Troubles mounting for Multipolar Dark Matter

based on [arXív: 2312.05131] In collaboration with D. Bose, D. Chowdhury and T. S. Ray

> Poulami Mondal IIT Kanpur

In-House Symposium, IIT Kanpur February 2, 2024

Firm evidences over decades

• 20

10

30 -

R (×1000 LY)

50

40

Velocity dispersions

Multipolar dark matter

WIMP interact electromagnetically with ordinary matter, via an electric or magnetic dipole moment

Contains derivative coupling — Rich phenomenology

Pospelov and ter Veldhuris proposed another possible form of EM coupling to the DM

```
      Anapole moment
      Phys. Lett. B 480, 181 (2000)]

      \mathscr{L}_{anapole} = \frac{1}{\Lambda_2^2} \bar{\chi} \gamma_{\mu} \gamma_5 \chi \partial_{\nu} F^{\mu\nu}
      Magnetic dipole moment
      Toroidal dipole moment

      \mathcal{L}_{anapole} = \frac{1}{\Lambda_2^2} \bar{\chi} \gamma_{\mu} \gamma_5 \chi \partial_{\nu} F^{\mu\nu}
      Em field strength tensor
      Current
      Toroidal dipole moment

      \mathcal{E}_{FT} cut-off
      Majorana DM
      tensor
      Current
      Current
```

[M. Pospelov and T. Ter Veldhuris,

Relic density

Early universe

 $\mathbf{DM} \ \mathbf{DM} \iff \mathbf{SM} \ \mathbf{SM}$

(a)

 χ

universe cools down

Interactions stop

X

(b)

DM "freezes-out"

Thermal equilibrium

Boltzmann equation :

 $\frac{dY_{\chi}}{dz} = -\frac{zs\langle\sigma_{\rm ann}v\rangle}{H(m_{\chi})} \left(Y_{\chi}^2 - Y_{\rm eq}^2\right)$

Kinematically allowed but forbidden at tree level

 $\Omega h^2 \propto rac{1}{\langle \sigma v
angle}$

 $\left(\frac{d\sigma_{\chi\bar{\chi}\to f\bar{f}}}{dt}\right)_{\rm AP} = \frac{1}{16\pi s \left(s - 4m_{\chi}^2\right)} \times \frac{8\pi\alpha_e}{\Lambda_1^4} \left[2m_f^4 + 2m_{\chi}^4\right]$ $+s^{2}+2st+2t^{2}-4m_{f}^{2}(m_{\chi}^{2}+t) 4m_{\chi}^2(s+t)$],

Direct detection

DM particles scatter off the nuclei and recoil rates are measured in the detectors

Escape velocity Exposure time of the DM density Velocity distribution profile detector $\frac{dR}{dE_{\rm nr}} = \frac{\eta_{\rm exp}}{m_k} \left(\frac{\rho_0}{m_\chi}\right) \int_{u_{\rm min}}^{u_{\rm esc}} du_\chi \, u_\chi \, f(u_\chi) \, \frac{d\sigma}{dE_{\rm nr}},$ Differential recoil
powmass Differential scattering cross section Target nucleus mass Recoil $u_{\min} = \sqrt{\frac{E_{\mathrm{nr}} m_T}{2\beta_{\mathrm{NL}}^2}}, \, \text{energy}$ Minimum velocity of DM to produce a recoil event Reduced mass

Heating signature inside neutron star Neutron stars are extremely dense with $v_{esc} \approx 0.6c$ DM annihilate to SM **Annihilated products get trapped** $T \propto (f \times \rho_{\chi})$ DM density $f \propto \sigma$ stellar heating [Acevedo, Bramante, Fraction of captured DM Leane, Raj Scattering cross section JCAP03(2020)038] Scattering with both proton (1%) and neutron Contributions are of the same order **Tree level** coupling **Loop level** coupling Can be explored by infrared tellscopes **Old NS can cool down to \mathcal{O}(2000K)** like JWST. TMT. E-ELT

Neutrinos from Sun

Neutrinos from Sun

 $\times \int_0^{u_{\rm esc}} du_{\chi} \frac{f_{v_{\odot}}(u_{\chi})}{u_{\chi}} w(r) \Omega_k^-(w),$

 $C_{\odot} = \sum_{h} \left(\frac{\rho_0}{m_{\chi}}\right) \int_0^{R_{\odot}} 4\pi r^2 \, dr$ Capture rate

Velocity of DM particle at a distance r from centre of sun

 $w(r) = \sqrt{u_{\chi}^2 + v_{\rm esc}^2(r)},$

Velocity distribution of DM in the rest frame of Sun Capture probability of DM with velocity $\omega(r)$ that interacts with nucleus

Differential \mathcal{V} flux reaching earth $\propto \frac{1}{D^2}$, Γ_{ann} , neutrino spectra per DM annihilation

Obtained using

 $\chi aro \nu$ nuSQuIDS

Distance between ' Earth and Sun

Annihilation rate $\propto C_{\odot}$ (At equilibrium)

Anapole Dark Matter

Allowed parameter space without the projected Limits from NS heating

Effect of gravitational boosting in DM capture

- Monotonically increasing
 Cross-section with Vesc
- Enhancement is maximum
 In Anapole
- Large V_{esc} makes NS
 efficient in DM capture

Derivative coupling, by enhancing the scattering rate, increase the DM capture rate in celestial bodies

Updated direct detection and capture disfavour the viable parameter space in EDM and MDM

