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Detector Simulation

Simulation

•Detectors in nuclear and high-energy physics are getting more and more 
complex

• carrying out an experiment with such a complex detector and interpreting 
the outcome needs some additional help
• do a mock experiment on the computer with known sources and some 

model of the detector and see if the final results match the source 
• also use such mock experiments to design the detector to be used, in 

particular for very expensive experiments (space science, collider 
physics)

•Radiation is used in many other applications: medical diagnosis, medical 
treatment, non-destructive ways to probe structures 

• exposing living beings to radiation requires careful evaluation of the 
amount of radiation to be used

•Use the Monte Carlo technique to study these phenomena and Geant4 is a 
toolkit to enhance such a study
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Understanding Issues

•During early studies of collisions at the large hadron collider, CMS 
experiment observed some unusual number of events in their detector 
system

•CMS measured energy deposited in a crystal calorimeter. The excess was 
observed at higher energies
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Understanding Issues

•CMS tried to understand the readout unit of the calorimeter and realised there 
could be excess energy if some heavily ionising particles go through the 
readout unit. This excess is not light produced in the crystal but charge 
deposited in the readout unit

• Simulating the readout unit removed the observed excess

•A qualitative as well as quantitative understanding of everything observed is 
crucial in providing results with the highest precision and confidence

•Simulation and Geant4 provide this confidence
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Components

•Detector Simulation needs

•Knowledge of the detector components

•How particle interacts with matter

•Monte Carlo methods

•Geant4 as a tool
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Interaction of Particles with Matter
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Interaction of particles with matter
•The first thing is to understand how particles (radiation) behave when they pass through 

matter

•Charged particles passing through matter interact with nuclei as well as with atomic 
electrons. The physical processes are broadly classified into two categories:
•Discrete processes (bremsstrahlung, annihilation, elastic, …)
•Continuous processes (energy loss, multiple scattering, …)

•Continuous energy loss (charged particles in the matter)
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➢At small β, -dE/dx decreases with 
momentum 

➢A minimum is reached at βγ≈4 

➢At large β, γ2 term dominates → relativistic 
rise 

➢At very large βγ, saturation due to 
screening → density effect
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Energy Loss

• Individual collisions are classified as
•Distant collision: atoms react as a whole → excitation, ionization
•Close collision:   with atomic electrons    → knock-on
•Very close:          with nuclei                    → radiation

• If no discrete process happens, particles eventually stops after losing all 
energies
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Stopping Power

•Stopping power for a muon in copper as a function of muon momentum
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Critical 
Energy
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Discrete processes

•Discrete processes:
•Bremsstrahlung          

• Annihilation (positron)  

• Elastic Scattering 

•Pair production 

•Compton scattering

•Photoelectric             
•Decays of unstable particles (em/weak)
•Strong interaction for hadrons
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Electromagnetic Shower

•At energies above 100 MeV, e± loses energy mainly through 
bremsstrahlung emitting photons

•At similar energies, γ’s interact mainly through pair production generating e±

•At high energies, σ(E) ~ constant
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EM Showers

• e+/e-/γ cascade (degrading energy in each stage) mainly through 
successive bremsstrahlung and pair production

•The number of particles in the shower increases till the energies of the 
particles reach E → εc, critical energy

•Beyond this energy, ionization/excitation takes over and the shower decays 
out
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EM Shower Parameters

•Energy loss due to radiation is governed by LR, the radiation length of the 
material traversed. LR in g.cm-2

•Both bremsstrahlung and pair production are highly forward peaked. Lateral 
growth of the shower comes dominantly from multiple scattering at these 
energies

• Low energy end of a shower is generated through the collision process

•Beyond shower maximum, there is an exponential decay of the shower 
[exp(-t/λAtt)]

• Angular distribution for Compton scattering, the photo-electric effect is 
isotropic causing a further increase in the lateral size of the shower

• The shower profile is determined by Moliere radius ρM. 95% of the energy 
deposited is contained in a cylinder of radius 2ρM.

13



Detector Simulation

• 98% of the shower is contained in (tmax+4λatt) where the position of shower 
maximum tmax increases only logarithmically with incident energy E.

• The lateral size of the shower changes with shower depths – broader at or 
beyond the shower maximum.

•While radiation length (hence shower length) depends strongly on material, 
lateral size is roughly material-independent.

• Showers initiated by electrons and photons are different in the first few 
radiation lengths. For a fully absorbed shower, the difference is reduced.
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EM Showers
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Hadronic Showers

•They are similar to electromagnetic showers, but with greater variety and 
complexity due to hadronic processes

 

• The strong interaction is responsible for
•Production of hadronic shower particles, ~90% of these are pions. Neutral pions 

decay to 2 γ’s which develop em showers
• Interaction with the nucleus – neutrons/protons are released from the nucleus and 

the binding energy is lost from producing more shower particles
•EM showers produced by π°’s develop in the same way as those due to e±/γ’s. 

Fraction of π° increases with energy. Typically EM energy fraction is ~30% at 10 
GeV increasing to ~50% at 100 GeV.

