Machine Learning

Abhijit Bhattacharyya vega@barc.gov.in

Bhabha Atomic Research Centre, Mumbai 400 085

Feb 8, 2024

(Information) (Average level of Surprise / Uncertainty) Data shows pattern

(Information) (Average level of Surprise / Uncertainty) Data shows pattern

Knowledge Learning is involved using information, provides interpretation, understanding of unknown phenomenon.

(Information) (Average level of Surprise / Uncertainty) Data shows pattern

> Knowledge Learning is involved using information, provides interpretation, understanding of unknown phenomenon.

Processor uses data to generate a connected mapping using some mathematical functions / models to understand unknown data.

Machine Learning

Definition by Tom Mitchell (1998):

Machine Learning is the study of algorithms that

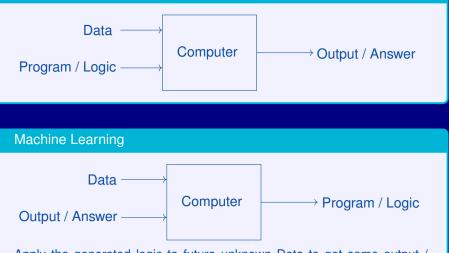
- improve their performance P
- for some task T
- with experience *E*.

A well defined learning task is given by < P, T, E >.

Improve on task T with respect to Performance metric P based on experience E

भाष अकें BAC

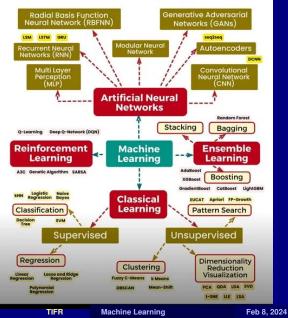
Traditional Programming



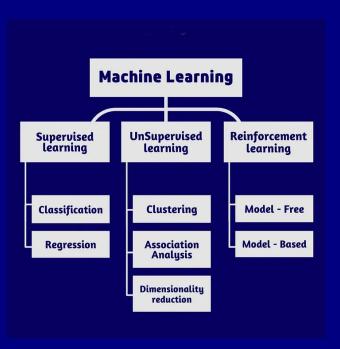
Apply the generated logic to future unknown Data to get some output / result.

TIFR

Machine Learning Algorithms



5/35



Machine Learning Feb 8

TIFR

Feb 8, 2024 6/35

Data Engineering

TOOLS:

- TensorFlow: Open source ML Lib developed by Google.
- PyTorch: Open source Deep learning framework know for dynamic computation graph, intuitive design and support for dynamic NN.
- Scikit-learn: Library with collection of tools for data preprocessing, feature selection, model evaluation etc.
- Keras: A Deep learning API on the top of TensorFlow or PyTorch.

Big data Technologies for processing and Storing ML Data

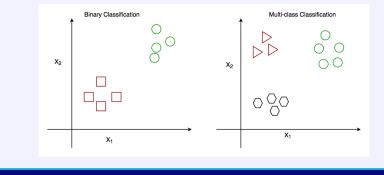
- Hadoop: Open source Big data framework includes Hadoop Distributed File System (HDFS) for distributed storage. Hadoop has the MapReduce programming model for processing large datasets.
- Apache Spark: Open source framework for distributed data processing provides libraries for various tasks including data preprocessing, ML, graph processing. Its in-memory processing capabilities accelerate computations using AI/ML. It overcomes limitations of Hadoop.

Data / Outliers / Anomalies

- Outliers: Distribution or dataset having unusual input for training.
- Overfitting: Outliers cause Overfitting.
- Sorting, grouping may help to detect Outliers.
- Anomaly may represent distribution or pattern but does not accurately reflect dataset. Outliers may be Anomalies while Anomalies are not Outliers.

Classification Algorithm:Supervised Learning

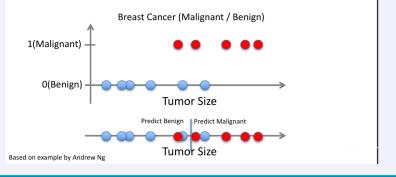
Classification problem: Model or function to separate data into multiple categorical classes *i.e.* discrete values.



