Presentation of latest results

A first measurement of the emittance of the MICE muon beam

Mark Alastair Rayner

Université de Genève

30th collaboration meeting of the MICE experiment The University of Oxford 7/7/2011

Raw 6 mm data (including 1000/1024 correction)

L between TOF centre planes

Corners A, B, C, D, centre planes $\hat{n} \cdot (\vec{r} - \vec{r}_0) = 0$

 \hat{n} is the normal, obtained from $\vec{AC} \times \vec{BD}$ \vec{r}_0 is the centre of the detector, deduced from $\vec{AC} + \vec{BD}$ Unrotated TOF would sit in $z = z_0$ where $\hat{n} = \hat{z}$

Tilt (dihedral angle) given by $\cos \alpha = \hat{n}_1 \cdot \hat{n}_2$

TOF0 normal = (-0.467, -0.509, 99.998), $\alpha = 0.396 \text{ deg}$ TOF1 normal = (-0.927, -1.423, 99.986), $\alpha = 0.974 \text{ deg}$ (20 cm) sin 1° = 3.5 mm \Rightarrow uncertainty on L

Middles of the detector (from the survey recon)

TOF0 $\vec{r}_0 = (1.8, 2.6, 5293.8) \text{ mm}$, TOF1 $\vec{r}_0 = (30.2, -17.6, 12999.0) \text{ mm}$

Intersection with design orbit at $z_{\text{design}} = \hat{n} \cdot \vec{r}_0 / \hat{n}_z$

TOF0 z_{design} = 5293.7 mm, TOF1 z_{design} = 12999.0 mm

Position of the e^{\pm} peak in raw data

$\langle t_e^{data} \rangle$	Electrons	Positrons	
(6 mm, 140 MeV/c)	$25.366 \text{ ns} \pm 3 \text{ ps}$	$25.303 \text{ ns} \pm 3 \text{ ps}$	
(6 mm, 200 MeV/c)	$25.369 \text{ ns} \pm 3 \text{ ps}$	$25.298 \text{ ns} \pm 2 \text{ ps}$	
(6 mm, 240 MeV/c)	$25.370 \text{ ns} \pm 9 \text{ ps}$	$25.289 \ \text{ns} \pm 4 \ \text{ps}$	

e^{\pm} path length is > L

Monte Carlo electrons

Monte Carlo positrons

$\langle \delta_e^{\rm sim} \rangle$	Electrons	Positrons	
(6 mm, 140 MeV/c)	$13.9\pm0.2~\text{mm}$	$10.9\pm0.3~\text{mm}$	
(6 mm, 200 MeV/c)	13.8 ± 0.1 mm	$11.0\pm0.1~\text{mm}$	
(6 mm, 240 MeV/c)	$14.6\pm0.2~\text{mm}$	$12.7\pm0.7\ mm$	

Mark Rayner (Université de Genève)

Corrected 6 mm data

A precise measurement based on p/E = L/t

In units where c = 1,

$$E_{\mu}/p_{\mu}\left(L+\delta_{\mu}^{\mathsf{calc}}\right)=k\left(t_{\mu}-\left\langle t_{e}^{\mathsf{data}}\right\rangle\right)+\left(L+\left\langle \delta_{e}^{\mathsf{sim}}\right\rangle\right)$$

Variable	Resolution	Comment
L	3 mm ≡ 12 ps	Survey resolution plus tilt uncertainty
	1.5 cm ≡ 50 ps	Elbow uncertainty
	5 cm ≡ 170 ps	Survey misinterpreted
k	$10^{-5} \equiv 0.3 \text{ ps}$	Previous analyses assumed 25 ps rather than
		24.414 ps TDC bins \Rightarrow 0.6 ns error
$\langle t_e^{\text{data}} \rangle$	35 ps	\therefore don't understand e^+/e^- discrepancy, ap-
		ply separate +/- correction
$\left< \delta_e^{\rm sim} \right>$	0.5 mm ≡ 2 ps	Apply M.C. correction based on polarity and
		p_z of matrix element

Systematic uncertainty on p_z

Systematic error on p

p_z data/simulation comparison

p_z data/simulation comparison

Mean <i>p_z</i>	Rec. sim.	Data
(6 mm, 140 MeV/c) μ^-	174.80 ± 1.5	174.78 ± 1.5
(6 mm, 140 MeV/c) μ^+	178.66 ± 1.5	173.89 ± 1.5
(6 mm, 240 MeV/c) μ^-	273.01 ± 3.5	270.68 ± 3.5
(6 mm, 240 MeV/c) μ^+	272.44 ± 3.5	267.90 ± 3.5
(6 mm, 200 MeV/c) μ^-	230.95 ± 2.5	230.85 ± 2.5
(6 mm, 200 MeV/c) μ^+	233.03 ± 2.5	227.01 ± 2.5

Statistical errors only:

RMS p _z	Rec. sim.	Data
(6 mm, 140 MeV/c) μ^-	21.16 ± 0.15	24.51 ± 0.13
(6 mm, 140 MeV/c) μ^+	25.97 ± 0.32	26.12 ± 0.08
(6 mm, 200 MeV/c) μ^-	23.19 ± 0.05	25.38 ± 0.06
(6 mm, 200 MeV/c) μ^+	29.53 ± 0.11	27.60 ± 0.03
(6 mm, 240 MeV/c) μ^-	24.83 ± 0.05	28.04 ± 0.16
(6 mm, 240 MeV/c) μ^+	32.08 ± 0.30	30.65 ± 0.06

