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Cold Inflation

In 1981, Alan Guth proposed a solution to the flatness
problem and the horizon problem1. This solution, known as
inflation, describes a period of rapid and accelerated
expansion in the early universe, i.e. the scale factor of the
universe was accelerating

INFLATION =⇒ ä > 0.

The acceleration equation gives

ä

a
= −4πG

3
(ρ+ 3p) ,

so, taking the convention of positive energy density, for ä to
be greater than zero we need p < −ρ

3 .
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The condition for cold inflation can be obtained by using a
scalar field, also known as the inflaton ϕ.

The action for cold inflation is

S =

∫
d4x

√
−gL =

∫
d4x

√
−g

[
−1

2
∂µϕ∂

µϕ− V (ϕ)

]
.

Euler-Lagrange equation gives

ϕ̈+ 3Hϕ̇− ∇2ϕ

a2
+ V,ϕ = 0,

where V,ϕ ≡ dV
dϕ , and 3Hϕ̇ acts as a friction term.

From the energy-momentum tensor we get

ρϕ = T 0
0 =

ϕ̇2

2
+ V (ϕ) +

(∇ϕ)2

2a2

pϕ =
T i
i

3
=

ϕ̇2

2
− V (ϕ)− (∇ϕ)2

6a2
.

Hence the condition for inflation is V (ϕ) ≫ ϕ̇2 ≫ (∇ϕ)2

2a2
.
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So the equation of motion becomes

ϕ̈+ 3Hϕ̇+ V,ϕ = 0 .

The FRLW scale factor a(t) evolves according to Friedmann
equations

3M2
PlH

2 =
ϕ̇2

2
+ V (ϕ)

−2M2
PlḢ = ϕ̇2,

where MPl is the reduced Plank mass.
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Slow Roll Approximation in CI

In Slow Roll with the requirement |V | ≫ ϕ̇2, we also need
|ϕ̈| ≪ H|ϕ̇|.
The equations of motion are

ϕ̇ ≃ −
V,ϕ

3H

and first Friedmann equations

3M2
PlH

2 ≃ V .

We define the parameters

ϵ1 ≡ − Ḣ

H2

ϵ2 ≡
ϵ̇

Hϵ
=

Ḧ

HḢ
+ 2ϵ1.

For inflation we need ϵ1 < 1, but for SR we need ϵ1 ≪ 1, as
well as ϵ2 ≪ 1.
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Ultra Slow Roll in CI

Ultra Slow Roll is described by the situation where the
inflaton field has to traverse an extremely flat part of the
scalar field potential2. In that case, even though we still have
|V | ≫ ϕ̇2 the slope of the potential becomes negligible.

The equation of motion becomes

ϕ̈+ 3Hϕ̇ ≃ 0

We still need ϵ ≪ 1 for inflation to continue, but now we have
|ϵ2| ∼ −6 + ϵ1.

Since we still have ϵ ≪ 1, and the potential term dominates
over the kinetic term, the inflation continues. However, since
|ϵ2| > 1, a pronounced departure from SR becomes evident,
marking the onset of a new phase in the evolution of scalar
field dynamics known as Ultra Slow Roll.

2physletb.2017.10.066
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Warm Inflation(WI)

In 1995 Arjun Barera and Li-Zhi-Fang came up with a new
model of inflation3 where the inflaton field is no longer
assumed to be isolated, during the inflation period, rather it’s
interacting with thermalized radiation causing dissipation of
energy out of the inflation system, maintaining a
non-negligible radiation energy density ρr . The equations
governing the dynamics of the inflaton field ϕ, and the
radiation bath, ρr , in WI can be written as

ϕ̈+ 3Hϕ̇+ V,ϕ = −Γϕ̇

ρ̇r + 4Hρr = Γϕ̇2,

where Γ is the dissipative term, which can depend on the
amplitude of the inflaton field, ϕ, as well as the temperature
of the radiation bath, T .