TIFR

Supervised Learning: Classification

- Given (x_1 , y_1), (x_2 , y_2), ..., (x_n , y_n)
- Learn a function f(x) to predict y given x
 y is categorical == classification

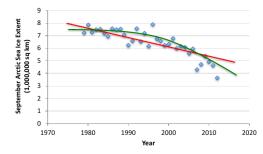


TIFR

Supervised Learning: Regression

- Given (x_1 , y_1), (x_2 , y_2), ..., (x_n , y_n)
- Learn a function f(x) to predict y given x

-y is real-valued == regression



Data from G. Witt. Journal of Statistics Education, Volume 21, Number 1 (2013)

TIFR

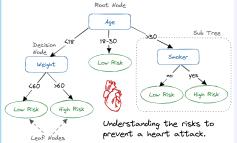
Machine Learning

Feb 8, 2024 11/35

Decision Tree : Classification

- Consecutive set of questions (nodes).
- Only TWO possible answers per question.
- Each question depends on previous answers.
- Final verdict (leaf) is reached after a given maximum number of nodes.
- Easy to understand/interpret
- Good with multivariate data
- Fast training
- Single tree is NOT very strong \Rightarrow Random Forests

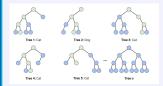
Decision Tree : Classification



- The topmost node is called Root Node.
- Root node learns to make partition on the basis of attribute values.
- Partitioning is done in recursive manner.
- Best attribute selection is heuristic and best attribute becomes a decision node.
- Easily capture non-linear patterns.
- It can be used for feature engineering to predict missing data etc.
- Sensitive to noisy data and may overfit.
- Small variation may produce different tree which can be fixed by bagging and boosting.

Feb 8, 2024 13/35

Random Forest: (Classification && Regression)



Green circle is hypothetical path the tree took to reach decision

- Random forest can be used for Regression (numeric target) and Classification (categorical target).
- Multiple decision trees are created using different random sets of data and features.
- Predictions are made by voting for classification and by averaging for regression.

Supervised Learning:

Training data : $\{(x_1, y_1), ..., (x_N, y_N)\}$

 x_i : feature vector, y_i : label (class) of i^{th} data, $g \in G$: Hypothesis space.

A learning algorithm seeks a function $g : X \to Y$, where X is input space and Y is output space.

Logistic Regression Model:

1. Estimates the probablity of occurrence of an event based on given dataset of independent variables.

- 2. It is probability of a class.
- 3. Since outcome is probablity, dependent variable is bounded in [0, 1]

Supervised Learning:

Training data : { $(x_1, y_1), \ldots, (x_N, y_N)$ } x_i : feature vector, y_i : label (class) of i^{th} data, $g \in G$: Hypothesis space. A learning algorithm seeks a function $g : X \to Y$, where X is input

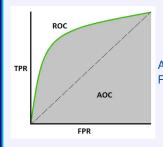
space and Y is output space.

Support Vector Machine (SVM):

1. Goal is to creat decision boundary segregating n-dim space into classes.

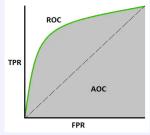
2. Best decision boundary is called Hyperplane.

3. SVM : (a) Linear and (b) Non-linear.



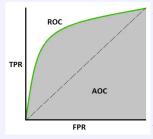
AUC-ROC :Performance measurement. AUC:- Area Under the Curve. ROC:- Receiver Operating Characteristics.

Feb 8, 2024 17/35



AUC-ROC :Performance measurement. AUC:- Area Under the Curve. ROC:- Receiver Operating Characteristics.

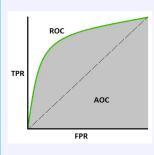
ROC is probability curve plotted for "True Positive Rate (TPR)" <Y-axis> against "False Positive Rate (FPR)" <X-axis>.



AUC-ROC :Performance measurement. AUC:- Area Under the Curve. ROC:- Receiver Operating Characteristics.

ROC is probability curve plotted for "True Positive Rate (TPR)" <Y-axis> against "False Positive Rate (FPR)" <X-axis>.

AUC is degree of separability. Efficiency of a model to separate classes.



AUC-ROC :Performance measurement. AUC:- Area Under the Curve. ROC:- Receiver Operating Characteristics.

ROC is probability curve plotted for "True Positive Rate (TPR)" <Y-axis> against "False Positive Rate (FPR)" <X-axis>.

