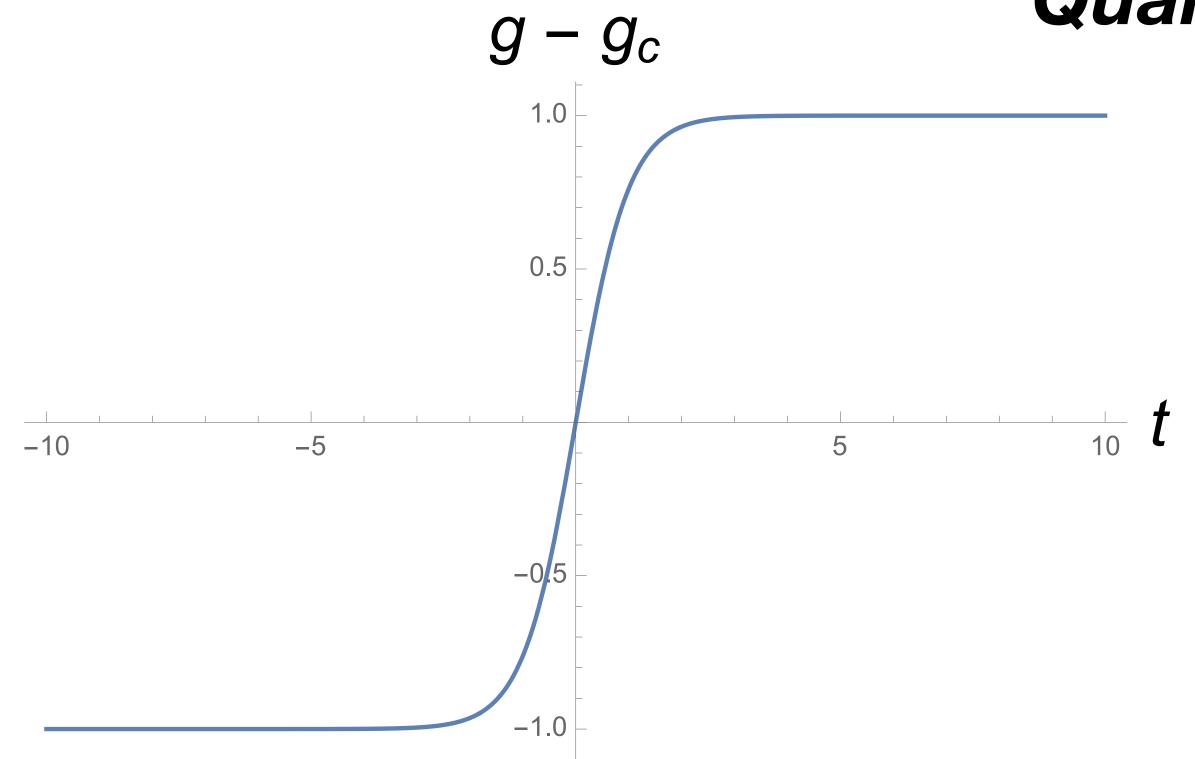


Quantum Quench



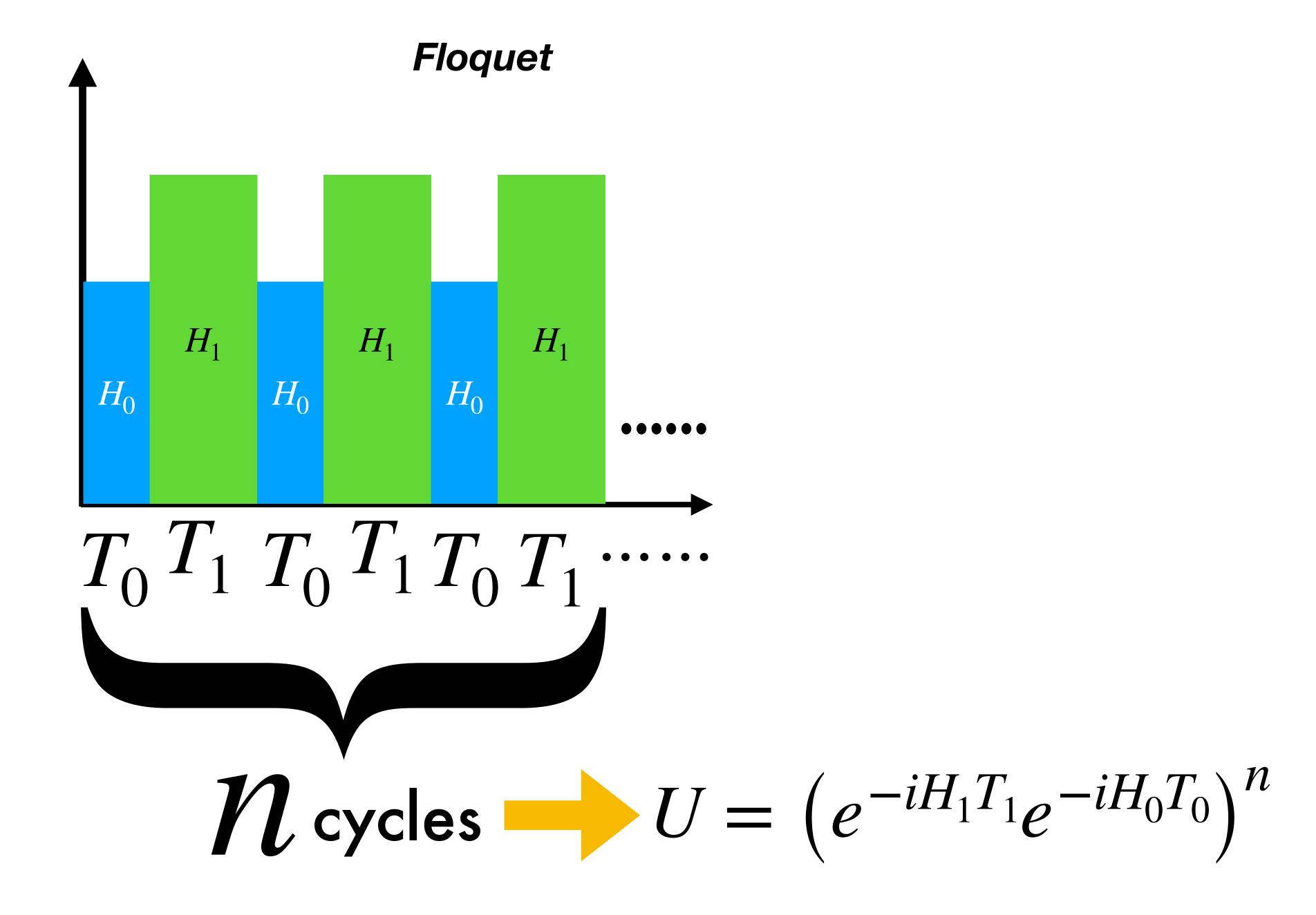
$$|\psi(t)\rangle = e^{-i\int^t dt' H(g(t'))|\psi_0\rangle$$

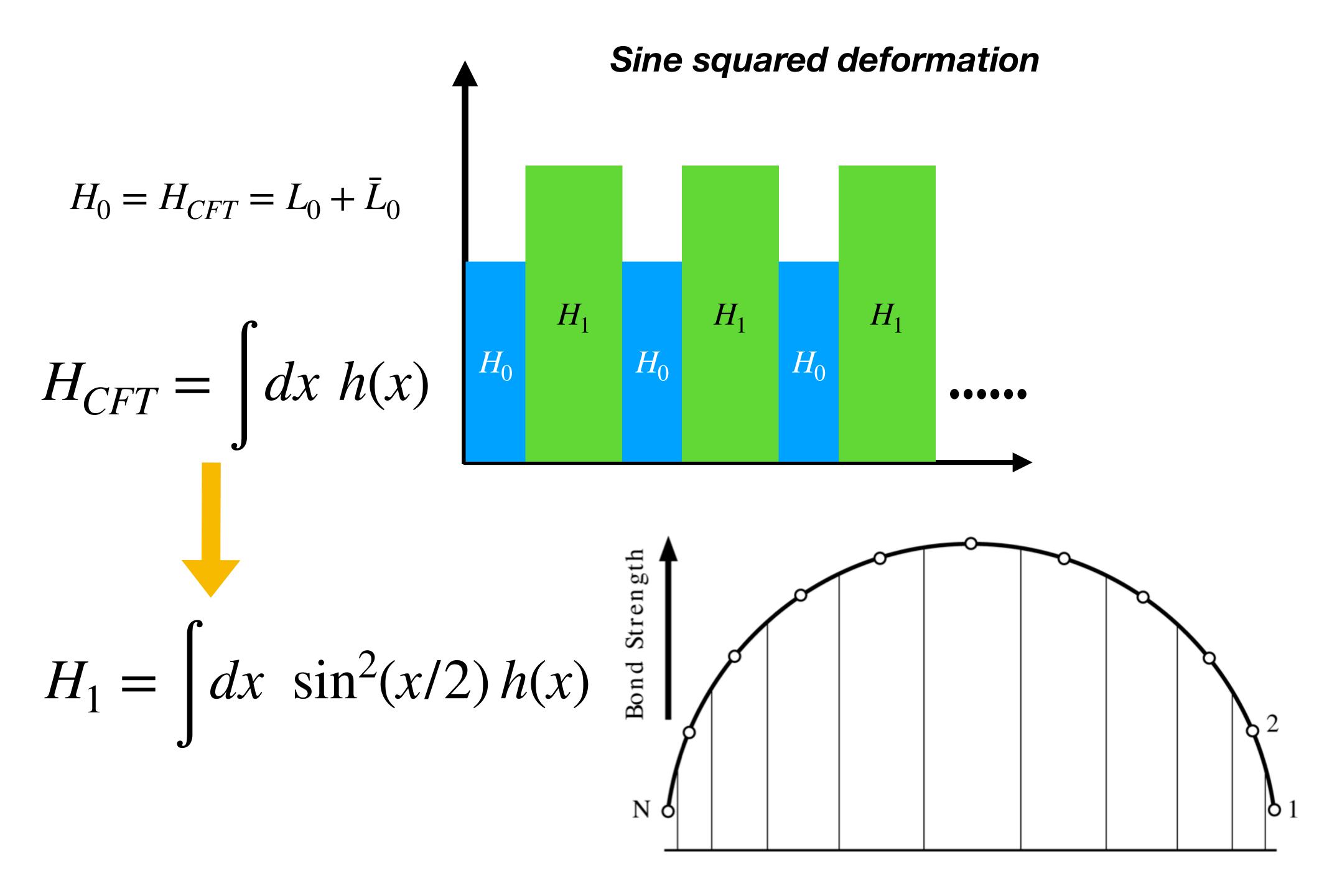
What is the time development of observables?

