu}_{i_{2}},\ldots,\vec{\nu}_{i_{n}}\right)} \end{aligned}$$

King-Plot Method in Presence of Nuclear Effects: The Generalised King Plot [arXiv:1704.05068,2005.06144]

ν₃ ν₃

 \Rightarrow test King linearity

 \Rightarrow account for one King nonlinearity

 \Rightarrow put bound on 2nd

 \Rightarrow King-plot method also works in presence of nuclear effects.

Nonlinear King plot relation:

$$\tilde{\nu}_{2}^{AA'} = K_{21}\tilde{\mu}^{AA'} + F_{21}\tilde{\nu}_{1}^{AA'} + G_{21}^{(2)}\delta\langle r^{2}\rangle^{2} + G_{21}^{(4)}\delta\langle r^{4}\rangle + \dots?$$

Overlap of new physics potential and electronic wavefunction

$$X_i = \int \mathrm{d}^3 r \frac{e^{-m_\phi r}}{r} \left[|\psi_b(r)|^2 - |\psi_a(r)|^2 \right]$$

 $|\psi(r)|^2$: electron density in absence of new physics, a, b initial, final states

Requirement for searches for new light bosons:

- At least one of ψ_a or ψ_b should have good overlap with new potential.
- For tight bounds on α_{NP} , one X_i needs to be large.

[arXiv:2004.11383, arXiv:2201.03578]

1. Arrange the isotope-shift data for all transitions $\tau \in \{\alpha, \beta, \gamma, \delta, \epsilon\}$ in *n*-vectors $\tilde{\nu}_{\tau}$, where *n* is the number of isotope pairs (here 4):

$$ilde{oldsymbol{
u}}_{ au}=(ilde{
u}_{ au}^{168,170}, ilde{
u}_{ au}^{170,172}, ilde{
u}_{ au}^{172,174}, ilde{
u}_{ au}^{174,176})$$

- 2. Choose a reference transition, say δ .
- 3. Plane of King linearity is defined by the relations $(\mathbf{1} = (1, 1, 1, 1))$

$$\tilde{\boldsymbol{\nu}}_{\tau} \, pprox \, \boldsymbol{F}_{\tau\delta} \tilde{\boldsymbol{\nu}}_{\delta} + \boldsymbol{K}_{\tau\delta} \boldsymbol{1} \, .$$

- 4. Define two $(n=4)-{
 m vectors}\ \Lambda_\pm$ that are orthogonal to $ilde{m
 u}_\delta,\ {f 1}.$
- 5. Project all isotope-shift data onto the four vectors $\tilde{\nu}_{\delta}$, **1**, Λ_+ , Λ_- :

$$\tilde{\boldsymbol{\nu}}_{ au} = \begin{pmatrix} \tilde{\boldsymbol{\nu}}_{\delta} & \mathbf{1} & \boldsymbol{\Lambda}_{+} & \boldsymbol{\Lambda}_{-} \end{pmatrix} \begin{pmatrix} F_{\tau\delta} & K_{\tau\delta} & \lambda_{+}^{(au)} & \lambda_{-}^{(au)} \end{pmatrix}^{T}$$

6. Plot all points $(\lambda_{+}^{(\tau)}, \lambda_{-}^{(\tau)})$ in the same plane.

The Nonlinearity Decomposition Plot

Notation	Transition	Refs.
$lpha_{\text{MIT,PTB}}$ eta $\gamma_{\text{MIT,PTB}}$ δ ϵ	$\begin{array}{l} {}^2S_{1/2} \rightarrow {}^2D_{5/2} \ \text{E2 in } Yb^+ \\ {}^2S_{1/2} \rightarrow {}^2D_{3/2} \ \text{E2 in } Yb^+ \\ {}^2S_{1/2} \rightarrow {}^2F_{7/2} \ \text{E3 in } Yb^+ \\ {}^1S_0 \rightarrow {}^3P_0 \ \text{in } Yb \\ {}^1S_0 \rightarrow {}^1D_2 \ \text{in } Yb \end{array}$	MIT, t.w. MIT MIT, t.w. Kyoto Mainz

