Introduction to Track Fitting

- How many parameters are required to define an charged trajectory in magnetic field ?
- In 2D, how many free parameters to define a straight line ?
- How many are in 3D ?
 - $-(x,y,z) + (\cos\alpha,\cos\beta,\cos\gamma): 6$
 - $-(\mathbf{x},\mathbf{y},\mathbf{z}) + (\mathbf{\theta},\mathbf{\phi})$:5
 - In a plane/surface (One constraint) → Four free parameters
- Trajectory in magnetic field : Four + one for the curvature : Total 5

Track fitting : Introduction

- These hit points belongs to a track (track finder) is given
 - Required to estimate the all track parameters **p** $((\rho, \Phi_0)/(x, y)/(d_0, z_0), \phi, cot(\theta), q/p_T) \text{ or } \left(x, y, \frac{dx}{dz}, \frac{dy}{dz}, \frac{q}{p}\right)$
 - **d**₀ : signed distance of closest approach to z-axis
 - z₀ : z of signed closest approach
 - φ: Azimuthal angle of closest approach
 - θ : Polar Angle of track

track

• q/p_T : Charge-signed curvature

An estimated one (from simple curvature etc)

Based on starting parameters, extrapolated points will vary (a function of p, f(p)). Minimise $\chi^2 = \sum_{x,y} \sum_i (m_i - f(p)_i)^2$ to obtain track parameters p. Takes care of any correlation between measured points

Extract five parameters

from these hit points

- Analytical eqn of helical path can not be used directly
 - Magnetic field is not uniform
 - -dE/dx of charge particle, change in curvature
- Use numerical approach

Track Fitting : Introduction

- The aims of track fitting :
 - Compute the best estimate of the track parameter
 - Compute the covariance matrix of the estimate
 - Compute test statistics

- There are several types of mistakes :
 - Misses : A hit is missing from a track candidate
 - Contamination : A track candidate contains a noise or a background hit
 - Loss : There is no candidate for a track
 - Ghost : A candidate is generated that does not correspond to track

Few remarks on track model

- The eqn of motion can be solved with sufficient precision
- Precise measurement of magnetic field and easily accessible
- Known material for estimation of multiple scattering, energy loss etc
- Removal of noise hits etc, wrong measurements
- Fit should have
 - Bias free, Variance, Consistency, Robustness
- Test for goodness of fit
 - Pull quantities, for correct estimations of track parameters these three condition must be fulfilled
 - The track model is correct
 - Covariance matrix of the measurement must be correct
 - Reconstruction programme must work properly
 - $-\chi^2$ test
- What are those track parameters ?
 - $\{ (\rho, \phi 0)/(x, y), \phi, cot(\theta), q/p_T \} \text{ or } \{ x, y, dx/dz, dy/dz, q/p \}$
 - Continuity with respect to small changes
 - Errors should be close to Gaussian (1/p, not p)
 - Good linear approximation to track propagation (reduces the effect of second derivatives)

Least Square fitting

• Simpson approximation : $f(p) = f(p_0) + A(p - p_0) + \langle \operatorname{order}\{(p - p_0)^2\} + \langle \operatorname{order}\{(p$

• And minimisation of $\chi 2$ gives the updated value of track parameter, p

$$\chi^{2} = [f(p_{0}) + A.(p - p_{0}) - m]^{T} V^{-1} [f(p_{0}) + A.(p - p_{0}) - m]$$

$$\rightarrow (p - p_{0}) = [A^{T} V^{-1} A]^{-1} A^{T} V^{-1} (m - f(p_{0}))$$

- Where,
 - $-m = m_i$, vector of measurements e.g., θ , ϕ (2×N, number of track points)
 - $-f = f_i$, vector of function corresponding to m, e.g., {x,y, ϕ , cot(λ), q/p}
 - -V, the covariance matrix of m, e.g., inverse of error matrices, (both position and effect of multiple scattering)
 - $-p_0$, the approximate initial value of track parameters
 - $-A = \partial f / \partial p$, at the point p_0
- The solution of the least-square problem,

$$-p = p_0 + (A^T V^{-1} A)^{-1} A^T V^{-1} (m - f(p_0))$$

And covariance matrix

$$- < (p - p_0)(p - p_0) > = < \left(\left(A^T V^{-1} A \right)^{-1} A^T V^{-1} \epsilon \right) \left(\epsilon^T V^{-1} A \left(A^T V^{-1} A \right)^{-1} \right) > = \\ \left(\left(A^T V^{-1} A \right)^{-1} A^T V^{-1} V V^{-1} A \left(A^T V^{-1} A \right)^{-1} \right) = \left(\left(A^T V^{-1} A \right)^{-1} A^T V^{-1} A \left(A^T V^{-1} A \right)^{-1} \right) \\ = \left(A^T V^{-1} A \right)^{-1}, \qquad \text{where } \epsilon = \left(m - f(p_0) \right) \text{ and } V = < \epsilon \epsilon^T >$$