• The remaining energy is carried by ionizing particles, neutrons and invisible 
components (lost in binding energies or carried by ν’s from decays). In lead they are 
roughly in the ratio 56:10:34 and two-thirds of ionizing energy is due to protons.
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Fast pions 
or protons

Slow 
protons

Neutrons  
not  visible

30 GeV protons in Emulsion
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Fluctuations in Hadronic Shower
•There is a large variety of profiles in hadronic showers
• This depends on  π° multiplicity in each step of interactions
• Leakage plays an important role even though the average containment is 

high
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Hadronic Shower

•The typical scale is collision length 

•Shower maximum occurs at tmax(λ) ~ 0.2 lnE +0.7

•Decay of shower is slower: power law (λE0.13) rather than logarithmic in E

•The transverse dimension is controlled by λ – laterally it takes less material 
to contain the shower at higher energies (larger fraction of EM energy)

17
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Monte Carlo methods
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History

• “After spending a lot of time trying to estimate success by combinatorial 
calculations, I wondered whether a more practical method might be to lay it 
out say one hundred times and simply observe and count the number of 
successful plays” - S. Ullam playing Solitaire while recovering from an illness 
during 1946

• 1943 saw the first electro-mechanical computers solving non-linear equations. 
Ulam’s idea led von Neumann to think of using this new device to carry out the 
statistical sampling. He together with Richtmeyer worked on “Statistical 
Methods in Neutron Diffusion” in 1947

• The first calculation was done on the ENIAC computer in 1948, with the code 
finalised by December 1947

• Metropolis christened the name “Monte Carlo” and gave rise to MANIAC — 
Mathematical and Numerical Integrator and Computer

• Enrico Fermi had the idea even 15 years earlier than Ulam and astonished his 
Roman colleagues by accurately predicting experimental results using 
statistical techniques. He created an analogue machine FERMIAC to study 
neutron transport while awaiting the arrival of ENIAC
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Monte Carlo Technique
• Solution of a problem as a parameter of a hypothetical population and 

constructing a sample of the population to obtain estimates of the parameter

• ==> use random numbers to construct a sample

• This technique is particularly useful to study particle scattering and absorption 
because it involves
• random processes (interaction, scattering, …)
• complicated multi-dimensional integration

• The Monte Carlo technique is the ideal way to carry out multi-dimensional 
integration — the fastest method when the number of dimensions exceeds 3 or 4.

• We may need to carry out an integration:

then with a set of random numbers                      in the range 0 — 1, determine F 
and this F will be an unbiased estimator of I

• Repeat this estimate a large number of times and the mean value of F, <F> will 
converge to the value of I
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Uniform Random Number
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Random Number Generators
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Arbitrary  probability density

•To generate random numbers according to an arbitrary normalised 
probability density function F(x), there are several methods available. One 
has to choose the most efficient approach

•Transformation method:
Let there be a random function which can produce a variable x uniformly 
in the range from 0 to 1: 0 ≤ x ≤ 1

This implies that the probability of generating a number between x and 
x+dx:

and the probability density function is normalised:

Now we would like to generate random numbers y with a probability 
density function f(y) which also follows:
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Transformation Method

Using the fundamental transformation law of probability

So one gets

This is to be inverted to get
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Transformation Method (an example)

Let us generate an exponential distribution as an example:

This satisfies

Imposing boundary conditions, namely              and      and x = 1 at               one 
obtains  c = 1

Thus 
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Generalised Transformation Method

The transformation method can be generalised to more than one 
dimension:

                       are random deviates with joint probability distributions

                      each is a function of all x’s ( number of y’s = number of x’s)

                   I.   
                     I. is the Jacobian determinant of x’s with respect to y’s

Let us have two uniform deviates           and the variables           are 
defined as
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Generalised Transformation Method

Equivalently

The Jacobian determinant:

Since this is a product of two functions, one of      and one of     , one gets 
two independent random deviates following the Gaussian distribution of 
mean 0 and RMS 1:
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Law of large numbers
•Concerns sum of a large number of random variables

•Choose n numbers     distributed randomly with uniform probability density in the 
interval a to b

•Evaluate         for each value of 

The LHS is a consistent estimator of the integral which implies that the variance of 
f will be finite

The standard deviation of the estimator

This is the Central Limit theorem

The sum of a large number of independent random variables is always normally 
distributed, no matter how the random numbers are distributed

The normal distribution is specified by its expectation value a and variance 
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Gaussian Distribution

If     ‘s are uniform deviates between 0 and 1  →

So if one takes the sum of k variables:                       , then

By choosing 12 random variables and computing                      one gets a 
normally distributed variable with a mean 0 and variance 1
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Gaussian Distributions
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•Rejection method:

If the probability distribution function is known and computable, this method can be 
applied. Here one does not require:

Cumulative distribution function to be available
The distribution function could be inverted

For example, one needs to generate a random number in the range a to b 
according to a probability distribution function proportional to p(x)

choose a function f(x) (comparison function) such that
The corresponding cumulative distribution function is computable and invertible
f(x) lies above p(x) at all places between a and b

A more general method
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choose x using the transformation method applied to the function f(x)

use a second deviate u which is uniformly distributed between 0 and 1. If 
p(x)/f(x)  ≤ u, then the value of x is to be accepted; otherwise that value 
of x is to be rejected and a fresh value has to be obtained using the 
transformation method

Rejection method
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• Express the probability density function as a sum of components:

with α’s positive;          normalised probability density functions which can be 
inverted; and          are computable functions which do satisfy the relation

Solution to the problem can be obtained as:
• select an integer i randomly within                   and with the probability 

of selecting it: 
• select a variable x’ from          using the transformation method
• calculate           and accept x = x’ with selection probability
• If rejected, go and select i once again and repeat

