
Detector Simulation — Geant4

EHEP 2024 School
January 31, 2024

Sunanda Banerjee
Abhijit Bhattacharya

Deepak Samuel

Detector Simulation

Simulation

•Detectors in nuclear and high-energy physics are getting more and more
complex

• carrying out an experiment with such a complex detector and interpreting
the outcome needs some additional help
• do a mock experiment on the computer with known sources and some

model of the detector and see if the final results match the source
• also use such mock experiments to design the detector to be used, in

particular for very expensive experiments (space science, collider
physics)

•Radiation is used in many other applications: medical diagnosis, medical
treatment, non-destructive ways to probe structures

• exposing living beings to radiation requires careful evaluation of the
amount of radiation to be used

•Use the Monte Carlo technique to study these phenomena and Geant4 is a
toolkit to enhance such a study

Detector Simulation

Understanding Issues

•During early studies of collisions at the large hadron collider, CMS
experiment observed some unusual number of events in their detector
system

•CMS measured energy deposited in a crystal calorimeter. The excess was
observed at higher energies

Detector Simulation

Understanding Issues

•CMS tried to understand the readout unit of the calorimeter and realised there
could be excess energy if some heavily ionising particles go through the
readout unit. This excess is not light produced in the crystal but charge
deposited in the readout unit

• Simulating the readout unit removed the observed excess

•A qualitative as well as quantitative understanding of everything observed is
crucial in providing results with the highest precision and confidence

•Simulation and Geant4 provide this confidence

Detector Simulation

Components

•Detector Simulation needs

•Knowledge of the detector components

•How particle interacts with matter

•Monte Carlo methods

•Geant4 as a tool

Detector Simulation

Interaction of Particles with Matter

Detector Simulation

Interaction of particles with matter
•The first thing is to understand how particles (radiation) behave when they pass through

matter

•Charged particles passing through matter interact with nuclei as well as with atomic
electrons. The physical processes are broadly classified into two categories:
•Discrete processes (bremsstrahlung, annihilation, elastic, …)
•Continuous processes (energy loss, multiple scattering, …)

•Continuous energy loss (charged particles in the matter)

7

➢At small β, -dE/dx decreases with
momentum

➢A minimum is reached at βγ≈4

➢At large β, γ2 term dominates → relativistic
rise

➢At very large βγ, saturation due to
screening → density effect

Detector Simulation

Energy Loss

• Individual collisions are classified as
•Distant collision: atoms react as a whole → excitation, ionization
•Close collision: with atomic electrons → knock-on
•Very close: with nuclei → radiation

• If no discrete process happens, particles eventually stops after losing all
energies

8

Detector Simulation

Stopping Power

•Stopping power for a muon in copper as a function of muon momentum

9

Critical
Energy

Detector Simulation

Discrete processes

•Discrete processes:
•Bremsstrahlung

• Annihilation (positron)

• Elastic Scattering

•Pair production

•Compton scattering

•Photoelectric
•Decays of unstable particles (em/weak)
•Strong interaction for hadrons

10

Detector Simulation

Electromagnetic Shower

•At energies above 100 MeV, e± loses energy mainly through
bremsstrahlung emitting photons

•At similar energies, γ’s interact mainly through pair production generating e±

•At high energies, σ(E) ~ constant

11

Detector Simulation

EM Showers

• e+/e-/γ cascade (degrading energy in each stage) mainly through
successive bremsstrahlung and pair production

•The number of particles in the shower increases till the energies of the
particles reach E → εc, critical energy

•Beyond this energy, ionization/excitation takes over and the shower decays
out

12

Detector Simulation

EM Shower Parameters

•Energy loss due to radiation is governed by LR, the radiation length of the
material traversed. LR in g.cm-2

•Both bremsstrahlung and pair production are highly forward peaked. Lateral
growth of the shower comes dominantly from multiple scattering at these
energies

• Low energy end of a shower is generated through the collision process

•Beyond shower maximum, there is an exponential decay of the shower
[exp(-t/λAtt)]

• Angular distribution for Compton scattering, the photo-electric effect is
isotropic causing a further increase in the lateral size of the shower

• The shower profile is determined by Moliere radius ρM. 95% of the energy
deposited is contained in a cylinder of radius 2ρM.

13

Detector Simulation

• 98% of the shower is contained in (tmax+4λatt) where the position of shower
maximum tmax increases only logarithmically with incident energy E.

• The lateral size of the shower changes with shower depths – broader at or
beyond the shower maximum.

•While radiation length (hence shower length) depends strongly on material,
lateral size is roughly material-independent.

• Showers initiated by electrons and photons are different in the first few
radiation lengths. For a fully absorbed shower, the difference is reduced.

14

EM Showers

Detector Simulation

Hadronic Showers

•They are similar to electromagnetic showers, but with greater variety and
complexity due to hadronic processes

• The strong interaction is responsible for
•Production of hadronic shower particles, ~90% of these are pions. Neutral pions

decay to 2 γ’s which develop em showers
• Interaction with the nucleus – neutrons/protons are released from the nucleus and

the binding energy is lost from producing more shower particles
•EM showers produced by π°’s develop in the same way as those due to e±/γ’s.

Fraction of π° increases with energy. Typically EM energy fraction is ~30% at 10
GeV increasing to ~50% at 100 GeV.

• The remaining energy is carried by ionizing particles, neutrons and invisible
components (lost in binding energies or carried by ν’s from decays). In lead they are
roughly in the ratio 56:10:34 and two-thirds of ionizing energy is due to protons.