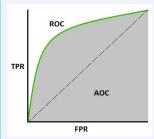
AUC is degree of separability. Efficiency of a model to separate classes.

TPR/Recall/Sensitivity = True Positive + Full Negative

Specificity = True Negative + Full Positive

Feb 8, 2024 17/35

AUC-ROC :Performance measurement. AUC:- Area Under the Curve. ROC:- Receiver Operating Characteristics.



ROC is probability curve plotted for "True Positive Rate (TPR)" <Y-axis> against "False Positive Rate (FPR)" <X-axis>.

AUC is degree of separability. Efficiency of a model to separate classes.

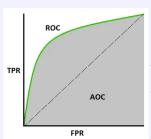
TPR/Recall/Sensitivity = True Positive + Full Negative

Specificity = True Negative + Full Positive

FPR = 1-Specificity = Full Positive True Negative + Full Positive .

Feb 8, 2024 17/35

AUC-ROC :Performance measurement. AUC:- Area Under the Curve. ROC:- Receiver Operating Characteristics.



ROC is probability curve plotted for "True Positive Rate (TPR)" <Y-axis> against "False Positive Rate (FPR)" <X-axis>.

AUC is degree of separability. Efficiency of a model to separate classes.

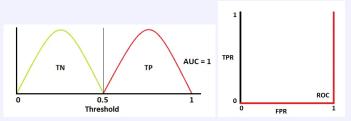
TPR/Recall/Sensitivity = True Positive + Full Negative

Specificity = True Negative + Full Positive

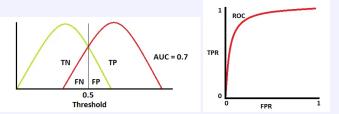
FPR = 1-Specificity = <u>Full Positive</u>.

A Good model has AUC \rightarrow 1 means good separability of classes.

ROC: Probability Curve.



Ideal measure of probability. Positive class (e.g. patient with disease, Negative class (e.g. No disease))



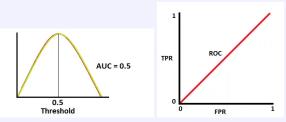
AUC=0.7 means the model may separate classes with 70% probability.

TIFR

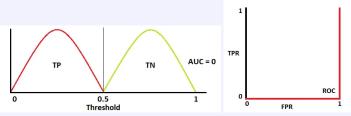
Machine Learning

Feb 8, 2024 18/35

ROC: Probability Curve.



AUC=0.5 is the worst situation where model is unable to distinguish.



AUC=0 means the model is recognising a positive class as negative and vice versa.

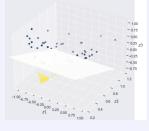
TIFR

Feb 8, 2024 19/35

The Kernels

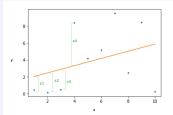
- Kernels (function) are a set of algorithms used for pattern matching.
- Usually non-linear problems are solved by linear classifier -"Kernel Tricks" « SVM ».
- The kernel function is applied on each data instance to map the original non-linear observations into a higher-dimensional space in which they become separable without computing the coordinates of the data in a higher dimensional space.
- Kernel Trick allows us to operate in the original feature space.

Kernels



- 2D dataset with 2 classes. Function to separate 2 classes is required. Data is NOT linealry separablein to 2 classes.
- One can fit a complex polynomial function to separate the data.
- Data may be transformed into 3D.
- A linear decision boundary may be found by fitting a linear classifier (a plane separating data) - *Hyperplane*.
- Map the linear decision boundary back into 2D space. The result will be a non-linear decision boundary in 2D

Let us consider a regression model:



 $y_i = w_0 + w_1 x_i + w_2 x_i + \epsilon_i$ $y_i = W^T x_i + \epsilon_i,$ where, $W = \{w_0, w_1, w_2\}$ are weights. Error: $\epsilon_i = (W^T x_i - y_i)$.