Extrapolation of track in presence of magnetic field

• For collider expt in barrel part, where magnetic field is uniform and in Z-direction, an azimuthal angle after a pathlength along the helix, s is $\phi(s) = \phi_0 +$ $h s (cos\lambda/R_H)$, where $\lambda = \pi/2 - \theta$ and

$$\begin{aligned} x(\phi) &= x_0 + hR_H(sin\phi - sin\phi_0) \\ y(\phi) &= y_0 - hR_H(cos\phi - cos\phi_0) \\ z(\phi) &= z_0 + hR_H \cdot tan\lambda \cdot (\phi - \phi_0) \end{aligned}$$

Where R_H is the radius of helix $[= P \cos \lambda / (|kqB|)]$, k = 0.3 (GeV/c)T⁻¹m⁻¹ and

 $h = -sign(qB_z) = \pm 1 [= sign(d\phi/ds)]$

• No simple or direct propagation in case of inhomogeneous magnetic field

- Track propagated through any standard package, e.g., Runge-Kutta method or

- Assume uniform magnetic field locally

• Transform co-ordinate system such that magnetic field is along Z' axis

- Get distance to the crossing point of helix and plane
- Get the track parameters at the crossing point
- Return back to lab frame
- Step size is ~mm, need optimisation of CPU time and performance

Some more remarks

- In a pixel detector or in a double-sided silicon strip detector, *m* is two dimensional.
- In a one-sided silicon strip detector, it is one-dimensional.

• In a drift chamber or MWPC with several layers, the measurement may be the result of an internal track reconstruction. In this case the vector *m* may be four or five-dimensional.

- Strictly, the estimate is optimal only if the following assumptions hold:
 - The model is linear.
 - The noise is Gaussian.
 - The covariance matrix of the noise does not depend on the parameters.
- If the model is linear, it is still the best linear estimate.
- In practice, none of the assumptions hold exactly.

Simple example

- Uniform magnetic field along Z-axis, bending is only in X-Y plane,
- Approximate radius of curvature can be determined using first and last in silicon detector, as well as the centre of the circle,
- Use that and fit eqn of circle in X-Y plane to track parameters in bending plane
- Use again the same $\rho = \text{slope} (\cot \theta) \times z + \text{intersect eqn, to obtain } \cot \theta$ and z of track. Similarly also able to get ϕ and p_T in by fitting in r- ϕ plane.

• combining these two independent sets obtain full track parameters (ϕ_0 , z, cot(θ), ϕ , q/p) and its error.

Kalman filter and fit technique

A329, 493 CPC96, 189 A241, 115 NIM 176, 29

 $\varepsilon = \varepsilon_{detector} + \varepsilon_{ms},$

 ϵ_{ms} is not diagonal. LSM requires inversion of the n × n covariance matrices and computing time necessary to invert grows as n³. The reality is even worse, in presence of ambiguities and outlier

• A recursive or stepwise procedure for estimating the state vectors of a linear or discrete dynamic system (e.g., a track points in a different layer).

• Originally introduced in 1960, and was used in optimal signal processing, navigation, spacecraft tracking

• 1983, P. Billoir first proposed this technique in HEP (did not know that he was deriving Kalman technique)

- Since the early 90's, most of the HEP experiments have moved to this technique.
- Kalman filter brings additional benefits to tracking:
 - Local treatment of multiple scattering
 - Use in local pattern recognition
 - Integrating (non-Gaussian) energy loss in the track model
- Kalman filter also exists for vertex reconstruct

Kalman filter

- Track parameters: $p_k = f_k(p_{k-1}) + P_k \delta_k$, $< \delta_k > = 0$, $C(\delta_k) = Q_k$
- Measurement equations, $m_k = h_k(p_k) + \epsilon_k$, $< \epsilon_k > = 0$, $C(\epsilon_k) = V_k = W_k^{-1}$
- h_k , maps the track parameters on the measurement surface, is frequently linear, otherwise approximate by its 1st order Taylor expansion
- f_k, in nonlinear in most cases, but Kalman filter in its basic forms assumes a linear system.

direction of filter

Kalman filter

• State vector at any step is the combination of extrapolation from previous measurement and measurement at that point,

 $p_k^k = K_k^1 p_k^{k-1} + K_k^2 m_k$, $p_k^{k-1} = F_{k-1} p_{k-1}$ where, K_k^1 and K_k^2 are two weight factors, p_k^{k-1} is the expected state vector from previous measurements

• Weight factors is calculated (for true state vector, p) from the minimisation of

$$\chi^{2} = (m_{k} - f(p))^{T} V^{-1} (m_{k} - f(p)) + (p - p_{k}^{k-1})^{T} (C_{k}^{k-1})^{-1} (p - p_{k}^{k-1})$$