A narrow window survives in Anapole that lies within the reach of JWST

Backup slides

$$\frac{dN}{dVdt} = \sigma v_{mol}n_1n_2 \qquad \text{Lorentz invariant}$$

$$MB \text{ statistics}$$

$$f(E) \propto \exp(-E/T) \qquad \left\langle \sigma v_{M \otimes l} \right\rangle = \frac{\int \sigma v_{M \otimes l} e^{-E_1/T} e^{-E_2/T} d^3p_1 d^3p_2}{\int e^{-E_1/T} e^{-E_2/T} d^3p_1 d^3p_2},$$

$$\left\langle \sigma v_{M \otimes l} \right\rangle = \frac{1}{8m^4 T K_2^2 (m/T)} \int_{4m^2}^{\infty} \sigma(s - 4m^2) \sqrt{s} K_1 (\sqrt{s}/T) ds.$$

$$v_{M \otimes l} = \left[|v_1 - v_2|^2 - |v_1 \times v_2|^2 \right]^{1/2}$$

$$v_1 = p_1/E_1 \qquad v_2 = p_2/E_2$$

$$Obtained for MB \text{ statistics, applicable for all statistics for $T \leq 3m$$$

For larger nuclei scattering matrix element : $\mathcal{M}(q^2) = T(0)F(q^2)$.

Coupling const for p and n Spin for p and n

$$\overline{|\mathcal{M}(q^2)|^2} = \frac{J+1}{J} |(G_a^p + G_a^n) \langle S_p + S_n \rangle F_{\text{spin}}^0(q^2)$$

$$+ (G_a^p - G_a^n) \langle S_p - S_n \rangle F_{\rm spin}^1(q^2) \big|^2.$$

Form factor, generally Dífferent for spín-dep And spín-índep Interactions

$$\overline{|\mathcal{M}(q^2)|^2} = |ZG_s^p + NG_s^n|^2 |F_{\text{mass}}(q^2)|^2,$$

spin-dep

spin-indep

For spín 1/2 Majorana fermions vector and tensor currents identically vanish.

Pieces that survive in the non-relativistic limit: $q^2 \ll m^2$

Time like component of scalar current gives spin- indep term χ[†]χ
 space like axial current gives spin dependent term χ[†]σχ

WIMP with spin s can interact with external E and B field

Magnetic dipole moment electric dipole moment

C

S

S

$$H = -\mu \mathbf{B} \cdot \frac{\mathbf{J}}{S} - d\mathbf{E} \cdot \frac{\mathbf{J}}{S} - a\mathbf{j} \cdot \frac{\mathbf{J}}{S}$$
$$\frac{1}{4S(2S-1)} [S_i S_j + S_j S_i - \frac{2}{3} \delta_{ij} S(S+1)] \left(Q \frac{\partial}{\partial x_i} E_j + M \frac{\partial}{\partial x_i} B_j \right) + \dots$$

electric quadruple moment Magnetic quadruple moment

Anapole moment is the form factor that describes the contact interaction with the external current density $\longrightarrow j$

If spin of WIMP is zero, these moments do not exist and the interaction with the EM field is given by the charge radius r_D of the WIMP and the polarizabilities.

$$H = -\frac{1}{6}er_D^2\frac{\partial}{\partial x_i}E_i - \frac{1}{2}\chi_E E^2 - \frac{1}{2}\chi_B B^2 - \chi_{EB}\mathbf{E}\cdot\mathbf{B} + \dots$$

Scattering cross-sections for NS heating calculation for Anapole

 $\left(\frac{d\sigma_{\chi p \to \chi p}}{d\cos\theta}\right)_{\rm AP} = \frac{1}{32\pi s} \times \frac{8\pi\alpha_e}{\Lambda_1^4} \left[2\left(m_p^4 + m_\chi^4\right) + 2s^2 + 2st + t^2 - 4m_p^2\left(m_\chi^2 + s\right) - 4m_\chi^2\left(s + t\right)\right]$ $\left(\frac{d\sigma_{\chi n \to \chi n}}{d\cos\theta}\right)_{\Lambda D} = \frac{1}{32\pi s} \times \frac{4\mu_n^2 t}{\Lambda_1^4} \left[m_n^2 \left(2s + 2t - 6m_\chi^2\right)\right]$ $-m_n^4 - \left(m_\chi^2 - s\right)^2 - st \Big]$

Majorana fermion ---> CPT self-conjugate Cannot have EDM of MDM, since the Interactions are CPT-odd ADM is related to toroidal dipole moment corresponds to solenoid with joined end producing an azimuthal magnetic field $\Gamma_{\mu}(q) = F(q^2)\gamma_{\mu} + M(q^2)\sigma_{\mu\nu}q^{\nu} + E(q^2)\sigma_{\mu\nu}q^{\nu}\gamma_5 + A(q^2)[q^2\gamma_{\mu} - \hat{q}q_{\mu}]\gamma_5$ Anapole (does not correspond Normal Anomalous Electric to a certain multipole EM vertex Magnetic Magnetic distribution) Lorentz $H_{\text{int}} \propto -\mu(\boldsymbol{\sigma} \cdot \mathbf{B}) - d(\boldsymbol{\sigma} \cdot \mathbf{E}) - a(\boldsymbol{\sigma} \cdot \text{curl } \mathbf{B})$ structure Non-rel $A(q^2) = T(q^2) + \frac{m_i^2 - m_f^2}{q^2 - \Delta m^2} [D(q^2) - D(\Delta m^2)].$ Limit Anapole form Toroidal dipole static limit $(m_i = m_f)$ factor Form factor