What is the nature of the final state? Is there an effective simple description?

$$\langle \psi(t) | \mathcal{O}_1 \dots \mathcal{O}_n | \psi(t) \rangle$$

$$\lim_{t \to \infty} |\psi(t)\rangle \langle \psi(t)| \sim e^{-\beta H_{\infty}}$$

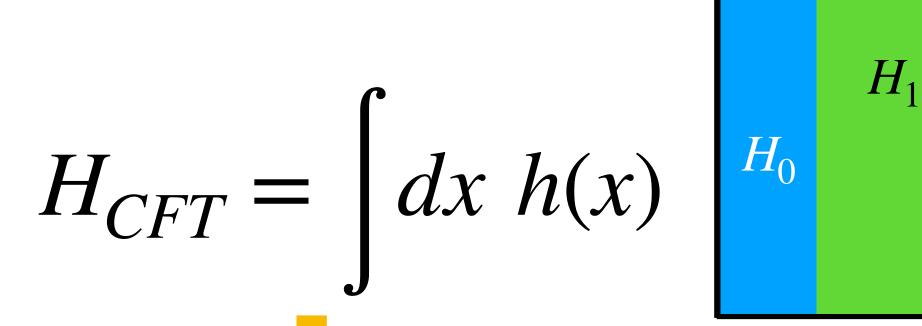


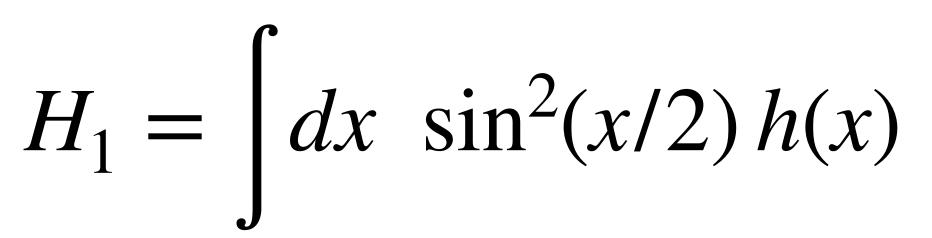


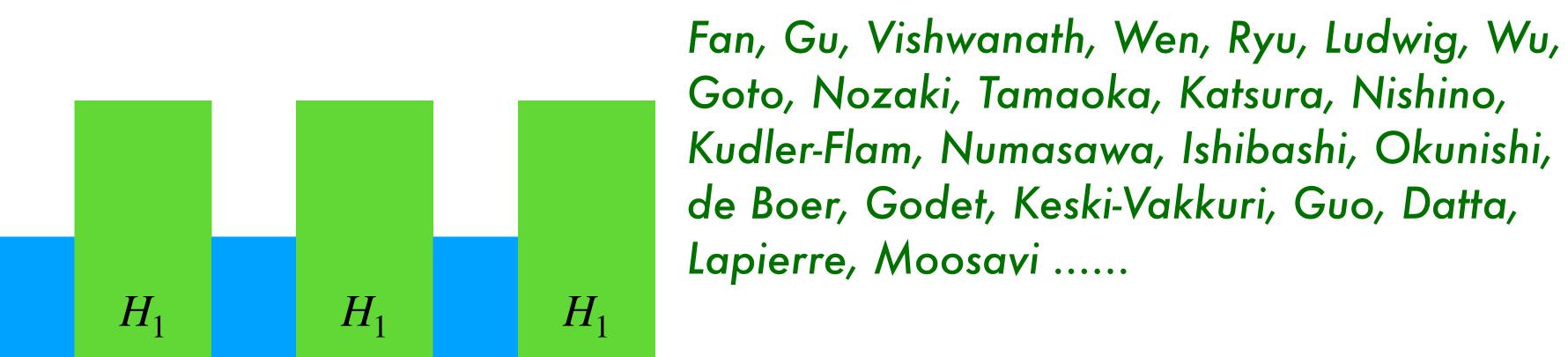
Sine squared deformation

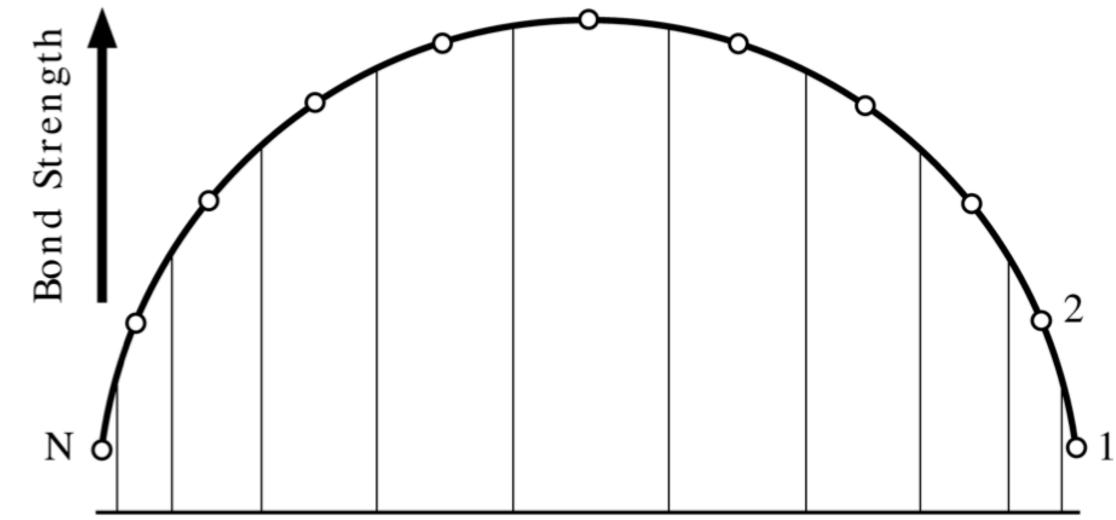
 H_0

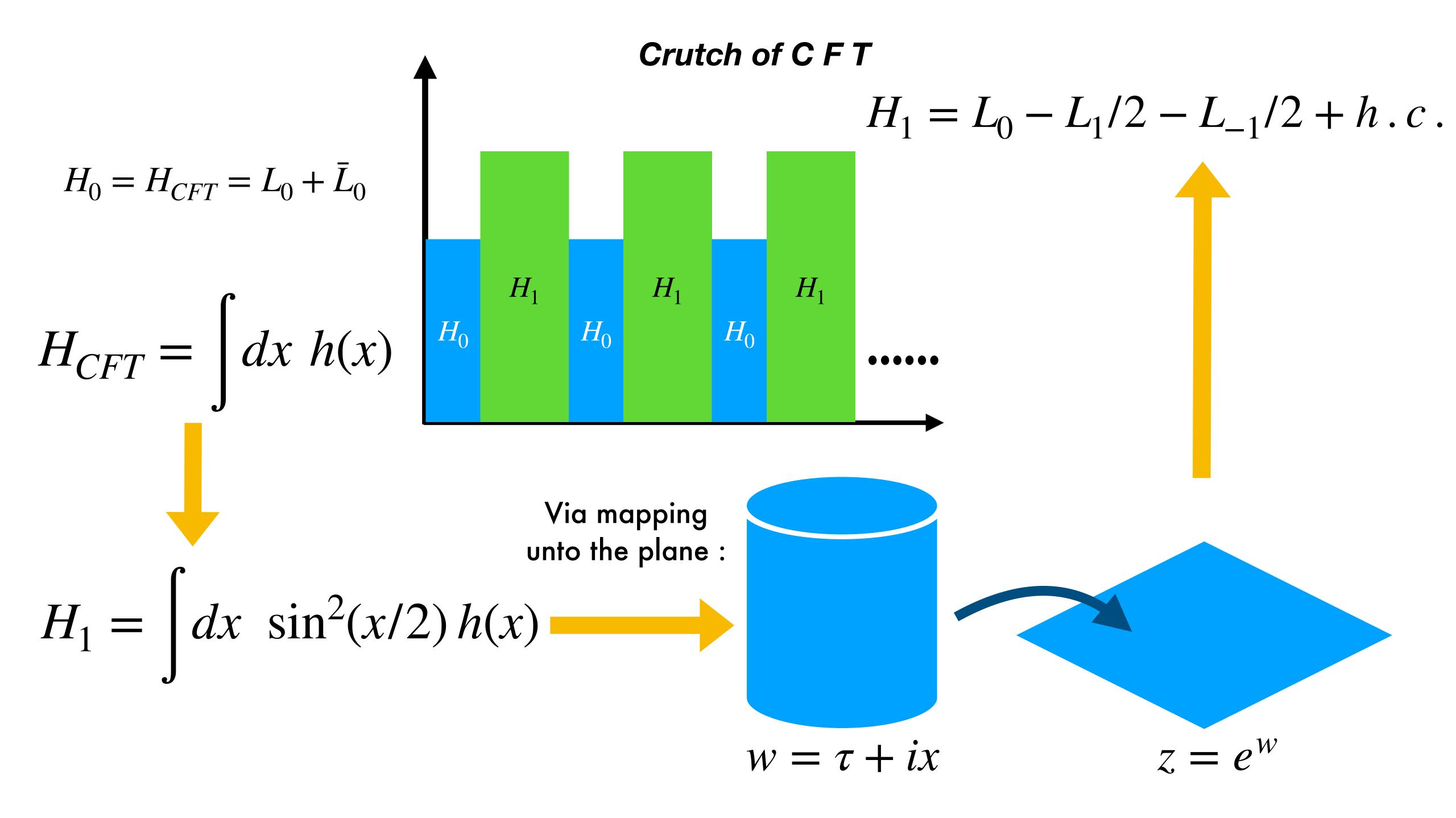
$$H_{CFT} = \int dx \ h(x)$$











Putting things together using algebra

$$H_0 = H_{CFT} = L_0 + \bar{L}_0$$
 $H_1 = L_0 - L_1/2 - L_{-1}/2 + h \cdot c$.
$$U = e^{-\tau_1 H_1} e^{-\tau_0 H_0} = e^{-\tau H}$$

Using the SL2 algebra we can BCH-ize: $[L_0,L_1]=-L_1,\ [L_0,L_{-1}]=L_{-1},\ [L_1,L_{-1}]=2L_0$

$$H = c_0 L_0 + c_1 L_1 + c_2 L_{-1} + h \cdot c \cdot$$

Möbius shows the way

$$U = e^{-\tau H}$$

$$H = c_0 L_0 + c_1 L_1 + c_2 L_{-1} + h \cdot c \cdot$$

Geometrically SL_2 generates Möbius \Longrightarrow we can find

$$z \to \tilde{z} = \frac{az + b}{cz + d}$$

such that $H = L_0^{(\tilde{z})}$.