Mark Rayner (Université de Genève)

Step 1 G4MICE software suite

The applications:

Step1Ensemble

Applies Y.K.'s TOF calibration to data, obtains μ tracks

XCalibration

Extends Y.K.'s TOF calibration for timing based (x, y) measurements

Step1Reconstruction

Applies common/Step1Tracking to data

TestStep1Reconstruction

Applies resolutions and common/Step1Tracking to simulation

Step10ptics

Attempts to correct resolution bias on emittance (just for fun)

Mark Rayner (Université de Genève)

Presentation of latest results

Step 1 G4MICE software suite

Reconstruction classes, common to data/simulation reconstruction:

common/Step1Tracking

Instantiates common/Step1BeamLine, and 10 common/Step1Iterations

common/Step1BeamLine

Holds info on geometry, provides $\mathbf{M}(p_z)$ and approximation of path length User selects quad field model class (all inherit from Quadrupole):

- ThinLens
- TopHat
- FastQuad default
- SliceQuad

common/Step1Iteration

Improves estimates of s, p_z , x', and y'

Reconstruction efficiency

x data/simulation comparison

y data/simulation comparison

x' data/simulation comparison

y' data/simulation comparison

(6 mm, 140 MeV/c) μ^- trace space (mm,mrad)

(6 mm, 140 MeV/c) μ^+ trace space (mm,mrad)

(6 mm, 200 MeV/c) μ^- trace space (mm,mrad)

(6 mm, 200 MeV/c) μ^+ trace space (mm,mrad)

Mark Rayner (Université de Genève)

7/7/2011 21 / 29

(6 mm, 240 MeV/c) μ^- trace space (mm,mrad)

(6 mm, 240 MeV/c) μ^+ trace space (mm,mrad)

Mark Rayner (Université de Genève)

7/7/2011 23 / 29

$\chi^2 \equiv A/\epsilon$ cut on rec. sim. and data (6 mm, 240 MeV/c) μ^+

 χ^2 < 4.61 (90%) cut cleans up "high amplitude" noise in the data:

Mark Rayner (Université de Genève)

Presentation of latest results

7/7/2011

24 / 29

Reconstructed simulation versus data

The effect of resolution bias

The Step 1 data in a nutshell

	ϵ_n	Pz	$\langle p_z \rangle$	σ_{pz}	ϵ_X	β_x	α_{x}	D_{x}	ϵ_{V}	β_{γ}	α_{y}
	(mm)	(MeV/c)	(MeV/c)	(MeV/c)	(mm)	(m)		(cm)	(mm)	(m)	,
<u>s</u>	3	140	168.0	24.4	4.20	0.87	0.55	14.5	1.57	2.67	-0.18
		200	219.0	25.6	3.25	0.96	0.56	16.3	1.18	2.98	-0.22
		240	256.5	27.2	2.73	1.04	0.60	16.3	1.06	3.08	-0.22
μ		140	172.8	24.6	3.98	0.90	0.57	13.8	1.55	2.70	-0.20
þe	6	200	228.2	25.5	2.94	1.03	0.64	14.1	1.15	3.10	-0.25
١.,		240	267.6	28.3	2.74	1.05	0.59	17.5	1.02	2.98	-0.19
4	10	140	179.9	24.7	3.77	0.92	0.59	14.2	1.50	2.74	-0.19
		200	243.1	26.6	2.71	1.09	0.63	16.0	1.05	3.29	-0.26
		240	279.2	29.3	2.88	1.12	0.65	15.1	0.93	2.96	-0.19
	3	200	219.0	25.6	3.25	0.96	0.56	16.3	1.18	2.98	-0.22
		240	256.5	27.2	2.73	1.04	0.60	16.3	1.06	3.08	-0.22
s	6	140	172.8	24.6	3.98	0.90	0.57	13.8	1.55	2.70	-0.20
beam		200	228.2	25.5	2.94	1.03	0.64	14.1	1.15	3.10	-0.25
		240	267.6	28.3	2.74	1.05	0.59	17.5	1.02	2.98	-0.19
+	10	140	179.9	24.7	3.77	0.92	0.59	14.2	1.50	2.74	-0.19
4		200	243.1	26.6	2.71	1.09	0.63	16.0	1.05	3.29	-0.26
		240	279.2	29.3	2.88	1.12	0.65	15.1	0.93	2.96	-0.19

Caveat: need to apply 1000/1024 correction and χ^2 cut and re-calculate

An original summary plot (1000/1024 and χ^2 caveats)

All the beams have approximately constant size

Due to beam selection by detectors and scraping (60% in quadrupole 6)

$\epsilon_x\approx 2\epsilon_y$

Despite decay solenoid mixing, due to FDF-FDF?

μ^+ have higher emittance than μ^-

Due to proton absorber?

Low- p_z have higher emittance

Despite scaling the magnet currents to try to preserve the same trace space distributions

 $\chi^2 {\rm cut}$ will ameliorate the effect, not perfect scaling, and scraping dominant

Encouraging agreement with Monte Carlo!