Which has the following matrix algebra for each steps

$$V = (V_{k} + A_{k} C_{k}^{k-1} A_{k}^{T})$$

$$C_{k}^{k-1} = F_{k-1} C_{k-1} F_{k-1}^{T} + Q_{k-1}$$

$$K_{k} = C_{k}^{k-1} A_{k}^{T} (V_{k} + A_{k} C_{k}^{k-1} A_{k}^{T})^{-1}$$

$$p_{k} = F_{k-1} p_{k-1} + K_{k} (m_{k} - A_{k} F_{k-1} p_{k-1}) = (I - K_{k} A_{k}) p_{k}^{k-1} + K_{k} m_{k}$$

$$C_{k} = (I - K_{k} A_{k}) C_{k}^{k-1}$$

Kalman filter

• Which has the following matrix algebra for each steps

$$V = (V_{k} + A_{k} C_{k}^{k-1} A_{k}^{T})$$

$$C_{k}^{k-1} = F_{k-1} C_{k-1} F_{k-1}^{T} + Q_{k-1}$$

$$K_{k} = C_{k}^{k-1} A_{k}^{T} (V_{k} + A_{k} C_{k}^{k-1} A_{k}^{T})^{-1}$$

$$p_{k} = F_{k-1} p_{k-1} + K_{k} (m_{k} - A_{k} F_{k-1} p_{k-1}) = (I - K_{k} A_{k}) p_{k}^{k-1} + K_{k} m_{k}$$

$$C_{k} = (I - K_{k} A_{k}) C_{k}^{k-1}$$

• Where

- p_k : State vector { $r, \phi, cot(\lambda), \phi, q/p_T$ }, (5×1)
- C_k : Stage covariance matrix, (5×5)
- F_k : Propagator matrix of state vector p_k , (5×5)
- $-Q_k$: Noise matrix due to multiple scattering/ionisation loss, (5×5)
 - Some basics are in NIMA 329 (1993) 493
- $-m_k$ (X(Y) position measurement, (2×1)
- V_k : Error matrix of m_k , [z, ϕ] (2×2)
- A_k : Measurement function ($\partial f / \partial p_k$ from expression $m_k = f(p_k)$), (2×5)
- K_k: Kalman gain factor, (5×2)
- K_k^1 : (I $K_k A_k$) and K_k^2 = K_k

Momentum without magnetic field

 Path length : Where measurement of curvature is poor due to large multiple scattering (JINST 13 (2018) no.09, P09015) or poor position measurement

Recoiling Nitrogen nuclei

proton tracks ejected from paraffin wax

Assume that incident neutral radiation consists of particles of mass *m* moving with velocities $v < V_{mx}$

Determine maximum velocity of recoil protons (U_p) and Nitrogen nuclei (U_N) from maximum observed range (From non-relativistic energy-more

$$U_{\rm p} = \frac{2m}{m + m_{\rm p}} V_{\rm mx}$$

$$U_{\rm N} = \frac{2m}{m+m_{\rm N}} \, \mathrm{V}_{\mathrm{mx}}$$

From non-relativistic energy-momentum Conservation m_p : proton mass; m_N : Nitrogen nucleus mass

 $\frac{U_{\rm p}}{U_{\rm N}} = \frac{m + m_{\rm N}}{m + m_{\rm p}}$ From measured ratio $U_{\rm p} / U_{\rm N}$ and known values of $m_{\rm p}, m_{\rm N}$ determine neutron mass: $m \equiv m_{\rm n} \approx m_{\rm p}$

Present mass values : $m_{\rm p} = 938.272 \text{ MeV}/c^2$; $m_{\rm n} = 939.565 \text{ MeV}/c^2$

Momentum without magnetic field

- Use angle of multiple scattering (NIMA 867 (2017) 182, concept for LAr TPC)
 - Bayesian analysis on a series of Kalman filter

$$\theta_0 \approx \frac{13.6 MeV/c}{\beta \ c \ p} \sqrt{\frac{x}{X_0}} \left[1 + 0.38 \ln\left(\frac{x}{X_0}\right) \right]$$

Momentum using angle of multiple scattering

New J Phys 14 (2012) 013026 (OPERA Lead-emulsion target)

Momentum using angle of multiple scattering

• JINST 12 (2017) no.04, P04010 (ICARUS ~1kt T600 LAr TPC)

Dimuon mass over range from ~1GeV to ~100 GeV

Calibration through mass peak

Exercises

- Using input from the track finder algorithm and other information
 - Initialise the track parameters
 - Estimate the track parameters by imposing least square fit
 - Compare with generator level information
- Include the ionization energy loss and multiple scattering in the fit to improve resolutions
- •
- Using simple equation of circle, calculate the transverse momentum of muon tracks