And finally: a, b, c & d, are all functions of $T_0 \& T_1$.

Möbius shows the way

$$U = e^{-\tau H} \qquad H = c_0 L_0 + c_1 L_1 + c_2 L_{-1} + h \cdot c .$$

Geometrically
$$SL_2$$
 generates Möbius \Longrightarrow we can find $z \to \tilde{z} = \frac{az+b}{cz+d}$, such that $H = L_0^{(\tilde{z})}$.

And now the spacetime dependence of observables can be determined using behaviour under conformal transformations.

$$\langle \psi(t) \, | \, O_h(w, \bar{w}) \, | \, \psi(t) \rangle = \left(\frac{\partial z}{\partial w} \right)^h \left(\frac{\partial \tilde{z}}{\partial z} \right)^h \cdots \, \langle \psi(0) \, | \, O_h(\tilde{z}(w)) \, | \, \psi(0) \rangle$$

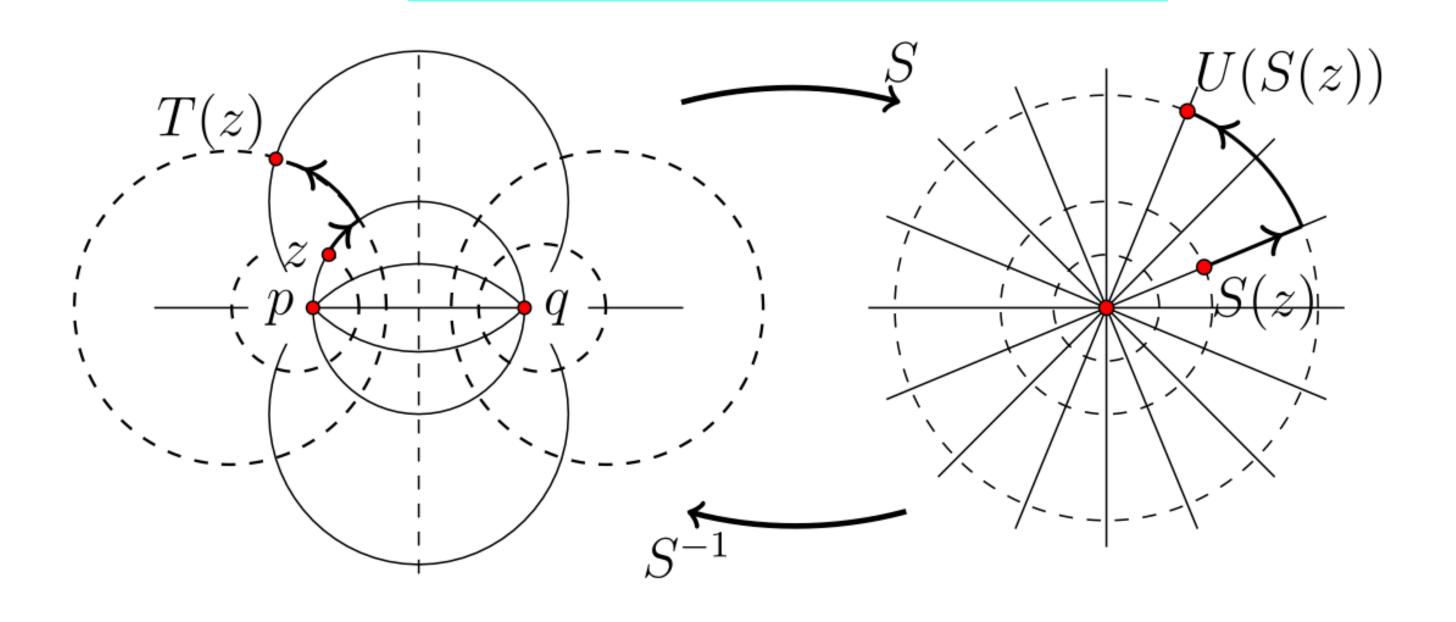
Iterating the map ...

For
$$n$$
 cycles we can find $z \to z_n = T\left(T\left(\cdots T\cdots T(z)\cdots\right)\right)$ n-times

$$\langle \psi(t_n) | O_h(w, \bar{w}) | \psi(t_n) \rangle = \left(\frac{\partial z}{\partial w} \right)^h \left(\frac{\partial z_n}{\partial z} \right)^h \cdots \langle \psi(0) | O_h(\tilde{z}(w)) | \psi(0) \rangle$$

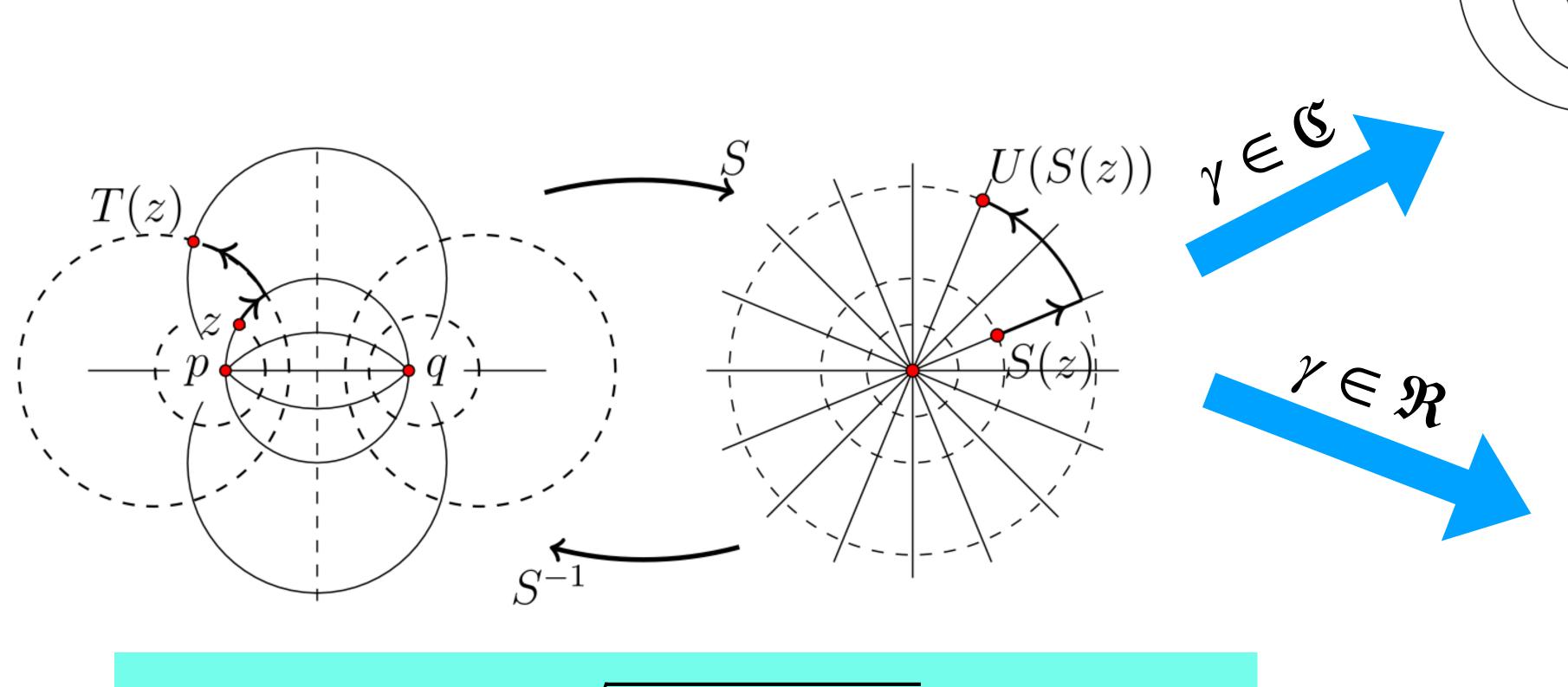
Möbius transformation

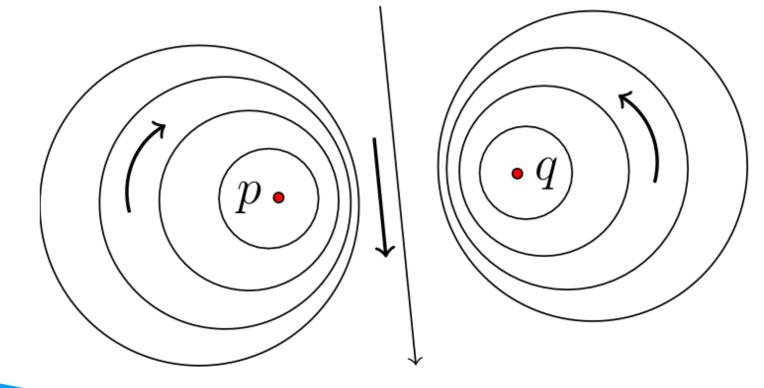
$$\frac{T(z) - \gamma_1}{T(z) - \gamma_2} = \eta \frac{z - \gamma_1}{z - \gamma_2}$$