15

Fast pions
or protons

Slow
protons

Neutrons
not visible

30 GeV protons in Emulsion

Detector Simulation

Fluctuations in Hadronic Shower
•There is a large variety of profiles in hadronic showers
• This depends on π° multiplicity in each step of interactions
• Leakage plays an important role even though the average containment is

high

16

Detector Simulation

Hadronic Shower

•The typical scale is collision length

•Shower maximum occurs at tmax(λ) ~ 0.2 lnE +0.7

•Decay of shower is slower: power law (λE0.13) rather than logarithmic in E

•The transverse dimension is controlled by λ – laterally it takes less material
to contain the shower at higher energies (larger fraction of EM energy)

17

Detector Simulation

Monte Carlo methods

Detector Simulation

History

• “After spending a lot of time trying to estimate success by combinatorial
calculations, I wondered whether a more practical method might be to lay it
out say one hundred times and simply observe and count the number of
successful plays” - S. Ullam playing Solitaire while recovering from an illness
during 1946

• 1943 saw the first electro-mechanical computers solving non-linear equations.
Ulam’s idea led von Neumann to think of using this new device to carry out the
statistical sampling. He together with Richtmeyer worked on “Statistical
Methods in Neutron Diffusion” in 1947

• The first calculation was done on the ENIAC computer in 1948, with the code
finalised by December 1947

• Metropolis christened the name “Monte Carlo” and gave rise to MANIAC —
Mathematical and Numerical Integrator and Computer

• Enrico Fermi had the idea even 15 years earlier than Ulam and astonished his
Roman colleagues by accurately predicting experimental results using
statistical techniques. He created an analogue machine FERMIAC to study
neutron transport while awaiting the arrival of ENIAC

Detector Simulation

Monte Carlo Technique
• Solution of a problem as a parameter of a hypothetical population and

constructing a sample of the population to obtain estimates of the parameter

• ==> use random numbers to construct a sample

• This technique is particularly useful to study particle scattering and absorption
because it involves
• random processes (interaction, scattering, …)
• complicated multi-dimensional integration

• The Monte Carlo technique is the ideal way to carry out multi-dimensional
integration — the fastest method when the number of dimensions exceeds 3 or 4.

• We may need to carry out an integration:

then with a set of random numbers in the range 0 — 1, determine F
and this F will be an unbiased estimator of I

• Repeat this estimate a large number of times and the mean value of F, <F> will
converge to the value of I

Detector Simulation

Uniform Random Number

Detector Simulation

Random Number Generators

Detector Simulation

Arbitrary probability density

•To generate random numbers according to an arbitrary normalised
probability density function F(x), there are several methods available. One
has to choose the most efficient approach

•Transformation method:
Let there be a random function which can produce a variable x uniformly
in the range from 0 to 1: 0 ≤ x ≤ 1

This implies that the probability of generating a number between x and
x+dx:

and the probability density function is normalised:

Now we would like to generate random numbers y with a probability
density function f(y) which also follows:

Detector Simulation

Transformation Method

Using the fundamental transformation law of probability

So one gets

This is to be inverted to get

Detector Simulation

Transformation Method (an example)

Let us generate an exponential distribution as an example:

This satisfies

Imposing boundary conditions, namely and and x = 1 at one
obtains c = 1

Thus

Detector Simulation

Generalised Transformation Method

The transformation method can be generalised to more than one
dimension:

 are random deviates with joint probability distributions

 each is a function of all x’s (number of y’s = number of x’s)

 I.
 I. is the Jacobian determinant of x’s with respect to y’s

Let us have two uniform deviates and the variables are
defined as

Detector Simulation

Generalised Transformation Method

Equivalently

The Jacobian determinant:

Since this is a product of two functions, one of and one of , one gets
two independent random deviates following the Gaussian distribution of
mean 0 and RMS 1:

Detector Simulation

Law of large numbers
•Concerns sum of a large number of random variables

•Choose n numbers distributed randomly with uniform probability density in the
interval a to b

•Evaluate for each value of

The LHS is a consistent estimator of the integral which implies that the variance of
f will be finite

The standard deviation of the estimator

This is the Central Limit theorem

The sum of a large number of independent random variables is always normally
distributed, no matter how the random numbers are distributed

The normal distribution is specified by its expectation value a and variance

Detector Simulation

Gaussian Distribution

If ‘s are uniform deviates between 0 and 1 →

So if one takes the sum of k variables: , then

By choosing 12 random variables and computing one gets a
normally distributed variable with a mean 0 and variance 1

Detector Simulation

Gaussian Distributions

Detector Simulation

•Rejection method:

If the probability distribution function is known and computable, this method can be
applied. Here one does not require:

Cumulative distribution function to be available
The distribution function could be inverted

For example, one needs to generate a random number in the range a to b
according to a probability distribution function proportional to p(x)

choose a function f(x) (comparison function) such that
The corresponding cumulative distribution function is computable and invertible
f(x) lies above p(x) at all places between a and b

A more general method

Detector Simulation

choose x using the transformation method applied to the function f(x)

use a second deviate u which is uniformly distributed between 0 and 1. If
p(x)/f(x) ≤ u, then the value of x is to be accepted; otherwise that value
of x is to be rejected and a fresh value has to be obtained using the
transformation method

Rejection method

Detector Simulation

• Express the probability density function as a sum of components:

with α’s positive; normalised probability density functions which can be
inverted; and are computable functions which do satisfy the relation

Solution to the problem can be obtained as:
• select an integer i randomly within and with the probability

of selecting it:
• select a variable x’ from using the transformation method
• calculate and accept x = x’ with selection probability
• If rejected, go and select i once again and repeat