This is a good method of sampling x if
• all sub-distribution functions          can be easily sampled
• the rejection functions           can be quickly computed
•mean number of tries              is not too large

A General method
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Application to Pair Production

•Pair production:
A photon of energy E produces a pair of electron and positron with the 
electron carrying an energy fraction 

Rewrite the probability density function for
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Pair Production

Kinematic range for 

Using of symmetry of 

Define a variable 

•  

•  

•  
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Geant4

•Geant4 is a toolkit which helps to build an application program for simulating 
the performance of a detector exposed to radiation
•Originally built for experiments in high energy and nuclear physics
•Also finds its application in space physics and medical science

•The public production version has been available since the year 1999

•The package came with several examples to guide buildings of application 
programs 

• It is written mostly in the C++ language using object-oriented technology

•Available as open source through CERN and works on many platforms
• Latest version Geant4.11.2

• Three main reference papers:
•Nuclear Instruments and Methods A506 (2003) 250
• IEEE Transactions on Nuclear Science 53 (2006) 270
•Nuclear Instruments and Methods A835 (2016) 186
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Detector Simulation

•Geant4 provides tools for particle transport and also to model experimental 
environments

• The “User” needs to use Geant4 tools
• to tell the Geant4 kernel about the simulation configuration
• to interact with the Geant4 kernel itself

• The “User” must tell Geant4 what he/she only knows
•The experimental scenario
•Geometry, materials, sensitive and passive elements
•Primary particles, radiation environment

• That the “User” wants to happen during transport
•which particles are to be tracked
•which physics processes would be of interest (and which options for 

modelling are preferable)
• how precise the simulation is going to be
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Code Arrangement
•All codes of Geant4 are grouped into 17 

categories

•Relationships among classes from two 
categories:
•Always one sided
•No cyclic dependencies

• “Global” is at the lowest level
•No dependency on any class from 

other categories of Geant4

• “Geant4” is at the highest level
•Classes in this category depend on all 

other categories

•External dependencies:
•CLHEP (HEP utilities)
• PTL (for making libs/executable)
• EXPAT     |  XML
•XERCES |  parsing
•  … some Graphics packages …

39

Domain 
decomposition  

hierarchical structure 
of sub-domains 

Geant4 architecture

Uni-directional flow of 
dependencies

Interface to 
external products 
w/o 
dependencies
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Some of the terminologies

•Run, Event, Track, Step, Stack, …

•Track vs. Trajectory;   Step vs. Trajectory Point

•Particle, Process, Hits, …
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Initialization

41

m ain Run  m anage r user detector 
construction

use r phy sics 
l ist

1: initial ize 2 : construct

3: m ate rial construction

4: geom etry construction
5: world  volum e

6: construct

7 : phy sics process construction

8: set cu ts

Describe your 
experimental set-
up

Activate physics processes 
appropriate to your experiment
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Event Loop

42

main Run Manager Geometry 
manager

Event 
generator

Event
Manager

1: Beam On 2: close

3: generate one event

4: process one event

5: open

Generate primary events 
according to distributions 
relevant to your 
experiment 
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Event Processing

43

Event 
manager

Stacking 
manager

Tracking 
manager

Stepping 
manager

User sensitive 
detector

1: pop

2: process one track 3: Stepping
4: generate hits

5: secondaries

6: push

Record the physics 
quantities generated by the 
simulation, that are relevant 
to your experiment
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Run in Geant4

•Conceptually, a Run is a collection of Events which share the same detector 
setup and physics conditions
•A Run consists of one loop over Events

•Within a Run, the user cannot change
• the detector setup
• settings of the physics processes

•As an analogy of the real experiment, a run of Geant4 starts with “Beam On”

•At the beginning of a Run, the geometry is optimised for navigation and 
cross-section tables are calculated according to materials which appear in 
the geometry and with the defined cut-off values

•G4RunManager class manages the processing of a Run, a Run is 
represented by the G4Run class or a user-defined class derived from it

•G4UserRunAction is an optional user hook
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Event in Geant4

•An Event is the basic unit of simulation in Geant4

•At the beginning of processing, primary tracks are generated. These tracks 
are pushed into a stack

•A track is popped up from the stack one by one and is traced through the 
detector. The resulting secondary tracks, if any, are pushed into the stack
•This “tracking” lasts as long as the stack has a track

•When the stack becomes empty, the processing of the event is over

•G4Event class represents an Event. It has the following objects at the end of 
its (successful) processing
• List of primary vertices and particles (as input)
•Hits and trajectory collections (as output)

•G4EventManager class manages the processing of an event

• There is an optional user hook: G4UserEventAction
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Track in Geant4

•A Track is a snapshot of a particle
• It has physical quantities of the current instance only. It does not contain a record 

of previous quantities
•A Step is a “delta” information of a Track. A Track is not a collection of Steps. 

Instead, a Track is being updated by the Step.

• The Track object is deleted when
• it goes out of the world volume,
• it disappears (through decays, inelastic scattering, …),
• it goes down to zero kinetic energy and no “AtRest” additional process is 

required for the particle, or
• the user decides to kill it artificially.

•No Track object persists at the end of an event
• For the record of Tracks, use Trajectory class objects

•G4TrackingManager manages the processing of a Track. A Track is represented 
by the G4Track class

•There is an optional user hook: G4UserTrackingAction
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Step in Geant4

47

•A Step has two points and also “delta” information of a particle (energy loss 
in the step, time-of-flight spent by the step, etc.)