- δ(r²)² estimated using Angeli & Marinova Tables of experimental nuclear ground state charge radii
- δ(r⁴): Calculations by group of Prof.
 Achim Schwenk, TU Darmstadt

In presence of just one nonlinearity,

$$\begin{split} \tilde{\boldsymbol{\nu}}_{j} &\approx F_{j1}\tilde{\boldsymbol{\nu}}_{1} + K_{j1}\boldsymbol{1} + G_{j1}^{(4)}\delta\langle \tilde{\boldsymbol{r}^{4}}\rangle, \qquad j > 1\\ \text{slope:} \ \frac{\lambda_{-}}{\lambda_{+}} &\equiv \frac{G_{j1}^{(4)}\delta\langle \tilde{\boldsymbol{r}^{4}}\rangle_{-}}{G_{j1}^{(4)}\delta\langle \tilde{\boldsymbol{r}^{4}}\rangle_{+}} = \frac{\delta\langle \tilde{\boldsymbol{r}^{4}}\rangle_{-}}{\delta\langle \tilde{\boldsymbol{r}^{4}}\rangle_{+}} \Rightarrow \text{transition-universal} \end{split}$$

Extracting Nuclear Physics from Isotope-Shift Measurements

• Assuming $\delta \langle r^4 \rangle$ dominates, what does the isotope-shift data tell us about the evolution of $\delta \langle r^4 \rangle$ along the isotope chain?

\Rightarrow "Put the King plot on it's head.":

- 1. Instead of eliminating $\delta \langle r^2 \rangle$ from the system of equations, we use experimental data (Angeli & Marinova) to determine it.
- 2. Perform a fit to determine the field shift coefficient F_{τ} from the data.
- 3. Use theoretical input for the electronic coefficient $G_{\tau}^{(4)}$ (J. Berengut)
- 4. Solve for object

$$Q^{AA',RR'} \equiv \delta \langle r^4 \rangle^{AA'} - \frac{\mu^{AA'}}{\mu^{RR'}} \delta \langle r^4 \rangle^{RR'} \,,$$

where RR': reference isotope pair, AA': any of remaining isotope pairs.

Extracting Nuclear Physics from Isotope-Shift Measurements

 Assuming δ(r⁴) dominates, what does the isotope-shift data tell us about the evolution of δ(r⁴) along the isotope chain?

blue, orange, green: Calculations by group of Prof. Achim Schwenk **black:** new spectroscopic method, fixed at *

"Ab initio": Starting from chiral effective field theory interactions **DFT:** Density Functional Theory

- Experimental $\delta \langle r^4 \rangle^{AA'}$ values relative to $\delta \langle r^4 \rangle^{176,174} = 7 \text{ fm}^4$ extracted from isotope shifts from the α transition using atomic theory (fiducial, core holes)
- Above: ab initio calculations (t.w.)
- Below: density functional theory calculations (PRL.128.163201)
- Gray bands: estimated theory uncertainties

Advantages of Nuclear Clocks wrt. Atomic Clocks

- + Nucleus \ll Atom \Rightarrow Shielded from external fields \Rightarrow Higher accuracy
- + Nucleus less polarisable than atom \Rightarrow Higher accuracy
- + Use solids? \Rightarrow Higher statistics \Rightarrow Higher stability
- + Higher frequency \Rightarrow Higher stability
- + Probes QCD \Rightarrow Sensitive to NP coupling to QCD
- + Low transition frequency due to accidental cancellation (?)

$$\begin{split} \Delta E = \Delta E_{\mathsf{EM}} + \Delta E_{\mathsf{nuc}} & \Delta E \ll |\Delta E_{\mathsf{EM}}| \sim |\Delta E_{\mathsf{nuc}}| \\ 8 \text{ eV} \ll 0.1 \text{ MeV} \end{split}$$

 \Rightarrow Extraordinary sensitivity to new physics?