This is a good method of sampling x if
• all sub-distribution functions can be easily sampled
• the rejection functions can be quickly computed
•mean number of tries is not too large

A General method

Detector Simulation

Application to Pair Production

•Pair production:
A photon of energy E produces a pair of electron and positron with the
electron carrying an energy fraction

Rewrite the probability density function for

Detector Simulation

Pair Production

Kinematic range for

Using of symmetry of

Define a variable

•

•

•

Detector Simulation

GEANT4

Detector Simulation

Geant4

•Geant4 is a toolkit which helps to build an application program for simulating
the performance of a detector exposed to radiation
•Originally built for experiments in high energy and nuclear physics
•Also finds its application in space physics and medical science

•The public production version has been available since the year 1999

•The package came with several examples to guide buildings of application
programs

• It is written mostly in the C++ language using object-oriented technology

•Available as open source through CERN and works on many platforms
• Latest version Geant4.11.2

• Three main reference papers:
•Nuclear Instruments and Methods A506 (2003) 250
• IEEE Transactions on Nuclear Science 53 (2006) 270
•Nuclear Instruments and Methods A835 (2016) 186

37

Detector Simulation

Detector Simulation

•Geant4 provides tools for particle transport and also to model experimental
environments

• The “User” needs to use Geant4 tools
• to tell the Geant4 kernel about the simulation configuration
• to interact with the Geant4 kernel itself

• The “User” must tell Geant4 what he/she only knows
•The experimental scenario
•Geometry, materials, sensitive and passive elements
•Primary particles, radiation environment

• That the “User” wants to happen during transport
•which particles are to be tracked
•which physics processes would be of interest (and which options for

modelling are preferable)
• how precise the simulation is going to be

Detector Simulation

Code Arrangement
•All codes of Geant4 are grouped into 17

categories

•Relationships among classes from two
categories:
•Always one sided
•No cyclic dependencies

• “Global” is at the lowest level
•No dependency on any class from

other categories of Geant4

• “Geant4” is at the highest level
•Classes in this category depend on all

other categories

•External dependencies:
•CLHEP (HEP utilities)
• PTL (for making libs/executable)
• EXPAT | XML
•XERCES | parsing
• … some Graphics packages …

39

Domain
decomposition

hierarchical structure
of sub-domains

Geant4 architecture

Uni-directional flow of
dependencies

Interface to
external products
w/o
dependencies

Detector Simulation

Some of the terminologies

•Run, Event, Track, Step, Stack, …

•Track vs. Trajectory; Step vs. Trajectory Point

•Particle, Process, Hits, …

40

Detector Simulation

Initialization

41

m ain Run m anage r user detector
construction

use r phy sics
l ist

1: initial ize 2 : construct

3: m ate rial construction

4: geom etry construction
5: world volum e

6: construct

7 : phy sics process construction

8: set cu ts

Describe your
experimental set-
up

Activate physics processes
appropriate to your experiment

Detector Simulation

Event Loop

42

main Run Manager Geometry
manager

Event
generator

Event
Manager

1: Beam On 2: close

3: generate one event

4: process one event

5: open

Generate primary events
according to distributions
relevant to your
experiment

Detector Simulation

Event Processing

43

Event
manager

Stacking
manager

Tracking
manager

Stepping
manager

User sensitive
detector

1: pop

2: process one track 3: Stepping
4: generate hits

5: secondaries

6: push

Record the physics
quantities generated by the
simulation, that are relevant
to your experiment

Detector Simulation

Run in Geant4

•Conceptually, a Run is a collection of Events which share the same detector
setup and physics conditions
•A Run consists of one loop over Events

•Within a Run, the user cannot change
• the detector setup
• settings of the physics processes

•As an analogy of the real experiment, a run of Geant4 starts with “Beam On”

•At the beginning of a Run, the geometry is optimised for navigation and
cross-section tables are calculated according to materials which appear in
the geometry and with the defined cut-off values

•G4RunManager class manages the processing of a Run, a Run is
represented by the G4Run class or a user-defined class derived from it

•G4UserRunAction is an optional user hook

44

Detector Simulation

Event in Geant4

•An Event is the basic unit of simulation in Geant4

•At the beginning of processing, primary tracks are generated. These tracks
are pushed into a stack

•A track is popped up from the stack one by one and is traced through the
detector. The resulting secondary tracks, if any, are pushed into the stack
•This “tracking” lasts as long as the stack has a track

•When the stack becomes empty, the processing of the event is over

•G4Event class represents an Event. It has the following objects at the end of
its (successful) processing
• List of primary vertices and particles (as input)
•Hits and trajectory collections (as output)

•G4EventManager class manages the processing of an event

• There is an optional user hook: G4UserEventAction

45

Detector Simulation

Track in Geant4

•A Track is a snapshot of a particle
• It has physical quantities of the current instance only. It does not contain a record

of previous quantities
•A Step is a “delta” information of a Track. A Track is not a collection of Steps.

Instead, a Track is being updated by the Step.

• The Track object is deleted when
• it goes out of the world volume,
• it disappears (through decays, inelastic scattering, …),
• it goes down to zero kinetic energy and no “AtRest” additional process is

required for the particle, or
• the user decides to kill it artificially.

•No Track object persists at the end of an event
• For the record of Tracks, use Trajectory class objects

•G4TrackingManager manages the processing of a Track. A Track is represented
by the G4Track class

•There is an optional user hook: G4UserTrackingAction

46

Detector Simulation

Step in Geant4

47

•A Step has two points and also “delta” information of a particle (energy loss
in the step, time-of-flight spent by the step, etc.)