• Each point knows the volume (and it's material) where it is in. In case a step 
is limited by a volume boundary, the endpoint will physically stand on the 
boundary, and it logically belongs to the next volume
•Since each Step knows materials of two volumes, boundary processes 

such as transition radiation or reflection could be simulated

•G4SteppingManager class manages the processing of a Step, and a Step is 
represented by the G4Step class

•G4UserSteppingAction is the optional user hook
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Trajectory and Trajectory Point
•Please remember, a Track does not keep its trace and no Track object persists at 

the end of an Event

•G4Trajectory is the class which copies some of the information of a G4Track object. 
Likewise, G4TrajectoryPoint is the class which keeps some of the information of a 
G4Step object
•A G4Trajectory object has a vector of G4TrajectoryPoint objects
•At the end of event processing, the G4Event object has a collection of 

G4Trajectory objects provided
• /tracking/storeTrajectory is set to 1

•Keep in mind the distinction:
•G4Track vs G4Trajectory,   G4Step vs G4TrajectoryPoint

•Given that the G4Trajectory and G4TrajectoriyPoint objects persist till the end of an 
event, one should be careful not to store too many trajectories
•Avoid storing shower tracks from a high-energy particle

•G4Trajectory and G4TrajectoryPoint objects store only the minimum information
•The user can create his/her own Trajectory/TrajectoryPoint classes to store the 

required information. These classes can be derived from the base classes 
G4VTrajectory and G4VTrajectoryPoint
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Particle in Geant4

•A particle in Geant4 is represented by three layers of classes:

•G4Track:
•Position, geometrical information, etc.
•This is a class representing a particle to be tracked

•G4DynamicParticle:
• “Dynamic” physical properties of a particle, such as momentum, energy, 

spin, etc.
•Each G4Track object has its own unique G4DynamicParticle Object
•This is a class representing an individual particle

•G4ParticleDefinition:
• “Static” properties of a particle, such as charge, mass, lifetime, decay 

channels, etc.
•G4ProcessManager which describes the processes involving the 

particles
•All G4DynamicParticle objects of the same kind of particles share the 

same G4ParticleDefinition
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Tracking and Process

•Tracking in Geant4 is universal

• It is independent of
•the particle type
•the physics processes involving the particle

•It gives the chance to all processes
•to contribute to the determination of the step length
•to contribute any possible changes in physical quantities of the track
•to generate secondary particles
•to suggest changes in the state of the track
•e.g. to suspend, postpone or kill it
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Process in Geant4

• In Geant4, particle transportation is a process as well, by which a particle 
interacts with geometrical volume boundaries and fields of any kind
•Because of this, the shower parametrization process can take over from 

ordinary transportation without modifying the transportation process

•Each particle has its own list of applicable processes. At each step, all 
processes involved are invoked to get proposed physical interaction lengths

•The process which requires the shortest interaction length (in space-time) 
limits the step

•Each process has one or combination of actions with the following nature:
•At Rest
•e.g. muons can decay at rest

• Along Step (a.k.a. continuous process)
•e.g. Cherenkov process

•Post step (a.k.a. discrete process)
•e.g. decay in flight
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Track Status
•At the end of each step, the state of a track may change (according to the 

processes involved)
• The user can also change the status in UserSteppingAction
•Status, as mentioned below, are artificial, i.e. Geant4 kernel won’t set them, but 

the user can
•fAlive
•continue the tracking

•fStopButAlive
• the track has come to zero kinetic energy, but still AtRest process to occur

•fStopAbdKill
•The track has lost its identity because it has decayed, interacted, or gone beyond 

the world boundary
•Secondaries will be pushed to the stack

•fKillAndSecondaries
•kill the current track and also associated secondaries

•fSuspend
•suspend the processing of the current track and push it and its secondaries to the 

stack
•fPostponeToNextEvent
•Postpone processing of the current track to the next events
•Secondaries are still being processed within the current event
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Step Status

•The step status attached to the G4StepPoint indicates why that particular 
step was chosen
• “PostStepPoint” gives the status of this step
• “PreStepPoint” provides the status of the previous step
• fWorldBoundary
• step reached the world boundary

• fGeomBoundary
• step is limited by a volume boundary except for the world

• fAtRestDoItProc, fAlongStepDoItProc, fPostStepDoItProc
• step is limited by AtRest, AlonStep or PostStep process

• fUserDefineLimit
• step is limited by the user step limit

• fExclusiveForcedProc
• step is limited by an exclusively forced process (e.g. shower parametrisation)

• fUndefined
• step not defined

• If the first step in a volume is to be identified, pick fGeomBoundary status in 
the PreStepPoint

• If a step going out of a volume is to be identified, pick fGeomBounday status 
in the PostStepPoint
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Extraction of Useful Information

•Given geometry, physics and primary track information, Geant4 does proper 
physics simulation “silently”
• The user has to add a bit of code to extract useful information

•There are two ways for extraction:

•Use the user hooks provided by Geant4
•These are: G4UserTrackingAction, G4UserSteppingAction, ….
•The user has access to almost all information
• It is straight-forward but do-it-yourself

•Use Geant4 scoring functionality
•Assign G4VSensitiveDetector to a volume
•Hits collection is automatically stored in the G4Event object, and automatically 

accumulated if the user-defined Run object is used
•Use user hooks to get event/run summary
•The relevant action classes are G4UserEventAction, G4UserRunAction
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Geant4 as a State Machine