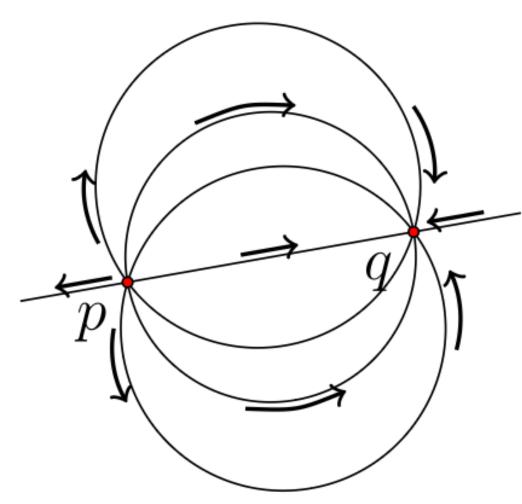
$$f(\gamma) = \gamma = \frac{a - d \pm \sqrt{(a - d)^2 + 4bc}}{2c}, \quad \eta = \frac{c\gamma_2 + d}{c\gamma_1 + d}$$

Möbius conjugacy classes (Euclidean)





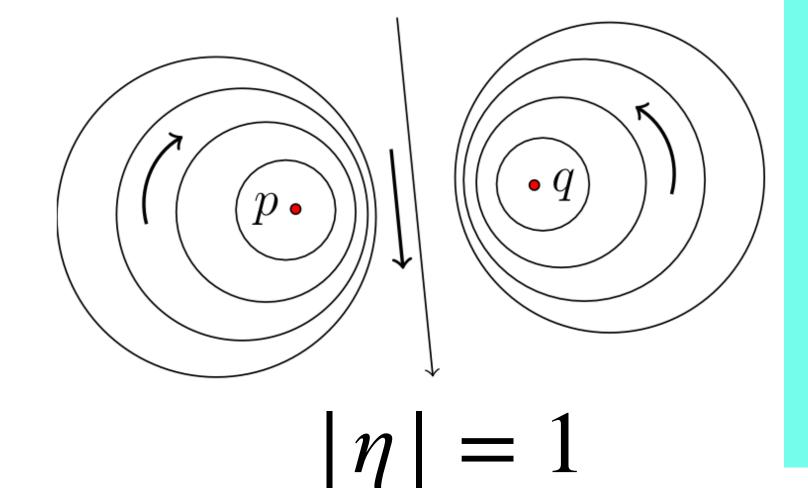
$$|\eta| = 1$$



$$\mathsf{Im}\left(\eta\right) = 0$$

$$f(\gamma) = \gamma = \frac{a - d \pm \sqrt{(a - d)^2 + 4bc}}{2c}, \ \eta = \frac{c\gamma_2 + d}{c\gamma_1 + d}$$

$\mathsf{Im}\left(\eta\right)=0$



Spacetime asymmetries

$$\langle \psi(t_n) | O_h(w, \bar{w}) | \psi(t_n) \rangle = \left(\frac{\partial z}{\partial w} \right)^h \left(\frac{\partial z_n}{\partial z} \right)^h \cdots \langle \psi(0) | O_h(\tilde{z}(w)) | \psi(0) \rangle$$

$$\frac{\partial z_n}{\partial z} \sim \eta^n$$
, when, $z \to \gamma_1$, and, $\frac{\partial z_n}{\partial z} \sim \eta^{-n}$, when, $z \to \gamma_2$

Hence in unitary theories where h > 0, factors grow / shrink when $\eta \in \Re$.

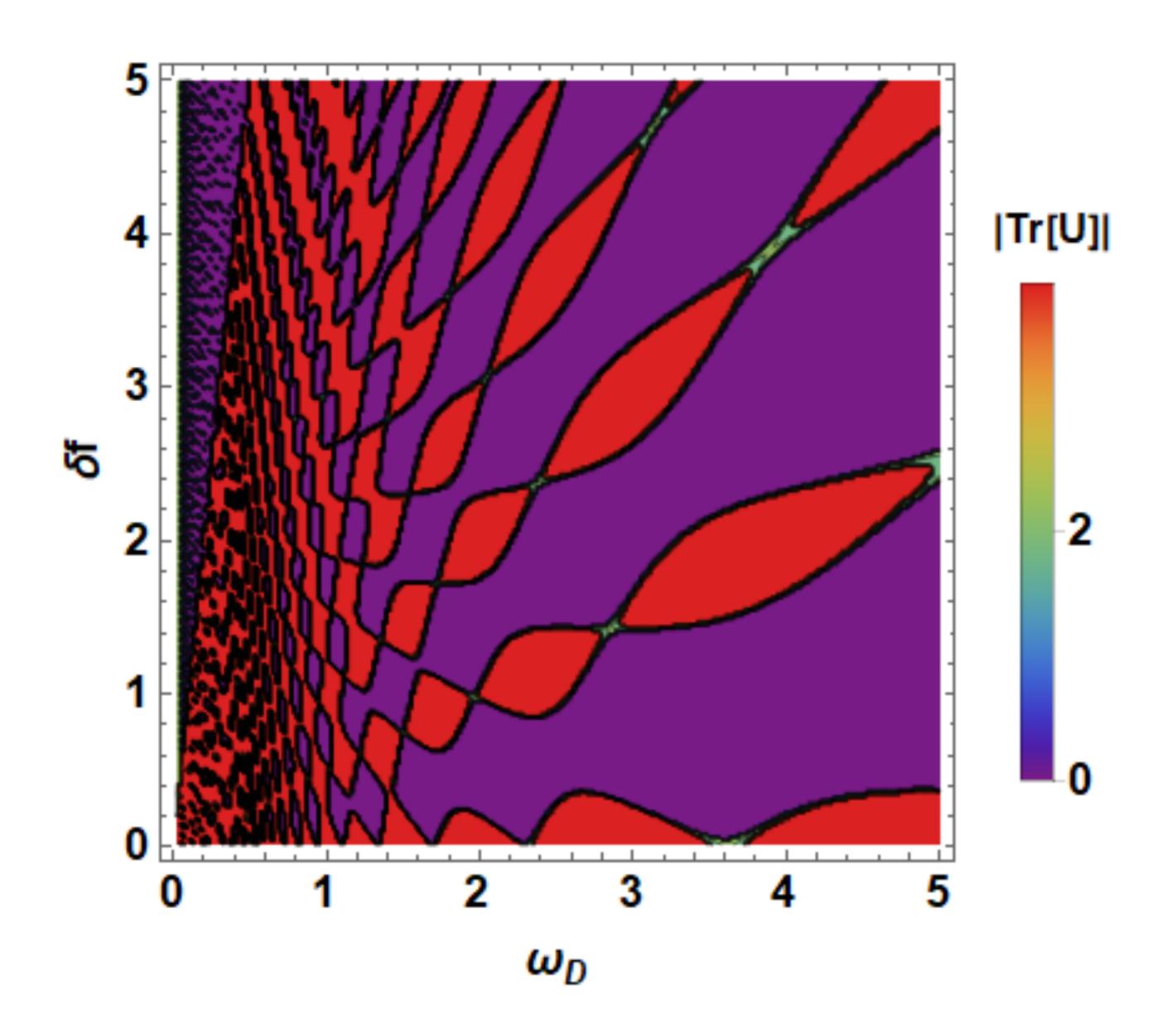
Hence observables show exponential growth / decay in time depending on their proximity to γ_1 / γ_2 .

Example on the lattice

$$H = \sum_{j} \left(\delta f + J_0 \cos \left(\omega_D t \right) \right) c_j^{\dagger} c_{j+1} + 2J_1 \cos \left(\frac{2\pi}{L} (j - \frac{1}{2}) \right) c_j^{\dagger} c_{j+1} + h \cdot c .$$

Look at the energy density : $\langle \psi(t) | \mathcal{E} | \psi(t) \rangle = \langle \psi(0) | \left(U^{\dagger} \right)^n T_{\tau\tau}(w) (U)^n | \psi(0) \rangle$ $|\psi(0)\rangle = |\frac{1}{2}, \frac{1}{2}\rangle = c_{k_r + \pi/L}^{\dagger} c_{-k_r - \pi/L}^{\dagger} |FS\rangle$

A phase diagram of heating and non-heating steady states.



Onto general dimensions

We only used SL(2,R) subgroup in a CFT, this luxury is also present in a d+1 dimensional CFT.

$$[D, K_{\mu}] = -iK_{\mu}, [D, P_{\mu}] = iP_{\mu}, [K_{\mu}, P_{\mu}] = 2iD$$

Now for a CFT on $S^d \times \mathbb{R}$, we consider the deformation caused by $H = 2iD + i\beta \left(K_{\mu} + P_{\mu}\right)$, and once again many things go through : including the Möbius.

Onto general dimensions

We only used SL(2,R) subgroup in a CFT, this luxury is also present in a d+1 dimensional CFT.

$$[D, K_{\mu}] = -iK_{\mu}, [D, P_{\mu}] = iP_{\mu}, [K_{\mu}, P_{\mu}] = 2iD$$

Now for a CFT on $S^d \times \mathbb{R}$, we consider the deformation caused by $H = 2iD + i\beta \left(K_{\mu} + P_{\mu}\right)$, and once again many things go through : including the Möbius.