Let $x_a = [x_{a1}, x_{a2}]$ and $x_b = [x_{b1}, x_{b2}] \in \mathcal{R}^2$. 3D mapping, $x_i \to \phi(x_i) : x_a^T x_b \to \phi(x_a)^T \phi(x_b)$ and back to 2D,

$$K(x_a, x_b) = \phi(x_a)^T \phi(x_b)$$

Let, $K(x_a, x_b) = (x_a^T x_b)^2 = (x_{a1}x_{b1} + x_{a2}x_{b2})^2,$
 $= (x_{a1}^2 x_{b1}^2 + 2x_{a1}x_{a2}x_{b1}x_{b2} + x_{a2}^2 x_{b2}^2).$

AND can be decomposed into $\phi(x_a) = \begin{pmatrix} x_{a1}^2 \\ \sqrt{2}x_{a1}x_{a2} \\ x_{a2}^2 \end{pmatrix}$ and $\phi(x_b) = \begin{pmatrix} x_{b1}^2 \\ \sqrt{2}x_{b1}x_{b2} \\ x_{b2}^2 \end{pmatrix}$. In place of dot product we plug kernel *K*.

TIFR

Kernels

Vectors: x_a and x_b . **Linear Kernel**: $K(x_a, x_b) = x_a x_b$. Dot product measures similarity or distance in original feature space.

Polynomial Kernel: $K(x_a, x_b) = (x_a x_b + c)d$, *d* is the degree of the polynomial determines degree f nonlinearity.

Gaussian Kernel :: Radial Basis Function (RBF): $K(x_a, x_b)=e^{-\gamma ||x_a-x_b||^2}$. The γ tunes the performance of the Gaussian kernel.

Laplace Kernel: $K(x_a, x_b) = e^{-\gamma ||x_a - x_b||}$. || $x_a - x_b$ || is Manhattan distance or L_1 norm between input vectors. It places less weight on large distance between input vectors than Gaussian kernel making it robust to Outliers.

Kernel Characteristics

- Mercer's condition: Ensures that the kernel function is positive semi definite, which means that it is always greater than or equal to zero.
- **Positive definiteness:** If kernel is always greater than zero except for when the inputs are equal to each other.
- Non-negativity: The kernel produces non-negative values for all inputs.
- Symmetry: A kernel function produces the same value regardless of the order in which the inputs are given.
- **Reproducing property:** A kernel function satisfies the reproducing property if it can be used to reconstruct the input data in the feature space.
- **Smoothness:** The kernel function produces a smooth transformation of the input data into the feature space.
- **Complexity:** More complex kernel functions may lead to over fitting and reduced generalization performance.

Ensemble Learning : Supervised

Ensemble Learning:

Combine the strengths of multiple models to make a single robust model less likely to overfit data.

Techniques:

- Averaging (for regression)
- Bagging (Bootstrap Aggregation),
- Boosting and
- Stacking (Stacked Generalization)

माप अकें BARC

It can be used for both regression and classification.

Bootstrap Sampling:

Randomly 'n' subsets of original data are sampled with replacement. Reduces of risks of overfitting increasing accuracy.

Original training dataset : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Resampled training set #1: [2, 3, 3, 5, 6, 1, 8, 10, 9, 1] Resampled training set #2: [1, 1, 5, 6, 3, 8, 9, 10, 2, 7] Resampled training set #3: [1, 5, 8, 9, 2, 10, 9, 7, 5, 4]

Some samples may be kept out of Sampling for verification of prediction.

Bagging : Ensemble Learning

Base Model Training:

- Multiple base models are used.
- Each base model is independently trained using learning algorithm like decision tree, SVM or Neural Networks.
- Training is on different bootstrapped subset of data and can be parallelised.
- Each models are called "Weak Learners" as they may not be highly accurate of their own.

Bagging : Ensemble Learning

Aggregation:

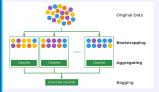
- After training of all the base models, prediction is being made on unseen data.
- The Predicted class label is chosen on majority voting. <<u>Classification</u>>
- The final Prediction value is determined by averaging of the predictions from all base models. <Regression>

Bagging : Ensemble Learning

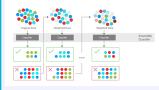
Out of Bag Evaluation:

- Some samples excluded in the bootstrapping are "Out-of-Bag" Samples.
- Out-of-Bag samples may be used to estimate the model performance

Bagging : Ensemble Learning



- Improved Predictive Performance: outperforms single classifier
- Robustness: Reduces impact of outliers and noises enhancing stability
- Reduced Variances: Since each base model is trained on different subsets, aggregated model's variance is reduced compared to indivudal model.
- Parallelization: Parallel processing of individual training reduces time.
- Flixibility: Wide range of algorithms can be used like DecisionTree, Random forests, support vector machine (SVM) etc.