• Each point knows the volume (and it's material) where it is in. In case a step
is limited by a volume boundary, the endpoint will physically stand on the
boundary, and it logically belongs to the next volume
•Since each Step knows materials of two volumes, boundary processes

such as transition radiation or reflection could be simulated

•G4SteppingManager class manages the processing of a Step, and a Step is
represented by the G4Step class

•G4UserSteppingAction is the optional user hook

Detector Simulation

Trajectory and Trajectory Point
•Please remember, a Track does not keep its trace and no Track object persists at

the end of an Event

•G4Trajectory is the class which copies some of the information of a G4Track object.
Likewise, G4TrajectoryPoint is the class which keeps some of the information of a
G4Step object
•A G4Trajectory object has a vector of G4TrajectoryPoint objects
•At the end of event processing, the G4Event object has a collection of

G4Trajectory objects provided
• /tracking/storeTrajectory is set to 1

•Keep in mind the distinction:
•G4Track vs G4Trajectory, G4Step vs G4TrajectoryPoint

•Given that the G4Trajectory and G4TrajectoriyPoint objects persist till the end of an
event, one should be careful not to store too many trajectories
•Avoid storing shower tracks from a high-energy particle

•G4Trajectory and G4TrajectoryPoint objects store only the minimum information
•The user can create his/her own Trajectory/TrajectoryPoint classes to store the

required information. These classes can be derived from the base classes
G4VTrajectory and G4VTrajectoryPoint

48

Detector Simulation

Particle in Geant4

•A particle in Geant4 is represented by three layers of classes:

•G4Track:
•Position, geometrical information, etc.
•This is a class representing a particle to be tracked

•G4DynamicParticle:
• “Dynamic” physical properties of a particle, such as momentum, energy,

spin, etc.
•Each G4Track object has its own unique G4DynamicParticle Object
•This is a class representing an individual particle

•G4ParticleDefinition:
• “Static” properties of a particle, such as charge, mass, lifetime, decay

channels, etc.
•G4ProcessManager which describes the processes involving the

particles
•All G4DynamicParticle objects of the same kind of particles share the

same G4ParticleDefinition

49

Detector Simulation

Tracking and Process

•Tracking in Geant4 is universal

• It is independent of
•the particle type
•the physics processes involving the particle

•It gives the chance to all processes
•to contribute to the determination of the step length
•to contribute any possible changes in physical quantities of the track
•to generate secondary particles
•to suggest changes in the state of the track
•e.g. to suspend, postpone or kill it

50

Detector Simulation

Process in Geant4

• In Geant4, particle transportation is a process as well, by which a particle
interacts with geometrical volume boundaries and fields of any kind
•Because of this, the shower parametrization process can take over from

ordinary transportation without modifying the transportation process

•Each particle has its own list of applicable processes. At each step, all
processes involved are invoked to get proposed physical interaction lengths

•The process which requires the shortest interaction length (in space-time)
limits the step

•Each process has one or combination of actions with the following nature:
•At Rest
•e.g. muons can decay at rest

• Along Step (a.k.a. continuous process)
•e.g. Cherenkov process

•Post step (a.k.a. discrete process)
•e.g. decay in flight

51

Detector Simulation

Track Status
•At the end of each step, the state of a track may change (according to the

processes involved)
• The user can also change the status in UserSteppingAction
•Status, as mentioned below, are artificial, i.e. Geant4 kernel won’t set them, but

the user can
•fAlive
•continue the tracking

•fStopButAlive
• the track has come to zero kinetic energy, but still AtRest process to occur

•fStopAbdKill
•The track has lost its identity because it has decayed, interacted, or gone beyond

the world boundary
•Secondaries will be pushed to the stack

•fKillAndSecondaries
•kill the current track and also associated secondaries

•fSuspend
•suspend the processing of the current track and push it and its secondaries to the

stack
•fPostponeToNextEvent
•Postpone processing of the current track to the next events
•Secondaries are still being processed within the current event

52

Detector Simulation

Step Status

•The step status attached to the G4StepPoint indicates why that particular
step was chosen
• “PostStepPoint” gives the status of this step
• “PreStepPoint” provides the status of the previous step
• fWorldBoundary
• step reached the world boundary

• fGeomBoundary
• step is limited by a volume boundary except for the world

• fAtRestDoItProc, fAlongStepDoItProc, fPostStepDoItProc
• step is limited by AtRest, AlonStep or PostStep process

• fUserDefineLimit
• step is limited by the user step limit

• fExclusiveForcedProc
• step is limited by an exclusively forced process (e.g. shower parametrisation)

• fUndefined
• step not defined

• If the first step in a volume is to be identified, pick fGeomBoundary status in
the PreStepPoint

• If a step going out of a volume is to be identified, pick fGeomBounday status
in the PostStepPoint

53

Detector Simulation

Extraction of Useful Information

•Given geometry, physics and primary track information, Geant4 does proper
physics simulation “silently”
• The user has to add a bit of code to extract useful information

•There are two ways for extraction:

•Use the user hooks provided by Geant4
•These are: G4UserTrackingAction, G4UserSteppingAction, ….
•The user has access to almost all information
• It is straight-forward but do-it-yourself

•Use Geant4 scoring functionality
•Assign G4VSensitiveDetector to a volume
•Hits collection is automatically stored in the G4Event object, and automatically

accumulated if the user-defined Run object is used
•Use user hooks to get event/run summary
•The relevant action classes are G4UserEventAction, G4UserRunAction