In 4 dimensions, the representation turns out to be

Transformations

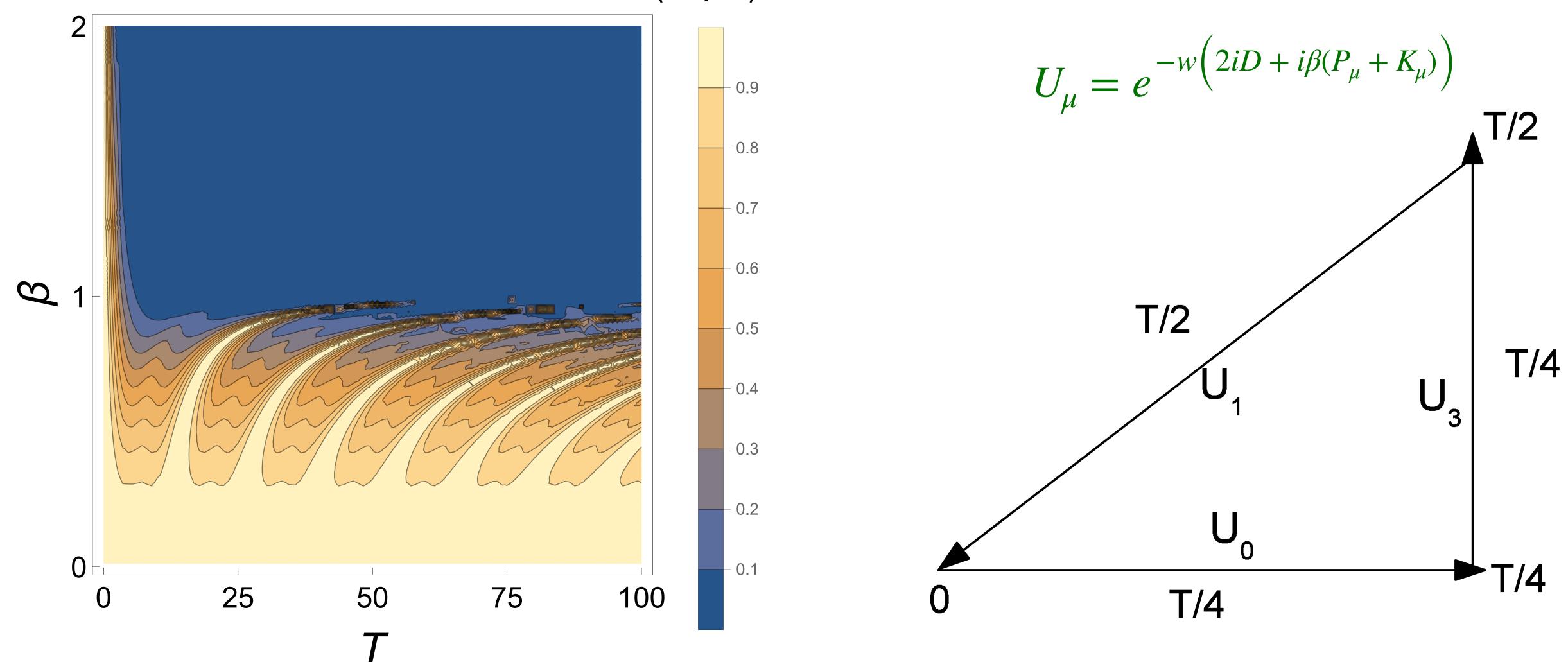
$$Q = \begin{pmatrix} x - iz & -i(\tau - iy) \\ -i(\tau + iy) & x + iz \end{pmatrix} \qquad U = e^{-w(2iD + i\beta(P_x + K_x))} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$Q \to Q' = (aQ + b\mathbb{I}) \cdot (cQ + d\mathbb{I})^{-1}$$

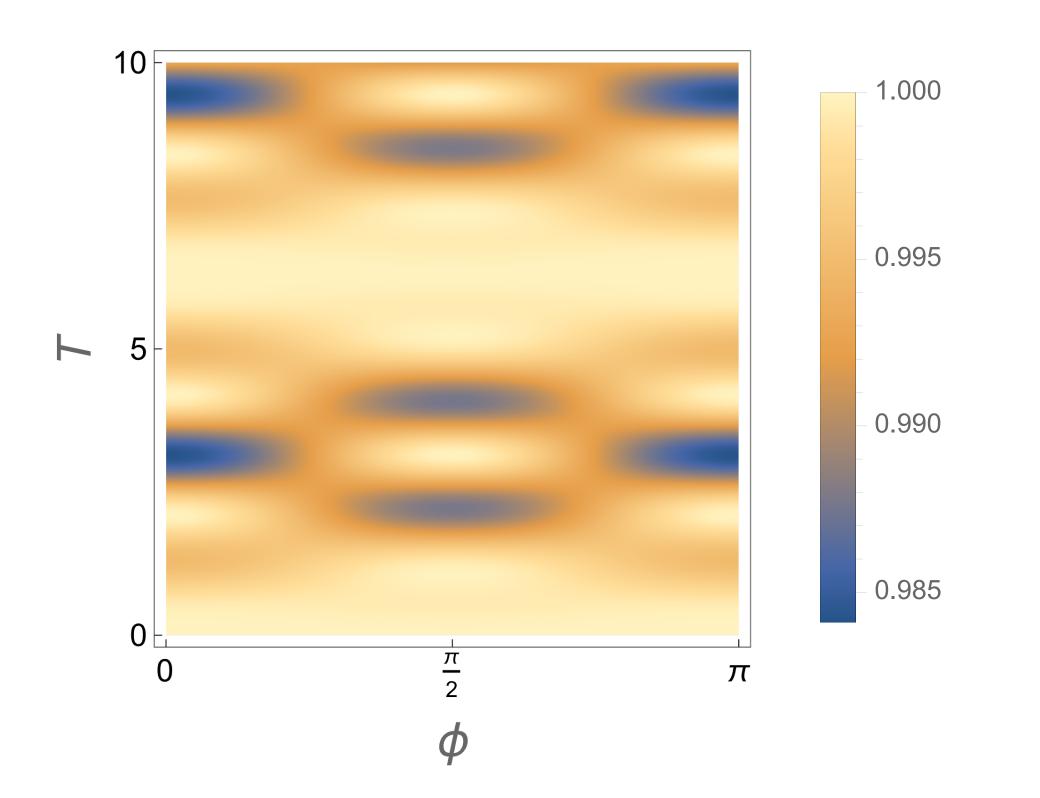
$$O(w)$$
 Weyl $e^{w\Delta}O(x^{\mu})$ U[a,b;c,d] $\left|\frac{\partial x'}{\partial x}\right|^{\Delta/(d+1)}O(x^{\mu\prime}(w))$

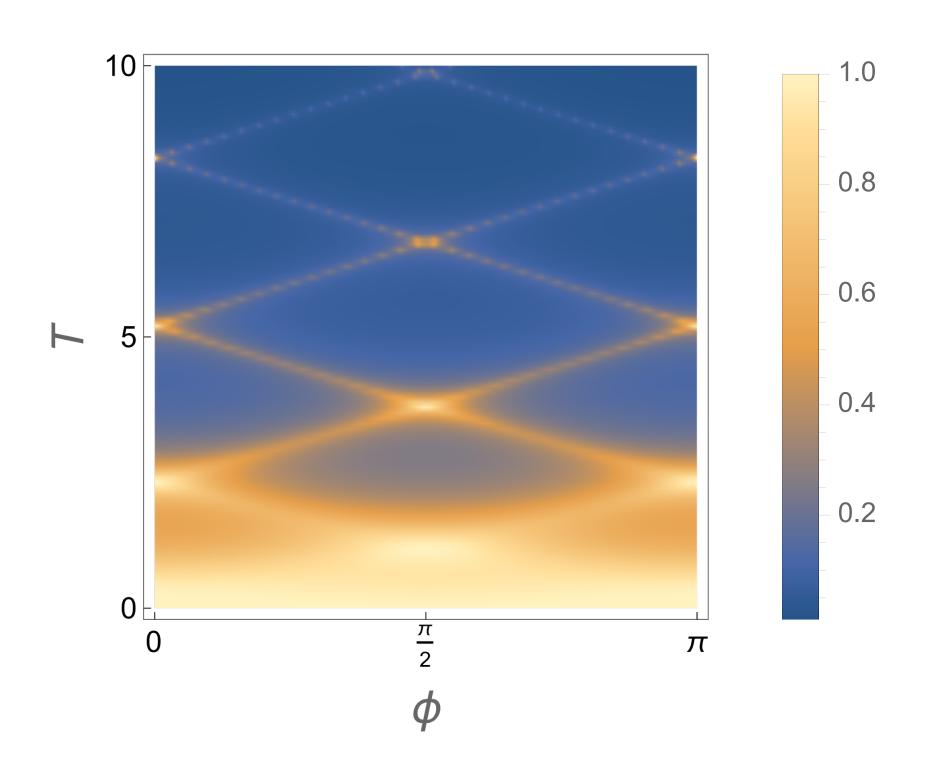
Fidelity

$$F(T) = \frac{1}{\langle \Delta | \Delta \rangle} \langle \Delta | U_1^{\dagger} \left(\frac{T}{2} \right) U_3 \left(\frac{T}{4} \right) U_0 \left(\frac{T}{4} \right) | \Delta \rangle$$