•Geant4 has six application states:

•G4State_PreInit
•At this state, material, geometry, 

particle and physics process need 
to be defined and initialized

•G4State_Idle
•Geant4 is ready to start a run

•G4State_GeomClosed
•Geometry is optimised and ready 

to process an event
•G4State_EventProc
•An event is being processed

•G4State_Quit
•(Normal) termination

•G4State_Abort
•A fatal exception occurred and the 

program is aborting
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Track Stacks in Geant4

•By default, Geant4 has three track stacks:
• “Urgent”, “Waiting” and “PostponeToNextEvent”
•Each stack operates in a simple “last-in-first-out” mode
•User can increase arbitrarily the number of stacks

•ClassiftNewTrack() method of G4UserStackingAction class decides which 
stack each newly created secondary particle to be stored (or be killed)
•By default, all tracks go to the “Urgent” stack

•A G4Track is popped up only from the “Urgent” stack

•Once the “Urgent” stack is empty, all tracks in the “Waiting” stack are 
transferred to the “Urgent” stack
•And NewStage() method of th4 G4UserStackingAction is invoked

•Utilising more the one stack, the user can control the priorities of processing 
tracks without paying the overhead of “scanning the highest priority track”
•Proper selection/abortion of tracks/events with well-designed stack 

management provides significant efficiency increase of the entire simulation
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Stacking Mechanism

57
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Tips of Stacking Manipulation

•Classify all secondaries as fWaiting until Reclassify() method is invoked
•One can simulate all primaries before any secondary

•Classify secondary tracks below a certain energy as fWaiting until the 
Reclassify() method is invoked
•One can roughly simulate the event before being bothered by low energy 

electromagnetic showers

•Suspend a track on its fly. Then this track and all of the already generated 
secondaries are pushed to the stack
•Given the stack is “last-in-first-out”, secondaries are popped out prior to 

the original suspended track
•This is quite effective for simulating Cerenkov radiation

•Suspend all tracks that are leaving a region, and classify these suspended 
tracks as fWaiting until Reclassify() method is invoked
•One can simulate all tracks in this region prior to other regions
•Note that some backsplash tracks may come back into this region later
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Primary Generator

•Each Geant4 Event starts with the generation of one or multiple primary 
particles

• The user has to define the properties of primary particles
•Particle type, e.g. electron, gamma, ion, …
• Initial kinematics, e.g. energy, momentum, origin, …
•Additional properties, e.g. polarization, …

•These properties can be divided into:
•G4PrimaryVertex: specifying start point in space and time
•G4PrimaryParticle: specifying initial momentum, polarisation, PDG code, list 

of daughters for decay chains

•A primary generator is a class derived from G4VPrimaryGenerator and has an 
implementation of the method GeneratePrimaryVertex()
• The primary vertex and the primary particle(s) are added in this method to a 

Geant4 Event
•Several event generators are provided in the Geant4 toolkit
•G4HEPEvtInterface, G4HEPMCInterface, G4GeneralParticleSoce, G4ParticleGun
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PrimaryGeneratorAction

•This mandatory user action controls the generation of primary particles but 
does not generate the primaries itself. This task is delegated to 
G4PrimaryGenerator derived from G4VPrimaryGenerator
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PrimaryGenerator

•The primary generator could make use of
• a built-in generator: G4ParticleGun for producing particles of arbitrary 

momenta and direction to test a setup
• an external physics generator which provides a collection of particles 

emerging from a known physics process (Pythia, Herwig, …)
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Attaching user information

•Abstract classes:

• The user can use his/her own class derived from the period base class

•G4Run, G4VHit, G4VDigit, G4VTrajectory, G4VTrajectoryPoint

•Concrete classes:

• The user can attach a user information class object
•G4Event — G4VUserEventInformation
•G4Track — G4VUserTrackInformation
•G4PrimaryVertex — G4VUserPrimaryVertexInformation
•G4PrimaryParticle — G4VUserPrimaryParticleInformation
•G4Region — G4VUserRegionInformation

•User information class objects are deleted when the associated Geant4 
class object is deleted
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Modelling of a Detector

•Detectors are modelled by a geometrical shape filled with certain material of 
known physical properties → “Volume”

•Several volumes can describe different components of the detector system. 
Put them together in a hierarchical structure:

Composite Volume → Experimental Setup
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Material

•Material has a Name, Effective Atomic Number and Weight, Density, 
Radiation (LR) and Absorption (λ) length

• It can be defined by specifying these attributes
• If radiation and absorption lengths are not known, one can furnish 

information regarding the chemical composition and Geant4 will compute 
the required attributes for the application

•One can also add the state (solid | liquid | gas), isotopic properties, etc. 
Some of these specifications are essential to study activation, …
•Define pseudo-elements:

new G4Material (name, Z, A, density, state, temperature, pressure);
•Define a mixture of elements in atomic or weighted proportion:

new G4Material (name, density, numComponents);
→AddElement (material, fraction);
G4Element* element = new G4Element (name, symbol, Z,   A);
→AddElement (element, nAtom);

•Build elements from isotopes:
new G4Element (name, symbol, numIsotopes);

G4Isotope* isotope = new G4Isotope (name, Z, N);
→AddIsotope (isotope, abundance);
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Volume

•A volume is defined by its shape, dimensional parameters and its material 
content. A shape with dimensional parameters is called a Solid and the 
association of a Solid with a Material is called a LogicalVolume.