54

Detector Simulation

Geant4 as a State Machine

•Geant4 has six application states:

•G4State_PreInit
•At this state, material, geometry,

particle and physics process need
to be defined and initialized

•G4State_Idle
•Geant4 is ready to start a run

•G4State_GeomClosed
•Geometry is optimised and ready

to process an event
•G4State_EventProc
•An event is being processed

•G4State_Quit
•(Normal) termination

•G4State_Abort
•A fatal exception occurred and the

program is aborting

55

Detector Simulation

Track Stacks in Geant4

•By default, Geant4 has three track stacks:
• “Urgent”, “Waiting” and “PostponeToNextEvent”
•Each stack operates in a simple “last-in-first-out” mode
•User can increase arbitrarily the number of stacks

•ClassiftNewTrack() method of G4UserStackingAction class decides which
stack each newly created secondary particle to be stored (or be killed)
•By default, all tracks go to the “Urgent” stack

•A G4Track is popped up only from the “Urgent” stack

•Once the “Urgent” stack is empty, all tracks in the “Waiting” stack are
transferred to the “Urgent” stack
•And NewStage() method of th4 G4UserStackingAction is invoked

•Utilising more the one stack, the user can control the priorities of processing
tracks without paying the overhead of “scanning the highest priority track”
•Proper selection/abortion of tracks/events with well-designed stack

management provides significant efficiency increase of the entire simulation

56

Detector Simulation

Stacking Mechanism

57

Detector Simulation

Tips of Stacking Manipulation

•Classify all secondaries as fWaiting until Reclassify() method is invoked
•One can simulate all primaries before any secondary

•Classify secondary tracks below a certain energy as fWaiting until the
Reclassify() method is invoked
•One can roughly simulate the event before being bothered by low energy

electromagnetic showers

•Suspend a track on its fly. Then this track and all of the already generated
secondaries are pushed to the stack
•Given the stack is “last-in-first-out”, secondaries are popped out prior to

the original suspended track
•This is quite effective for simulating Cerenkov radiation

•Suspend all tracks that are leaving a region, and classify these suspended
tracks as fWaiting until Reclassify() method is invoked
•One can simulate all tracks in this region prior to other regions
•Note that some backsplash tracks may come back into this region later

58

Detector Simulation

Primary Generator

•Each Geant4 Event starts with the generation of one or multiple primary
particles

• The user has to define the properties of primary particles
•Particle type, e.g. electron, gamma, ion, …
• Initial kinematics, e.g. energy, momentum, origin, …
•Additional properties, e.g. polarization, …

•These properties can be divided into:
•G4PrimaryVertex: specifying start point in space and time
•G4PrimaryParticle: specifying initial momentum, polarisation, PDG code, list

of daughters for decay chains

•A primary generator is a class derived from G4VPrimaryGenerator and has an
implementation of the method GeneratePrimaryVertex()
• The primary vertex and the primary particle(s) are added in this method to a

Geant4 Event
•Several event generators are provided in the Geant4 toolkit
•G4HEPEvtInterface, G4HEPMCInterface, G4GeneralParticleSoce, G4ParticleGun

59

Detector Simulation

PrimaryGeneratorAction

•This mandatory user action controls the generation of primary particles but
does not generate the primaries itself. This task is delegated to
G4PrimaryGenerator derived from G4VPrimaryGenerator

60

Detector Simulation

PrimaryGenerator

•The primary generator could make use of
• a built-in generator: G4ParticleGun for producing particles of arbitrary

momenta and direction to test a setup
• an external physics generator which provides a collection of particles

emerging from a known physics process (Pythia, Herwig, …)

Detector Simulation

Attaching user information

•Abstract classes:

• The user can use his/her own class derived from the period base class

•G4Run, G4VHit, G4VDigit, G4VTrajectory, G4VTrajectoryPoint

•Concrete classes:

• The user can attach a user information class object
•G4Event — G4VUserEventInformation
•G4Track — G4VUserTrackInformation
•G4PrimaryVertex — G4VUserPrimaryVertexInformation
•G4PrimaryParticle — G4VUserPrimaryParticleInformation
•G4Region — G4VUserRegionInformation

•User information class objects are deleted when the associated Geant4
class object is deleted

62

Detector Simulation

Modelling of a Detector

•Detectors are modelled by a geometrical shape filled with certain material of
known physical properties → “Volume”

•Several volumes can describe different components of the detector system.
Put them together in a hierarchical structure:

Composite Volume → Experimental Setup

Detector Simulation

Material

•Material has a Name, Effective Atomic Number and Weight, Density,
Radiation (LR) and Absorption (λ) length

• It can be defined by specifying these attributes
• If radiation and absorption lengths are not known, one can furnish

information regarding the chemical composition and Geant4 will compute
the required attributes for the application

•One can also add the state (solid | liquid | gas), isotopic properties, etc.
Some of these specifications are essential to study activation, …
•Define pseudo-elements:

new G4Material (name, Z, A, density, state, temperature, pressure);
•Define a mixture of elements in atomic or weighted proportion:

new G4Material (name, density, numComponents);
→AddElement (material, fraction);
G4Element* element = new G4Element (name, symbol, Z, A);
→AddElement (element, nAtom);

•Build elements from isotopes:
new G4Element (name, symbol, numIsotopes);

G4Isotope* isotope = new G4Isotope (name, Z, N);
→AddIsotope (isotope, abundance);

Detector Simulation

Volume

•A volume is defined by its shape, dimensional parameters and its material
content. A shape with dimensional parameters is called a Solid and the
association of a Solid with a Material is called a LogicalVolume.