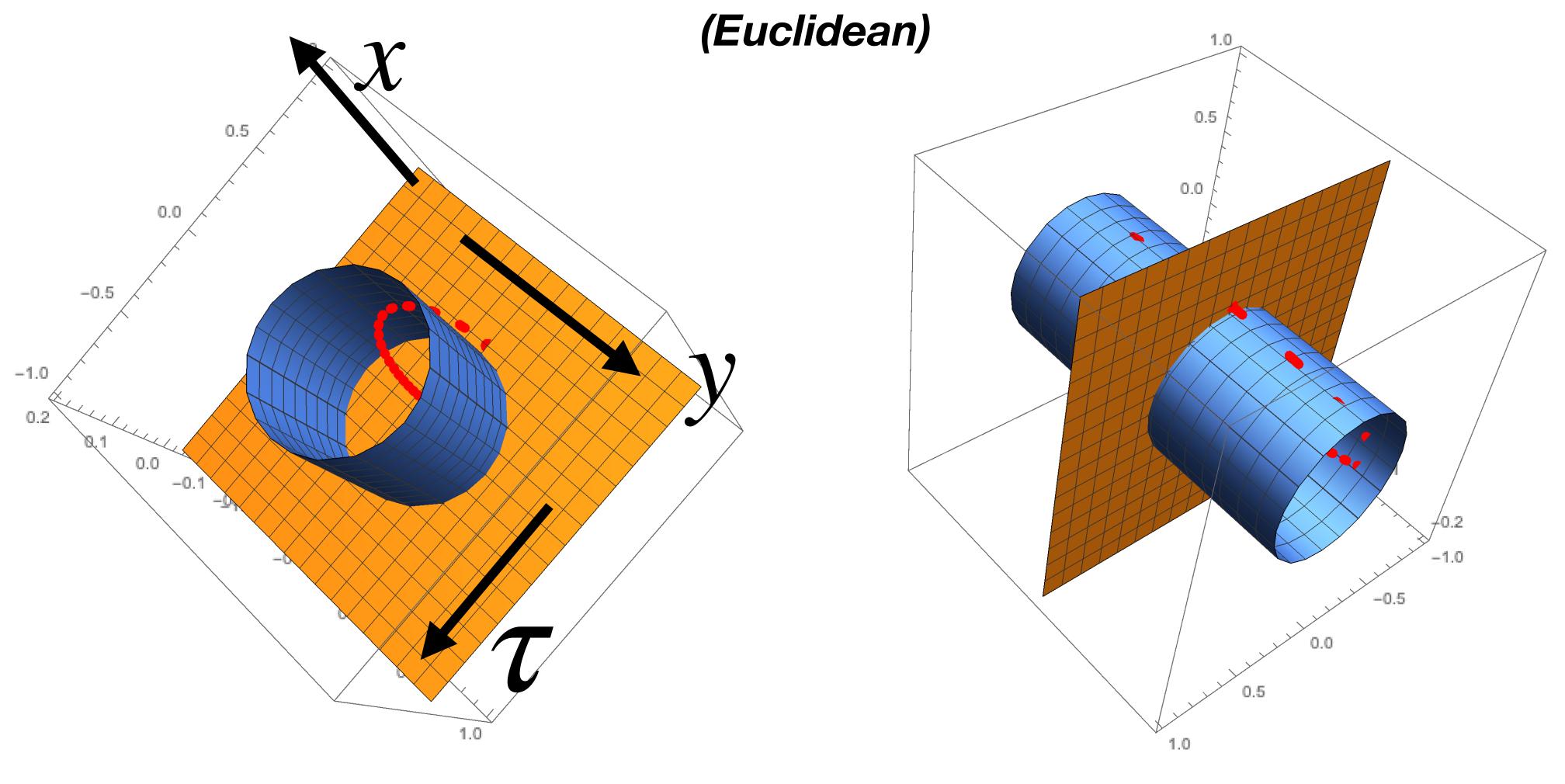


Oscillations & Localizations of $\mathscr E$

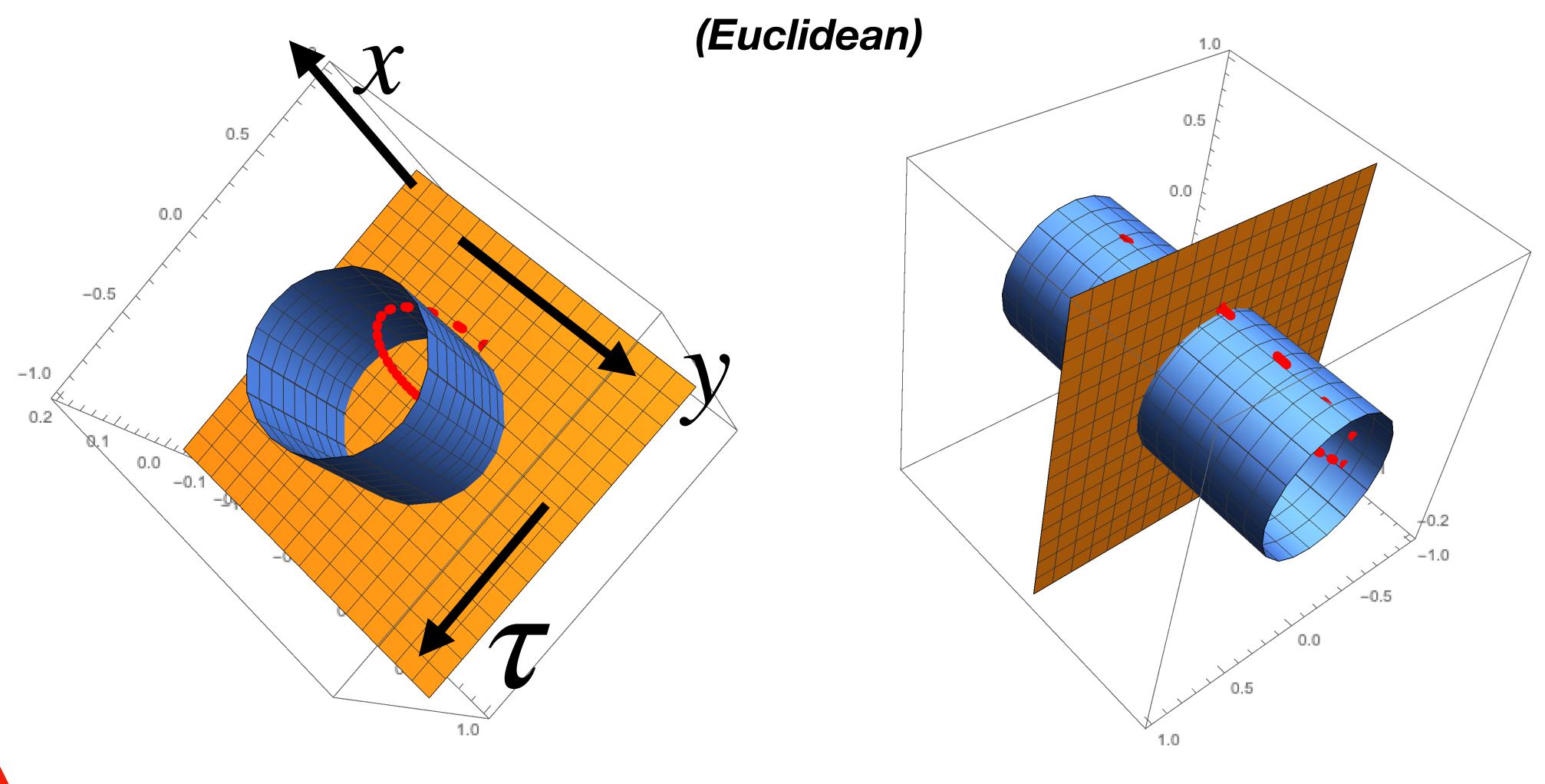




Movements around fixed surfaces



Movements around fixed surfaces



Disclaimer: Verifying the n-cycle classification via conjugacy classes in the real time case remains open as of now.

Other members of the band

Roopayan Ghosh, UC London

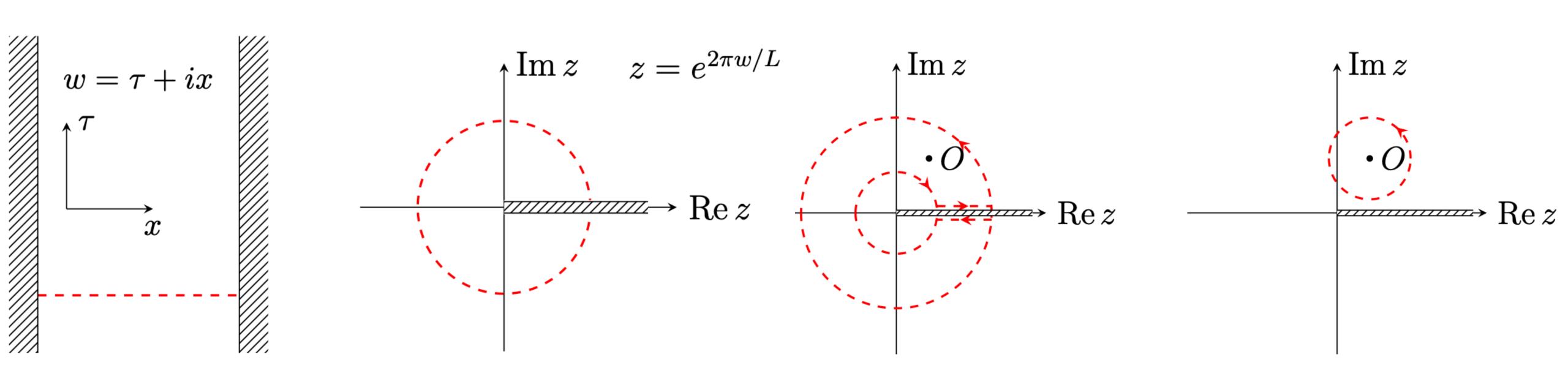
Arnab Kundu, SINP Kolkata

Krishnendu Sengupta, IACS Kolkata

Sumit R. Das, UKY Lexington

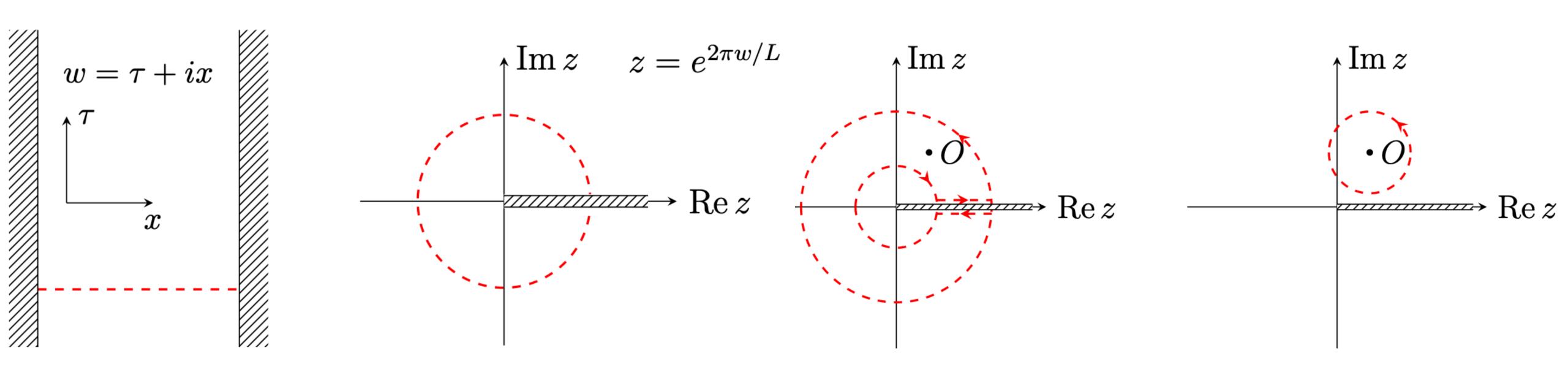
Open to Closed

In 2D one can also start from the CFT on a strip:



Open to Closed

In 2D one can also start from the CFT on a strip:



Note, that the Möbius deformation $H_1=c_1L_0+c_2L_q+c_3L_{-q}$ moves points (even on boundaries) into the

Open to Closed

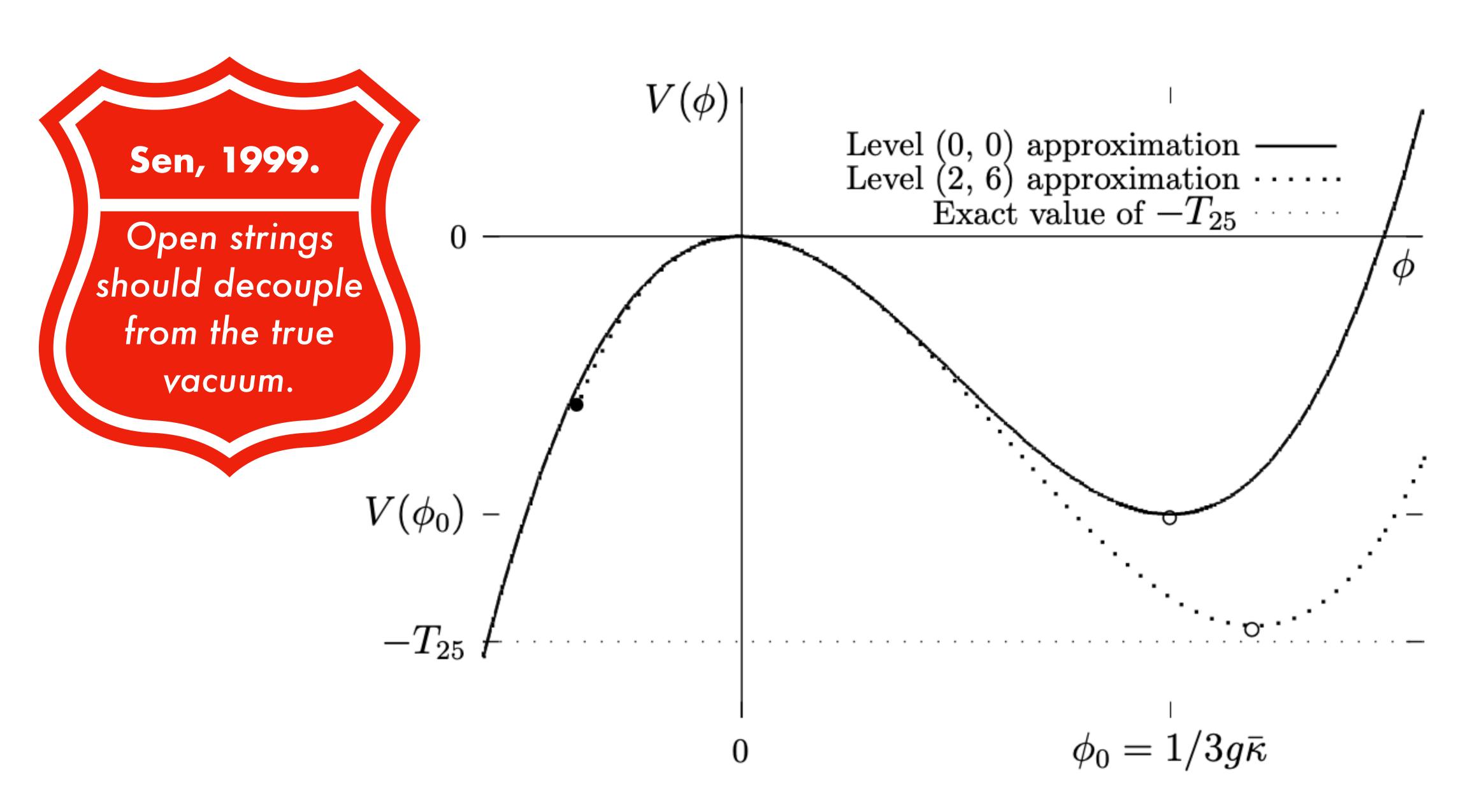
This in fact was the observation in the first paper to have studied the sinesquared deformation in the first place!

Gendiar, Krcmar, Nishino; 2010

$$H_1 = \sum_{\ell=1}^{N-1} \sin\frac{\ell\pi}{N} \left(\hat{h}_{\ell,\ell+1} + \frac{\hat{g}_\ell + \hat{g}_{\ell+1}}{2}\right)$$
Behaves as a periodic system, of size $2N$.
$$\frac{E_N^{(gs)}}{N} - \lim_{N \to \infty} \frac{E_N^{(gs)}}{N} = \begin{cases} 1/N & \textit{Open} \\ 1/N^2 & \textit{Closed} \end{cases}$$

A version of this observation has inspired a construction in the context of String Field Theory.

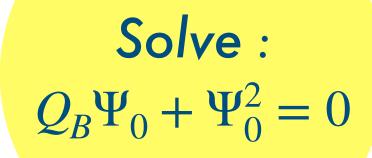
Tachyon condensation



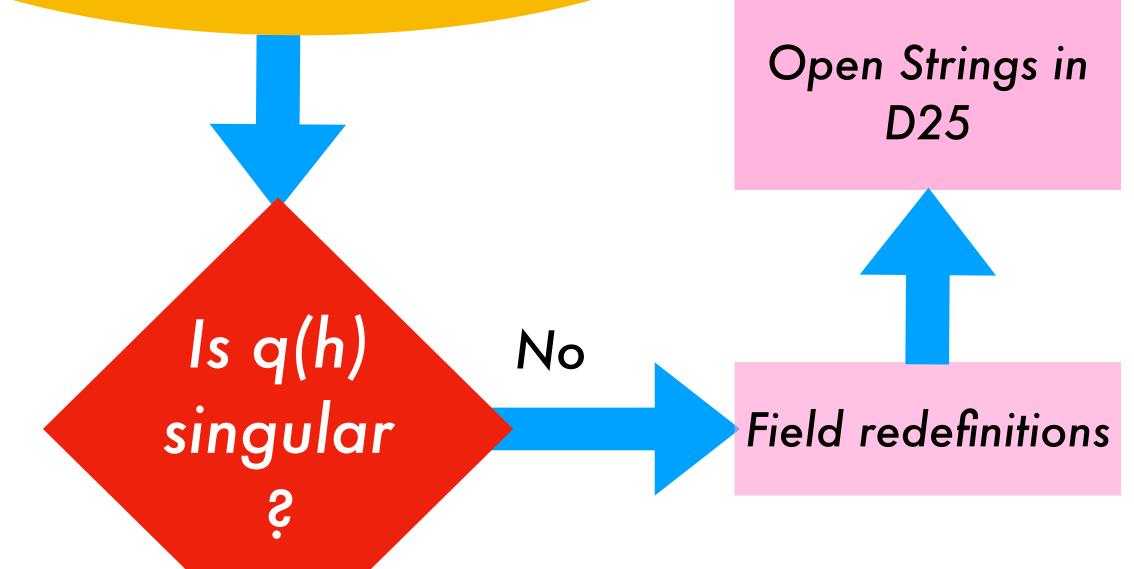
Witten's Open String Field Theory

$$-\int \left(\frac{1}{2}\Phi \star Q_B\Phi + \frac{1}{3}\Phi \star \Phi \star \Phi\right)$$

Non-trivial OSFT solution

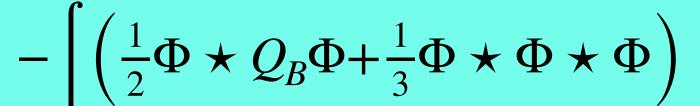


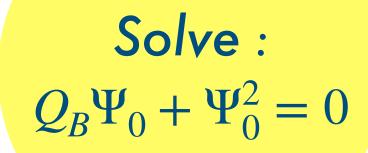
Expand:
$$-\left[\left(\frac{1}{2}\Phi \star e^{q(h)}Q_{B}e^{-q(h)}\Phi + \frac{1}{3}\Phi \star \Phi \star \Phi\right)\right]$$



Witten's Open String Field Theory

Non-trivial OSFT solution

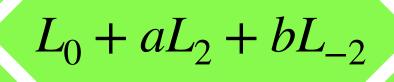




Expand:
$$-\left[\left(\frac{1}{2}\Phi \star e^{q(h)}Q_{B}e^{-q(h)}\Phi + \frac{1}{3}\Phi \star \Phi \star \Phi\right)\right]$$

No

Open Strings have decoupled.