• There are several ways to define a Solid:
•Computed Solid Geometry (CSG): G4Box, G4Trd, G4Trapm G4Tubs, 

G4Cons, G4Sphere, G4PolyCone, ……..
•Boundary Representation (BREP): G4BrepSolidPcone, …….. (slower 

navigation on a standard CPU, but works better in GPU)
•Boolean: Solids made out by adding, subtracting, intersecting, etc. several 

solids: G4RotateSolid, ……
•STEP: Imported from the CAD system

•System of Units: Though a convention is used internally for the unit system, 
the recommendation is not to remember them and use the units explicitly:

double length = 5 * cm;
double angle = 30 * deg;
double time = 25 * ns;
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Define a Volume
•First define a Material, say Air consisting of 2 constituent elements Nitrogen 

and Oxygen in a given weight proportion (70:30)

• First define Nitrogen and Oxygen with their appropriate Z, A values:

• Then define Air and add the two elements:

•Define a Solid of a given name (say INOM) as a box of given half length, half 
width, half thickness:

•Associate the Solid with the Material to define the LogicalVolume:

• The reference frame is a right-handed Cartesian coordinate system with the 
origin at the centre of the box
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Define a Detector Setup

•To define a set up, one needs to
• define a Master or World reference system
•position the various components with respect to each other

•Geant4 uses the concept of PhysicalVolume which is a LogicalVolume 
positioned in a Mother (PhysicalVolume or LogicalVolume) with a translation 
vector and a rotation matrix (optional). For the top-level Volume (defining 
the World reference system), the pointer of the Mother Volume should be 
declared as a nullPointer

•One useful way of defining daughter volumes is by dividing an existing 
mother volume into n equal parts along a chosen axis (Cartesian, 
Cylindrical, or Polar)
• The creation and positioning are done in two separate steps

•When a daughter is positioned inside a mother, the extent inside the mother 
occupied by the daughter gets filled with the material of the daughter's 
volume

Can build up a tree like a Russian doll
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Hooks for Positioning

creates a PhysicalVolume volume by positioning a copy with number 
copyNumber of the LogicalVolume current inside the mother volume 
mother with a translation vector (G4ThreeVector) and a rotation matrix rot 
(G4RotationMatrix*)

If one needs to define a rotation matrix by specifying the angles           of 
the three axes (as done in Geant3), one needs to follow the steps:
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Hooks for Positioning (2)

•For dividing a parent volume into equal parts along a given axis, one needs 
to create the LogicalVolume using the standard steps (defining Solid, 
Material, and LogicalVolume) and then position multiple replicas through:

This needs more steps than what used to be in its predecessor Geant3 
(GSDVN), but it is more general

• The tree of PhysicalVolumes is instantiated at the time of tracking in the 
form of G4VTouchable and the list of PhysicalVolumes in the branch will 
provide the unique identification of a volume 
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Example

•Construct geometry of a cylindrical drift chamber with 8 sectors each having 
5 cells:

•Define volume VOL1 as a tube with inner 
and outer radii R1, R2 and half-length L

•Divide the tube into 8 parts azimuthally and 
each section is called VOL2

•Define a trapezoid of half-length L, width 
[R2.cos(π/8)—R1] and two edges of 
dimension 2.R1.tan(π/8), and 2.R2.tan(π/8). 
Position this volume VOL3 inside VOL2 
with the proper translation vector and 
rotation matrix

•Divide the trapezoid VOL3 into 5 parts 
along the z-axis. Each part VOL4 will be a 
cell
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Example

•This will create the volume tree:
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A Practical Example

• 7 x 7 crystal matrix made out of lead tungstate

• 28 layers of plastic scintillators interleaved with brass plates of varying 
thickness

•B-field along the z-axis (perpendicular to the beam direction) with maximum 
field strength of 3 Tesla

The 1996 CMS Test Beam Setup

Composite-Calorimeter as an Example in Geant4 (advanced)
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Composite Calorimeter

•HCAL (the enclosure for the hadron calorimeter) contains two boxes made 
out of aluminium each housing absorber plates and scintillator layers

•ECAL (the enclosure for the electromagnetic calorimeter) contains the 
crystal matrix and some support structure

•Both ECAL and HCAL are placed in a mother volume CALO which defines 
the world volume
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Geometry Tree

22 Logical Volumes
   8 Levels in the Tree
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Extraction of Useful information

•Given geometry, physics and primary track generation, Geant4 does proper 
physics simulation “silently”
• The user needs to add a bit of code to extract useful information

•There are three ways:

•Use built-in scoring commands 
•Most commonly-used physics quantities are available

•Use scorers in the tracking volume
•Create scores for each event
•Create own Run class to accumulate scores

•Assign G4VSensitiveDetector to a volume to generate “hit”
•Use user hooks (G4UserEventAction, G4UserRunAction) to get event / run 

summary

• The user may also use user hooks (G4UserTrackingAction, 
G4UserSteppingAction, etc.)
•  The user has full access to almost all information
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Sensitive Detector

•A G4VSensitiveDetector object can be assigned to a G4LogicalVolume

• In case a step takes place in a logical volume that has a 
G4VSensitiveDetector object, this G4VSensitiveDetector is invoked with the 
current G4Step object
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Defining a Sensitive Detector