[arXiv:2012.09304,2407.17526]

Sensitivity of Nuclear Clocks to New Physics

[arXiv:2012.09304,2407.17526]

$$\begin{split} \Delta E = \Delta E_{\text{EM}} + \Delta E_{\text{nuc}} & \Delta E \ll |\Delta E_{\text{EM}}| \sim |\Delta E_{\text{nuc}}| \\ 8 \text{ eV} \ll 0.1 \text{ MeV} \end{split}$$

$$\frac{\delta\left(\Delta E\right)}{\Delta E} = \frac{1}{\Delta E} \left(\frac{\partial \Delta E_{\mathsf{EM}}}{\partial \alpha_{\mathsf{EM}}} \delta \alpha_{\mathsf{EM}} + \frac{\partial \Delta E}{\partial \alpha_{\mathsf{s}}} \delta \alpha_{\mathsf{s}}\right)$$

$$\begin{split} & \mathcal{K}_{\mathsf{EM}} \equiv \frac{1}{\Delta E} \frac{\partial \Delta \mathcal{E}_{\mathsf{EM}}}{\partial \log \alpha_{\mathsf{EM}}} \simeq \frac{\Delta \mathcal{E}_{\mathsf{EM}}}{\Delta E} \sim 10^5 \\ & \mathcal{K}_s^{\mathsf{EM}} \equiv \frac{1}{\Delta \mathcal{E}_{\mathsf{EM}}} \frac{\partial \Delta \mathcal{E}_{\mathsf{EM}}}{\partial \log \alpha_s} \sim \beta \mathcal{K}_{\mathsf{EM}} \,, \qquad \beta \sim \mathcal{O}(1)? \\ & \mathcal{K}_s^{\mathsf{EM}} \sim \mathcal{K}_s^{\mathsf{nuc}}? \end{split}$$

Some Phenomenology of Ultralight New Physics

• ϕ oscillates around potential minimum (cold dark matter):

 $\phi(t,x) \sim \phi_0 \cos(m_\phi t)$

• Interacts with the Standard Model:

$$\mathcal{L}_{\phi} \supset \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + \frac{1}{2} m_{\phi} \phi^{2} + \frac{\phi}{M_{\mathsf{Pl}}} \left[\frac{d_{e}}{4e^{2}} F_{\mu\nu} F^{\mu\nu} - \frac{d_{g}\beta_{s}}{2g_{s}} G^{a}_{\mu\nu} G^{a\mu\nu} - d_{m_{e}} m_{e} \bar{e} e - \sum_{q=u,d} \left(d_{m_{q}} + \gamma_{m_{q}} d_{g} \right) m_{q} \bar{q} q \right]$$

- \Rightarrow Oscillating fundamental constants $\alpha_{\text{EM}},$ $\Lambda_{\text{QCD}},$ \textit{m}_{f}
- \Rightarrow Oscillating transition frequencies

$$\nu \sim \nu_0 \left(1 + (K_g d_g + K_e d_e + \ldots) \phi(t) / M_{\mathsf{Pl}} \right)$$

$$\Rightarrow \nu(t) \simeq \nu_0 + \delta \nu_{\mathsf{DM}} \cos \left(2\pi \nu_{\mathsf{DM}} t + \varphi_{\mathsf{DM}} \right)$$

Nuclear Lineshape Analysis in the Limit $\delta \nu_{\rm DM} \gg \nu_{\rm DM}$

 $\nu(t) \simeq \nu_0 + \delta \nu_{\rm DM} \cos\left(2\pi\nu_{\rm DM}t + \varphi_{\rm DM}\right)$

- In absence of DM, $I(\nu) = \delta(\nu - \nu_0)$
- In presence of DM, average over $T_{\text{DM}} = 1/\nu_{\text{DM}}$:

$$\langle I(\nu) \rangle_{T_{\text{DM}}} = \int_{0}^{T_{\text{DM}}} \frac{\mathrm{d}t}{T_{\text{DM}}} \delta(\nu - \nu(t))$$
$$= \frac{\theta \left(1 - \left|\frac{\nu - \nu_{0}}{\delta \nu_{\text{DM}}}\right|\right) / \pi}{\sqrt{\delta \nu_{\text{DM}}^{2} - (\nu - \nu_{0})^{2}}}$$

- $\Rightarrow\,$ Convolve with resonance lineshape
- \Rightarrow Take into account experimental procedure

 $\Rightarrow \dots$

 \Rightarrow Curve fit (MCMC/ODR)

Nuclear Lineshape Analysis Regimes: Current

Nuclear Lineshape Analysis Regimes: Future