• There are several ways to define a Solid:
•Computed Solid Geometry (CSG): G4Box, G4Trd, G4Trapm G4Tubs,

G4Cons, G4Sphere, G4PolyCone, ……..
•Boundary Representation (BREP): G4BrepSolidPcone, …….. (slower

navigation on a standard CPU, but works better in GPU)
•Boolean: Solids made out by adding, subtracting, intersecting, etc. several

solids: G4RotateSolid, ……
•STEP: Imported from the CAD system

•System of Units: Though a convention is used internally for the unit system,
the recommendation is not to remember them and use the units explicitly:

double length = 5 * cm;
double angle = 30 * deg;
double time = 25 * ns;

Detector Simulation

Define a Volume
•First define a Material, say Air consisting of 2 constituent elements Nitrogen

and Oxygen in a given weight proportion (70:30)

• First define Nitrogen and Oxygen with their appropriate Z, A values:

• Then define Air and add the two elements:

•Define a Solid of a given name (say INOM) as a box of given half length, half
width, half thickness:

•Associate the Solid with the Material to define the LogicalVolume:

• The reference frame is a right-handed Cartesian coordinate system with the
origin at the centre of the box

Detector Simulation

Define a Detector Setup

•To define a set up, one needs to
• define a Master or World reference system
•position the various components with respect to each other

•Geant4 uses the concept of PhysicalVolume which is a LogicalVolume
positioned in a Mother (PhysicalVolume or LogicalVolume) with a translation
vector and a rotation matrix (optional). For the top-level Volume (defining
the World reference system), the pointer of the Mother Volume should be
declared as a nullPointer

•One useful way of defining daughter volumes is by dividing an existing
mother volume into n equal parts along a chosen axis (Cartesian,
Cylindrical, or Polar)
• The creation and positioning are done in two separate steps

•When a daughter is positioned inside a mother, the extent inside the mother
occupied by the daughter gets filled with the material of the daughter's
volume

Can build up a tree like a Russian doll

Detector Simulation

Hooks for Positioning

creates a PhysicalVolume volume by positioning a copy with number
copyNumber of the LogicalVolume current inside the mother volume
mother with a translation vector (G4ThreeVector) and a rotation matrix rot
(G4RotationMatrix*)

If one needs to define a rotation matrix by specifying the angles of
the three axes (as done in Geant3), one needs to follow the steps:

Detector Simulation

Hooks for Positioning (2)

•For dividing a parent volume into equal parts along a given axis, one needs
to create the LogicalVolume using the standard steps (defining Solid,
Material, and LogicalVolume) and then position multiple replicas through:

This needs more steps than what used to be in its predecessor Geant3
(GSDVN), but it is more general

• The tree of PhysicalVolumes is instantiated at the time of tracking in the
form of G4VTouchable and the list of PhysicalVolumes in the branch will
provide the unique identification of a volume

Detector Simulation

Example

•Construct geometry of a cylindrical drift chamber with 8 sectors each having
5 cells:

•Define volume VOL1 as a tube with inner
and outer radii R1, R2 and half-length L

•Divide the tube into 8 parts azimuthally and
each section is called VOL2

•Define a trapezoid of half-length L, width
[R2.cos(π/8)—R1] and two edges of
dimension 2.R1.tan(π/8), and 2.R2.tan(π/8).
Position this volume VOL3 inside VOL2
with the proper translation vector and
rotation matrix

•Divide the trapezoid VOL3 into 5 parts
along the z-axis. Each part VOL4 will be a
cell

Detector Simulation

Example

•This will create the volume tree:

Detector Simulation

A Practical Example

• 7 x 7 crystal matrix made out of lead tungstate

• 28 layers of plastic scintillators interleaved with brass plates of varying
thickness

•B-field along the z-axis (perpendicular to the beam direction) with maximum
field strength of 3 Tesla

The 1996 CMS Test Beam Setup

Composite-Calorimeter as an Example in Geant4 (advanced)

Detector Simulation

Composite Calorimeter

•HCAL (the enclosure for the hadron calorimeter) contains two boxes made
out of aluminium each housing absorber plates and scintillator layers

•ECAL (the enclosure for the electromagnetic calorimeter) contains the
crystal matrix and some support structure

•Both ECAL and HCAL are placed in a mother volume CALO which defines
the world volume

Detector Simulation

Geometry Tree

22 Logical Volumes
 8 Levels in the Tree

Detector Simulation

Extraction of Useful information

•Given geometry, physics and primary track generation, Geant4 does proper
physics simulation “silently”
• The user needs to add a bit of code to extract useful information

•There are three ways:

•Use built-in scoring commands
•Most commonly-used physics quantities are available

•Use scorers in the tracking volume
•Create scores for each event
•Create own Run class to accumulate scores

•Assign G4VSensitiveDetector to a volume to generate “hit”
•Use user hooks (G4UserEventAction, G4UserRunAction) to get event / run

summary

• The user may also use user hooks (G4UserTrackingAction,
G4UserSteppingAction, etc.)
• The user has full access to almost all information

75

Detector Simulation

Sensitive Detector

•A G4VSensitiveDetector object can be assigned to a G4LogicalVolume

• In case a step takes place in a logical volume that has a
G4VSensitiveDetector object, this G4VSensitiveDetector is invoked with the
current G4Step object