•The basic strategy
G4LogicalVolume* myLogCalor = ……; 
G4VSensetiveDetector* pSensetivePart = new MyDetector(“/
mydet”); 

G4SDManager* SDMan = G4SDManager::GetSDMpointer(); 
SDMan->AddNewDetector(pSensitivePart); 
myLogCalor->SetSensitiveDetector(pSensetivePart); 

•Each detector object must have a unique name

•Some logical volumes can share one detector object

•More than one detector object can be made from one detector class with 
different detector name

•One logical volume cannot have more than one detector object. But, one 
detector object can generate more than one kind of hits
•e.g. a double-sided silicon micro-strip detector can generate hits for each side 

separately
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Hit

•Hit is a snapshot of the physical interaction of a Track or an accumulation of 
interactions of Tracks in the sensitive region of your detector

•A sensitive detector creates Hit(s) using the information given in the G4Step 
object. The user has to provide his/her own implementation of the detector 
response

•Hit objects, which are still the user’s class objects, are collected in a 
G4Event object at the end of an event
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Hit Class

•Hit is a user-defined class derived from G4VHit

• The user can store various types of information by implementing one’s own 
concrete Hit class. For example:
•Position and time of the step
•Momentum and energy of the track
•Energy deposition of the step
•Geometrical information
• or any combination of above

•Hit objects of a concrete Hit class must be stored in a dedicated collection which is 
instantiated from G4THitsCollection template class

•The collection is associated with a G4Event object via G4HCofThisEvent

•Hits are accessible as collections:
• through G4Event at the end of the event
• to be used for analyzing an event

• through G4SDManager during processing an event
• to be used for event filtering
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Implementation of Hit class
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#include "G4VHit.hh" 
class MyHit : public G4VHit 
{ 
  public: 
      MyHit(some_arguments); 
      virtual ~MyHit(); 
      virtual void Draw(); 
      virtual void Print(); 
  private: 
      // some data members 
  public: 
      // some set/get methods 
}; 

#include “G4THitsCollection.hh” 
typedef G4THitsCollection<MyHit> MyHitsCollection; 
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Sensitive Detector class

•The sensitive detector is a user-defined class derived from the class 
G4VSensitiveDetector
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#include "G4VSensitiveDetector.hh" 
#include "MyHit.hh" 
class G4Step; 
class G4HCofThisEvent; 
class MyDetector : public G4VSensitiveDetector 
{ 
  public: 
      MyDetector(G4String name); 
      virtual ~MyDetector(); 
      virtual void Initialize(G4HCofThisEvent*HCE); 
      virtual G4bool ProcessHits(G4Step*aStep,  
                           G4TouchableHistory*ROhist); 
      virtual void EndOfEvent(G4HCofThisEvent*HCE); 
  private: 
      MyHitsCollection * hitsCollection; 
      G4int collectionID; 
};
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Types of Hit

•A tracker detector typically generates a hit for every single step of every single 
(charged) track
•A tracker hit typically contains
•Position and time
•Energy deposition of the step
•Track identifier
•Some cell identifier

•A calorimeter detector typically generates a hit for every cell and accumulates 
energy deposition in each cell for all steps of all tracks
•A calorimeter hit typically contains
•Sum of deposited energy
•Some timing information
•Cell Identifier

• The user can instantiate more than one object for one sensitive detector class. 
Each object should have its unique detector name
•For example, each of the two sets of detectors can have its dedicated sensitive 

detector objects. But, their functionalities are exactly the same so that they can 
share the same class. See examples/extended/analysis/A01 as an example
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Implementation of Sensitive Detector - 1

• In the constructor, the name of the hits collection which is handled by this 
sensitive detector is to be defined

• In case the sensitive detector generates more than one kind of hits (e.g. 
anode and cathode hits separately), all collection names need to be defined
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MyDetector::MyDetector(G4String detector_name) 
               :G4VSensitiveDetector(detector_name), 
                collectionID(-1) 
{ 
  collectionName.insert(“collection_name"); 
} 
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Implementation of Sensitive Detector - 2

• Initialize() method is invoked at the beginning of each event.

•Get the unique ID number for this collection
•GetCollectionID() is a heavy operation. It should not be used for every event
•GetCollectionID() is available after this sensitive detector object is 

constructed and registered to G4SDManager. Thus, this method cannot be 
invoked in the constructor of this detector class

•The hits collection(s) are to be instantiated and then attached to the 
G4HCofThisEvent object given in the argument

• In the case of a calorimeter-type detector, hits for all calorimeter cells  may be 
instantiated with zero energy depositions, and then inserted into the collection
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void MyDetector::Initialize(G4HCofThisEvent*HCE) 
{ 
  if(collectionID<0) collectionID = GetCollectionID(0); 
  hitsCollection = new MyHitsCollection  
        (SensitiveDetectorName,collectionName[0]); 
  HCE->AddHitsCollection(collectionID,hitsCollection);  
}
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Implementation of Sensitive Detector - 3

•This ProcessHits() method is invoked for every step in the volume(s) where 
this sensitive detector is assigned

• In this method, generate a hit corresponding to the current step (for tracking 
detector), or accumulate the energy deposition of the current step to the 
existing hit object where the current step belongs (for calorimeter detector)

• The geometry information is to be collected (e.g. copy number) from 
“PreStepPoint”