Yes

Is q(h)

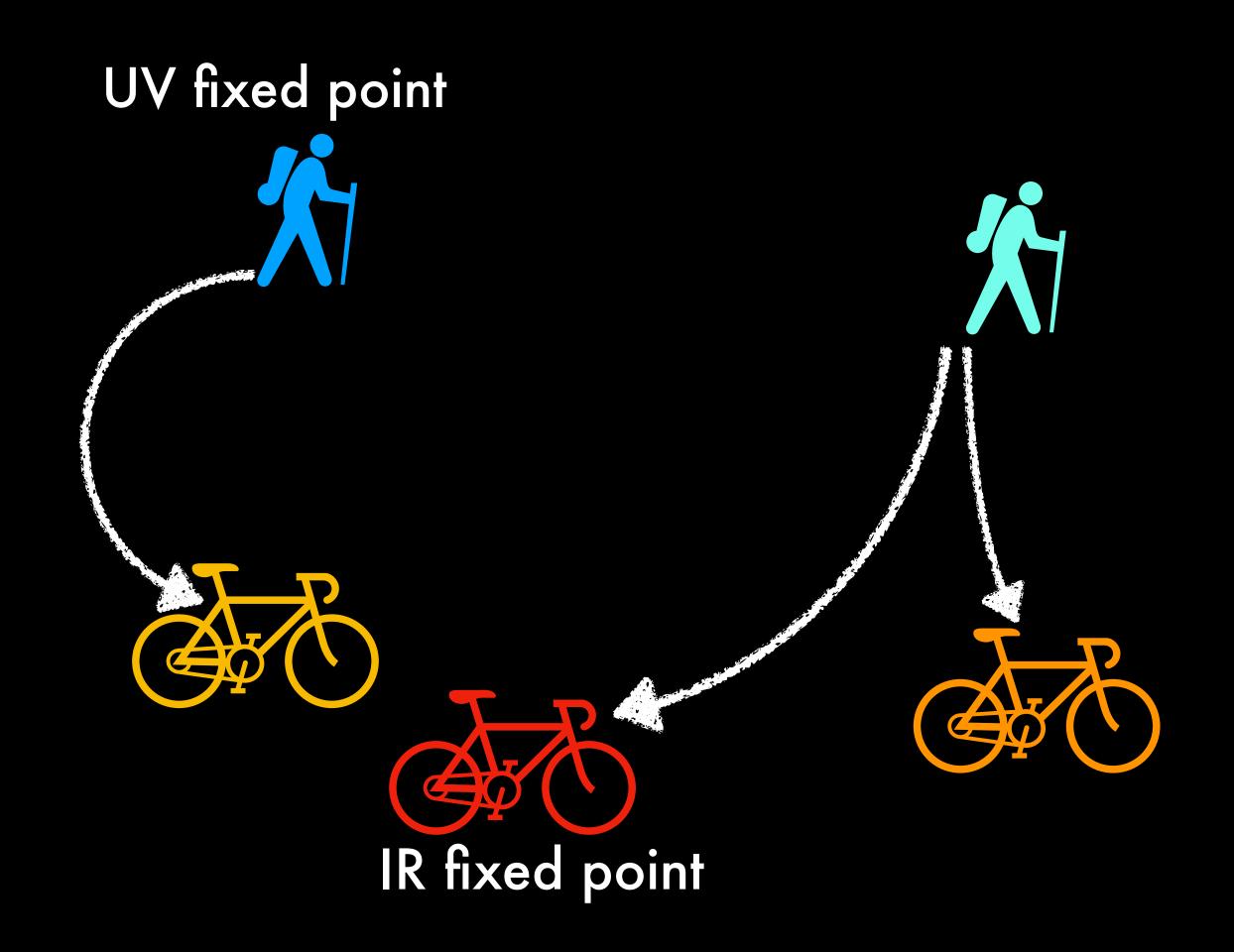
singular

?

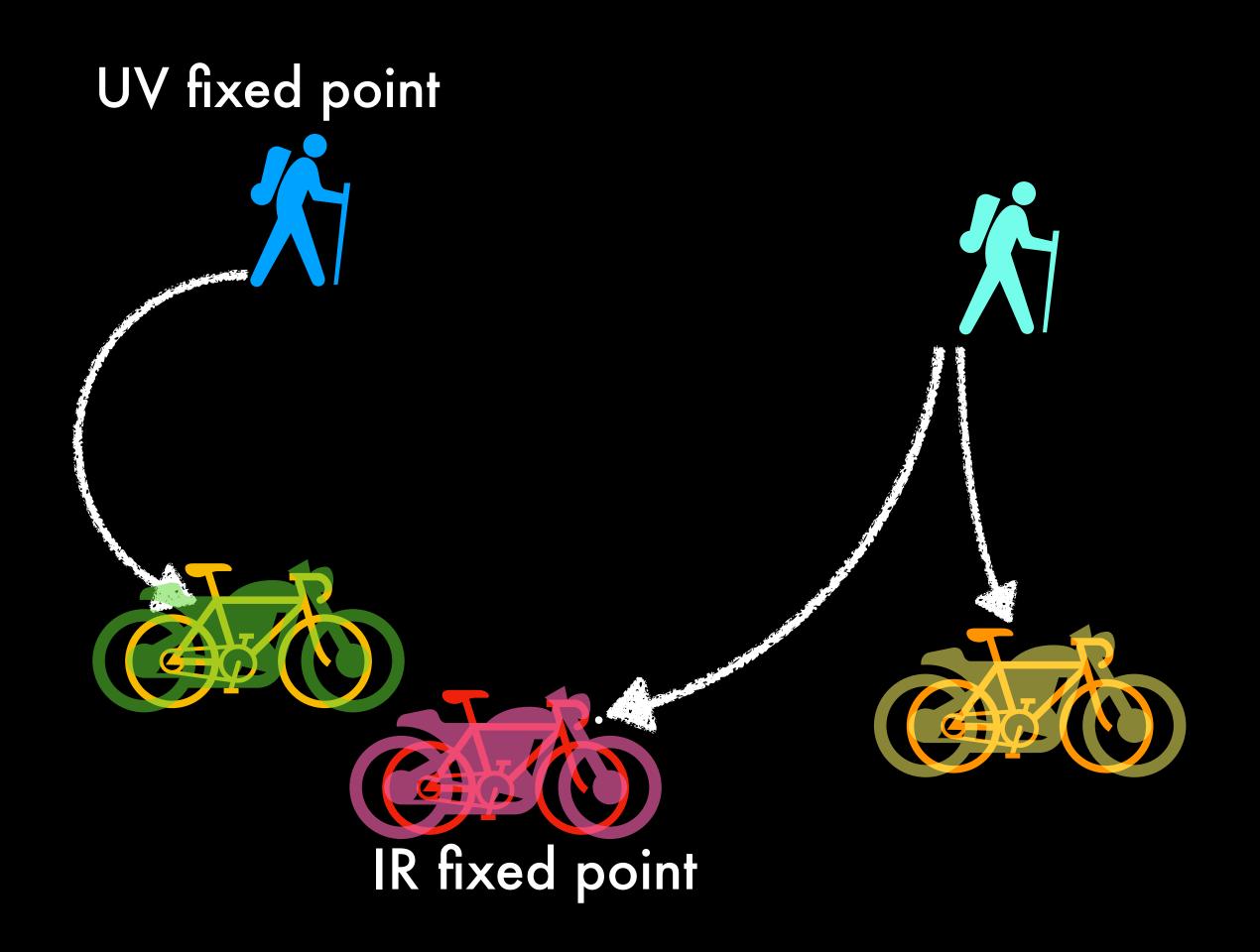
Open Strings in D25



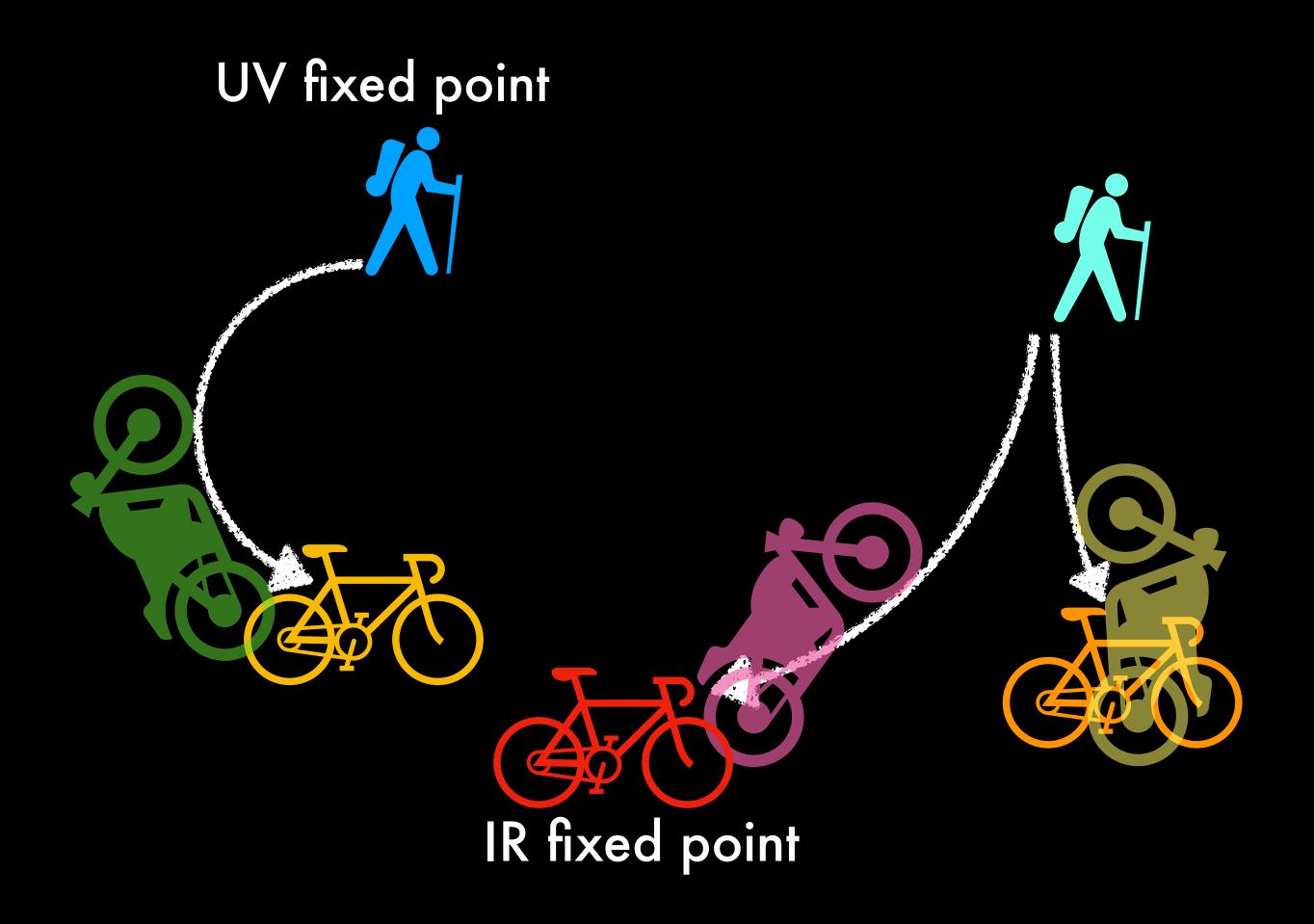
Field redefinitions



Space of Quantum Field Theories



Space of Quantum Field Theories



Thank you for your kind attention.