76

Stepping
Manager

Physics
Process

Particle
Change

Step Track Logical
Volume

Sensitive
Detector

GetPhysicalInteractionLength

SelectShortest

DoIt Fill

Update

Update

IsSensitive

GenerateHits

Detector Simulation

Defining a Sensitive Detector

•The basic strategy
G4LogicalVolume* myLogCalor = ……;
G4VSensetiveDetector* pSensetivePart = new MyDetector(“/
mydet”);

G4SDManager* SDMan = G4SDManager::GetSDMpointer();
SDMan->AddNewDetector(pSensitivePart);
myLogCalor->SetSensitiveDetector(pSensetivePart);

•Each detector object must have a unique name

•Some logical volumes can share one detector object

•More than one detector object can be made from one detector class with
different detector name

•One logical volume cannot have more than one detector object. But, one
detector object can generate more than one kind of hits
•e.g. a double-sided silicon micro-strip detector can generate hits for each side

separately

77

Detector Simulation

Hit

•Hit is a snapshot of the physical interaction of a Track or an accumulation of
interactions of Tracks in the sensitive region of your detector

•A sensitive detector creates Hit(s) using the information given in the G4Step
object. The user has to provide his/her own implementation of the detector
response

•Hit objects, which are still the user’s class objects, are collected in a
G4Event object at the end of an event

78

Detector Simulation

Hit Class

•Hit is a user-defined class derived from G4VHit

• The user can store various types of information by implementing one’s own
concrete Hit class. For example:
•Position and time of the step
•Momentum and energy of the track
•Energy deposition of the step
•Geometrical information
• or any combination of above

•Hit objects of a concrete Hit class must be stored in a dedicated collection which is
instantiated from G4THitsCollection template class

•The collection is associated with a G4Event object via G4HCofThisEvent

•Hits are accessible as collections:
• through G4Event at the end of the event
• to be used for analyzing an event

• through G4SDManager during processing an event
• to be used for event filtering

79

Detector Simulation

Implementation of Hit class

80

#include "G4VHit.hh"
class MyHit : public G4VHit
{
 public:
 MyHit(some_arguments);
 virtual ~MyHit();
 virtual void Draw();
 virtual void Print();
 private:
 // some data members
 public:
 // some set/get methods
};

#include “G4THitsCollection.hh”
typedef G4THitsCollection<MyHit> MyHitsCollection;

Detector Simulation

Sensitive Detector class

•The sensitive detector is a user-defined class derived from the class
G4VSensitiveDetector

81

#include "G4VSensitiveDetector.hh"
#include "MyHit.hh"
class G4Step;
class G4HCofThisEvent;
class MyDetector : public G4VSensitiveDetector
{
 public:
 MyDetector(G4String name);
 virtual ~MyDetector();
 virtual void Initialize(G4HCofThisEvent*HCE);
 virtual G4bool ProcessHits(G4Step*aStep,
 G4TouchableHistory*ROhist);
 virtual void EndOfEvent(G4HCofThisEvent*HCE);
 private:
 MyHitsCollection * hitsCollection;
 G4int collectionID;
};

Detector Simulation

Types of Hit

•A tracker detector typically generates a hit for every single step of every single
(charged) track
•A tracker hit typically contains
•Position and time
•Energy deposition of the step
•Track identifier
•Some cell identifier

•A calorimeter detector typically generates a hit for every cell and accumulates
energy deposition in each cell for all steps of all tracks
•A calorimeter hit typically contains
•Sum of deposited energy
•Some timing information
•Cell Identifier

• The user can instantiate more than one object for one sensitive detector class.
Each object should have its unique detector name
•For example, each of the two sets of detectors can have its dedicated sensitive

detector objects. But, their functionalities are exactly the same so that they can
share the same class. See examples/extended/analysis/A01 as an example

82

Detector Simulation

Implementation of Sensitive Detector - 1

• In the constructor, the name of the hits collection which is handled by this
sensitive detector is to be defined

• In case the sensitive detector generates more than one kind of hits (e.g.
anode and cathode hits separately), all collection names need to be defined

83

MyDetector::MyDetector(G4String detector_name)
 :G4VSensitiveDetector(detector_name),
 collectionID(-1)
{
 collectionName.insert(“collection_name");
}

Detector Simulation

Implementation of Sensitive Detector - 2

• Initialize() method is invoked at the beginning of each event.

•Get the unique ID number for this collection
•GetCollectionID() is a heavy operation. It should not be used for every event
•GetCollectionID() is available after this sensitive detector object is

constructed and registered to G4SDManager. Thus, this method cannot be
invoked in the constructor of this detector class

•The hits collection(s) are to be instantiated and then attached to the
G4HCofThisEvent object given in the argument

• In the case of a calorimeter-type detector, hits for all calorimeter cells may be
instantiated with zero energy depositions, and then inserted into the collection

84

void MyDetector::Initialize(G4HCofThisEvent*HCE)
{
 if(collectionID<0) collectionID = GetCollectionID(0);
 hitsCollection = new MyHitsCollection
 (SensitiveDetectorName,collectionName[0]);
 HCE->AddHitsCollection(collectionID,hitsCollection);
}

Detector Simulation

Implementation of Sensitive Detector - 3

•This ProcessHits() method is invoked for every step in the volume(s) where
this sensitive detector is assigned

• In this method, generate a hit corresponding to the current step (for tracking
detector), or accumulate the energy deposition of the current step to the
existing hit object where the current step belongs (for calorimeter detector)

• The geometry information is to be collected (e.g. copy number) from
“PreStepPoint”