•Currently, the returned boolean value is not used
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G4bool MyDetector::ProcessHits 
  (G4Step*aStep,G4TouchableHistory*ROhist) 
{ 
  MyHit* aHit = new MyHit(); 
  ... 
  // some set methods  
  ... 
  hitsCollection->insert(aHit); 
  return true;  
}
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Implementation of Sensitive Detector - 4

•This method is invoked at the end of processing an event

• It is invoked even if the event is aborted
• It is invoked before UserEndOfEventAction
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void MyDetector::EndOfEvent(G4HCofThisEvent*HCE)  {;} 
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Step Point and Touchable

•As mentioned already, G4Step has two G4StepPoint objects as its starting 
and ending points. All the geometrical information of the particular step should 
be taken from “PreStepPoint”
•Geometrical information associated with G4Track is identical to 

“PostStepPoint” 

•Each G4StepPoint object has
•Position in the world coordinate system
•Global and local time
•Material
•G4TouchableHistory for geometrical information

•The G4TouchableHistory object is a vector of information for each geometrical 
hierarchy
• copy number
• translation/rotation to its mother

•Since release 4.0, handles (or smart-pointers) to touchable are intrinsically 
used. Touchables are reference counted
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CopyNo = 2

Copy Number

• geometrical information in G4Track is identical to that in “PostStepPoint”
• the user cannot get the correct copy number for "PreStepPoint" if one 

directly accesses the physical volume

•The touchable is to be used to get the proper copy number, transform 
matrix, etc.
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•Suppose a calorimeter is made of 4x5 
cells
• and it is implemented by two levels of 

replica
• In reality, there is only one physical 

volume object for each level. Its 
position is parameterized by its copy 
number

• To get the copy number of each level 
for the cell when the step belongs to 
two cells,
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G4Step* aStep; 
G4StepPoint* preStepPoint = aStep->GetPreStepPoint(); 
G4TouchableHistory* theTouchable = 
    (G4TouchableHistory*)(preStepPoint->GetTouchable()); 
G4int copyNo = theTouchable->GetVolume()->GetCopyNo(); 
G4int motherCopyNo 
            = theTouchable->GetVolume(1)->GetCopyNo(); 
G4int grandMotherCopyNo 
            = theTouchable->GetVolume(2)->GetCopyNo(); 
G4ThreeVector worldPos = preStepPoint->GetPosition(); 
G4ThreeVector localPos = theTouchable->GetHistory() 
    ->GetTopTransform().TransformPoint(worldPos);

Touchable

•  G4TouchableHistory has information on the geometrical hierarchy of the 
point.

89



Detector Simulation

G4HCofThisEvent

•  A G4Event object has a G4HCofThisEvent object at the end of (successful) 
event processing. G4HCofThisEvent object stores all hits collections made 
within the event.

• Pointer(s) to the collections may be NULL if collections are not created in 
the particular event

•Hit collections are stored by pointers of the G4VHitsCollection base class. 
Thus, one has to cast them into types of individual concrete classes

•The index number of a Hits collection is unique and unchanged for a run. 
The index number can be obtained by

•The index table is also stored in G4Run
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G4SDManager::GetCollectionID(“detName/colName”);
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Usage of G4HCofThisEvent
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void MyEventAction::EndOfEventAction(const G4Event* evt)  { 
  static int CHCID = -1; 
  If(CHCID<0) CHCID = G4SDManager::GetSDMpointer() 
     ->GetCollectionID("myDet/collection1"); 
  G4HCofThisEvent* HCE = evt->GetHCofThisEvent(); 
  MyHitsCollection* CHC = 0; 
  if (HCE) { 
     CHC = (MyHitsCollection*)(HCE->GetHC(CHCID)); } 
  if (CHC) { 
    int n_hit = CHC->entries(); 
    G4cout<<“My detector has ”<<n_hit<<" hits."<<G4endl; 
    for (int i1=0;i1<n_hit;i1++) { 
      MyHit* aHit = (*CHC)[i1]; 
      aHit->Print(); 
    } 
  } 
}
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Bookkeeping Issues

•Connection from G4PrimaryParticle to G4Track
G4int G4PrimaryParticle::GetTrackID()

•Returns the track ID if this primary particle had been converted into 
G4Track, otherwise -1

•Connection from G4Track to G4PrimaryParticle
G4PrimaryParticle* G4DynamicParticle::GetPrimaryParticle()

•Returns the pointer of G4PrimaryParticle object if this track was defined as 
a primary or pre-assigned decay product, otherwise null

•G4VUserPrimaryVertexInformation, G4VUserPrimaryParticleInformation 
and G4VUserTrackInformation may be used for storing additional 
information
• Information in G4VUserTrackInformation should be then copied to the 

user-defined trajectory class so that such information is kept until the end 
of the event
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Solids
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Hit Collection, Hit Map

•G4VHitsCollection is the common abstract base class of both 
G4THitsCollection and G4THitsMap

•G4THitsCollection is a template vector class to store pointers of objects of 
one concrete hit class type
•A hit class (deliverable of G4VHit abstract base class) should have its own 

identifier (e.g. cell ID)

•G4THitsCollection requires the user to implement their own hit class

•G4THitsMap is a template map class that stores keys (typically cell ID, i.e. 
copy number of the volume) with pointers of objects of one type

•Objects may not be those of the hit class
•All of the currently provided scorer classes use G4THitsMap with simple double

•Since G4THitsMap is a template, it can be used by the sensitive detector 
class to store hits
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