3PhysRevLett.74.1912
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It is assumed that the radiation bath, resulting from the
dissipation of the inflaton field, maintains near thermal
equilibrium throughout the WI phase, and thus a temperature
T can be defined.

The dissipative coefficient Γ has the general form

Γ(ϕ,T ) = CΓT
pϕcM(1−p−c).

where CΓ is a dimensionless constant, and M is some
appropriate mass scale, so that the dimensionality of the
dissipative coefficient is preserved, [Γ] = [mass].

We define the dimensionless quantity Q as

Q ≡ Γ

3H
.

If Q > 1, we call it strong dissipation, and if Q < 1 we call it
weak dissipation.
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In the SR regime of WI we again assume |ϕ̈| to be negligible
with respect to all the other terms, and the equation of
motion for the field becomes

3H(1 + Q)ϕ̇+ V,ϕ ≈ 0.

But for inflation to continue we still need potential energy
density to dominate over the kinetic term and the radiation
energy density during WI, the Friedmann equation is then
given by

3M2
PlH

2 ≈ V (ϕ)

As during WI a constant radiation bath is maintained by the
dissipation of energy of the inflaton field into the radiation
bath, we can assume ρ̇r ≈ 0, hence we get

4Hρr ≈ Γϕ̇2.

Also

ρr =
π2

30
g∗T

4,

where g∗ is the relativistic d.o.f of the radiation bath.
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Ultra Slow Roll in WI

We ask the question what happens in the case of WI, when
the potential becomes extremely flat? Can WI continue while
maintaining thermal equilibrium with the radiation bath?
When potential becomes extremely flat the equation of
motion becomes

ϕ̈+ 3Hϕ̇(1 + Q) ≃ 0.

We find that during this part, the temperature evolves as

1

T

dT

dN
≃ 1

4− p

[
c

ϕ̇

Hϕ
− 6(1 + Q)

]
.

and

ϵ1 = − Ḣ

H2
=

3

2

(1 + Q)ϕ̇2

V (ϕ)
≪ 1

ϵ2 = −6

(
1 +

4Q

4− p

)
+

4

4− p

[
c

ϕ̇

Hϕ
+ ϵ1

]
Q

1 + Q
+ 2ϵ1.
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Linear Potential: V(ϕ) = V0 +M3
0ϕ, Γ = CΓ

T 3

ϕ2

Figure: The figure depicts the numerical evolution of the acceleration
term ϕ̈, the friction term 3H(1 + Q)ϕ̇, and the slope term V,ϕ present in
the equation of motion of the inflaton field through an ultraslow-roll
phase in the case of linear potential.We have chosen the parameters as
follows:V0 = (10−4MPl)

4, M0 = 2.5× 10−8MPl, CΓ = 10, and
g∗ = 106.75.
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Figure: Evolution of the second Hubble slow-roll parameter, ϵ2, during
ultraslow roll in the case of linear potential.
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Figure: Evolution of the temperature and the Hubble parameter, during
ultraslow roll in the case of linear potential.
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Linear Potential: V(ϕ) = V0

[
1+

(
ϕ
ϕ0

)3
]
, Γ = CΓ

T 3

ϕ2

Figure: The figure depicts the numerical evolution of the acceleration
term ϕ̈, the friction term 3H(1 + Q)ϕ̇, and the slope term V,ϕ present in
the equation of motion of the inflaton field through an ultraslow-roll
phase in the case of cubic potential.We have chosen the parameters as
follows:V0 = (10−4MPl)

4, ϕ0 = 2.5× 10−1MPl, CΓ = 104, and
g∗ = 106.75.

Sandip Biswas(20209267) Supervisor Dr. Kaushik BhattacharyaUltra Slow Roll in Warm Inflation



Figure: Evolution of the second Hubble slow-roll parameter, ϵ2, during
ultraslow roll in the case of cubic potential.
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Figure: Evolution of the temperature and the Hubble parameter, during
ultraslow roll in the case of linear potential.
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Thank You
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