•Currently, the returned boolean value is not used
85

G4bool MyDetector::ProcessHits
 (G4Step*aStep,G4TouchableHistory*ROhist)
{
 MyHit* aHit = new MyHit();
 ...
 // some set methods
 ...
 hitsCollection->insert(aHit);
 return true;
}

Detector Simulation

Implementation of Sensitive Detector - 4

•This method is invoked at the end of processing an event

• It is invoked even if the event is aborted
• It is invoked before UserEndOfEventAction

86

void MyDetector::EndOfEvent(G4HCofThisEvent*HCE) {;}

Detector Simulation

Step Point and Touchable

•As mentioned already, G4Step has two G4StepPoint objects as its starting
and ending points. All the geometrical information of the particular step should
be taken from “PreStepPoint”
•Geometrical information associated with G4Track is identical to

“PostStepPoint”

•Each G4StepPoint object has
•Position in the world coordinate system
•Global and local time
•Material
•G4TouchableHistory for geometrical information

•The G4TouchableHistory object is a vector of information for each geometrical
hierarchy
• copy number
• translation/rotation to its mother

•Since release 4.0, handles (or smart-pointers) to touchable are intrinsically
used. Touchables are reference counted

87

Detector Simulation

CopyNo = 2

Copy Number

• geometrical information in G4Track is identical to that in “PostStepPoint”
• the user cannot get the correct copy number for "PreStepPoint" if one

directly accesses the physical volume

•The touchable is to be used to get the proper copy number, transform
matrix, etc.

88

•Suppose a calorimeter is made of 4x5
cells
• and it is implemented by two levels of

replica
• In reality, there is only one physical

volume object for each level. Its
position is parameterized by its copy
number

• To get the copy number of each level
for the cell when the step belongs to
two cells,

CopyNo = 0

CopyNo = 3

CopyNo = 1

0

0

0

0

4

4

4

4

2

2

2

2

1

1

1

1

3

3

3

3

Detector Simulation

G4Step* aStep;
G4StepPoint* preStepPoint = aStep->GetPreStepPoint();
G4TouchableHistory* theTouchable =
 (G4TouchableHistory*)(preStepPoint->GetTouchable());
G4int copyNo = theTouchable->GetVolume()->GetCopyNo();
G4int motherCopyNo
 = theTouchable->GetVolume(1)->GetCopyNo();
G4int grandMotherCopyNo
 = theTouchable->GetVolume(2)->GetCopyNo();
G4ThreeVector worldPos = preStepPoint->GetPosition();
G4ThreeVector localPos = theTouchable->GetHistory()
 ->GetTopTransform().TransformPoint(worldPos);

Touchable

• G4TouchableHistory has information on the geometrical hierarchy of the
point.

89

Detector Simulation

G4HCofThisEvent

• A G4Event object has a G4HCofThisEvent object at the end of (successful)
event processing. G4HCofThisEvent object stores all hits collections made
within the event.

• Pointer(s) to the collections may be NULL if collections are not created in
the particular event

•Hit collections are stored by pointers of the G4VHitsCollection base class.
Thus, one has to cast them into types of individual concrete classes

•The index number of a Hits collection is unique and unchanged for a run.
The index number can be obtained by

•The index table is also stored in G4Run

90

G4SDManager::GetCollectionID(“detName/colName”);

Detector Simulation

Usage of G4HCofThisEvent

91

void MyEventAction::EndOfEventAction(const G4Event* evt) {
 static int CHCID = -1;
 If(CHCID<0) CHCID = G4SDManager::GetSDMpointer()
 ->GetCollectionID("myDet/collection1");
 G4HCofThisEvent* HCE = evt->GetHCofThisEvent();
 MyHitsCollection* CHC = 0;
 if (HCE) {
 CHC = (MyHitsCollection*)(HCE->GetHC(CHCID)); }
 if (CHC) {
 int n_hit = CHC->entries();
 G4cout<<“My detector has ”<<n_hit<<" hits."<<G4endl;
 for (int i1=0;i1<n_hit;i1++) {
 MyHit* aHit = (*CHC)[i1];
 aHit->Print();
 }
 }
}

Additional Slides

Detector Simulation

Bookkeeping Issues

•Connection from G4PrimaryParticle to G4Track
G4int G4PrimaryParticle::GetTrackID()

•Returns the track ID if this primary particle had been converted into
G4Track, otherwise -1

•Connection from G4Track to G4PrimaryParticle
G4PrimaryParticle* G4DynamicParticle::GetPrimaryParticle()

•Returns the pointer of G4PrimaryParticle object if this track was defined as
a primary or pre-assigned decay product, otherwise null

•G4VUserPrimaryVertexInformation, G4VUserPrimaryParticleInformation
and G4VUserTrackInformation may be used for storing additional
information
• Information in G4VUserTrackInformation should be then copied to the

user-defined trajectory class so that such information is kept until the end
of the event

93

Detector Simulation

Solids

Detector Simulation

Hit Collection, Hit Map

•G4VHitsCollection is the common abstract base class of both
G4THitsCollection and G4THitsMap

•G4THitsCollection is a template vector class to store pointers of objects of
one concrete hit class type
•A hit class (deliverable of G4VHit abstract base class) should have its own

identifier (e.g. cell ID)

•G4THitsCollection requires the user to implement their own hit class

•G4THitsMap is a template map class that stores keys (typically cell ID, i.e.
copy number of the volume) with pointers of objects of one type

•Objects may not be those of the hit class
•All of the currently provided scorer classes use G4THitsMap with simple double

•Since G4THitsMap is a template, it can be used by the sensitive detector
class to store hits

95