Boosting is a sequencial method

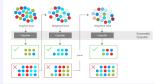
TIFR

Feb 8, 2024 27/35

- · Boosting is a sequencial method
- First a model is built from training data.

TIFR

Feb 8, 2024 27/35



- Boosting is a sequencial method
- First a model is built from training data.
- Second model is built with an effort to correct errors in earlier model.

- Boosting is a sequencial method
- First a model is built from training data.

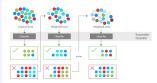
• Second model is built with an effort to correct errors in earlier model.

Procedure continues

AND

models are added until **Either** the complete training data is predicted correctly **OR** maximum number of models have been added.

- Boosting is a sequencial method
- First a model is built from training data.



• Second model is built with an effort to correct errors in earlier model.

Procedure continues

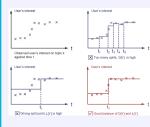
AND

models are added until **Either** the complete training data is predicted correctly **OR** maximum number of models have been added.

• Types (Important): Gradient Boosting, XG-Boost, AdaBoost, CatBoost

Training data with multiple features x_i is used to predict target variable \hat{y}_i by fitting.

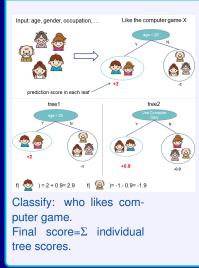
- Model (*e.g.* Linear Model): Prediction $\hat{y}_i = \sum_j \theta_j x_{ij}$
- Training finds Best parameter θ_i using Objective function measuring degree of fitness.
- Objective function: $ob j(\theta) = L(\theta) + \Omega(\theta)$: $L(\theta)$ = training loss function, $\Omega(\theta)$ = regularization function.
- L: degree of prediction w.r.t. training data.
- Ω: controls complexity of the model helping to avoid Overfitting.



ob j(θ): (Loss $L(\theta)$ + Regularization $\Omega(\theta)$). L(θ): (a) Mean Squared Error (MSE): $L(\theta) = \sum_i (y_i - \hat{y}_i)^2$ (b) Logistic: $L(\theta) = \sum_i [y_i \ln(1 + e^{-\hat{y}_i}) + (1 - y_i)\ln(1 + e^{\hat{y}_i})]$

 $\Omega(\theta)$: Fit a step function visually given input data points. Which of the 3 solutions is best fit?

Tradeoff between L and Ω is "**Bias-Variance trade-off**".



XGBoost: Decision Tree Ensemble: Set of Classification and Regression trees (CART).

Leaf also contains score.

2 trees complement each other: $\hat{y}_i = \sum_{k=1}^{K} f_k(x_i), f_k \in \mathcal{F}.$ \mathcal{F} : set of all possible CARTS, f_k : function in functional space \mathcal{F}, K : number of trees.

 $ob j(\theta) = \sum_{i}^{n} l(y_i, \hat{y}_i) + \sum_{k=1}^{K} w(f_k)$ $w(f_k)$: complexity depends on the scores.

(Boosted Decision Tree) (Random Forrest!)

ONE predictive service code : Different Training.

Complexity

Define tree $f(x) = w_{q(x)}, w \in \mathcal{R}^T, q : \mathbb{R}^d \to \{1, 2, 3, \dots T\}$ w=scores on leaves, q = fn assigning each data point to corresponding leaf, T = number of leaves.

$$w(f) = \gamma T + \frac{1}{2}\lambda \sum_{j=1}^{T} w_j^2.$$

TIFR

Feb 8, 2024 31/35

Prediction values:

Loss Function

$$\hat{y}_{i}^{(1)} = f_{1}(x_{i}) = \hat{y}_{i}^{(0)} + f_{1}(x_{i})$$
$$\hat{y}_{i}^{(2)} = f_{1}(x_{i}) + f_{2}(x_{i}) = \hat{y}_{i}^{(1)} + f_{2}(x_{i})$$

$$\hat{y}_i^{(t)} = \sum_{k=1}^{t} f_k(x_i) = \hat{y}_i^{(t-1)} + f_t(x_i)$$

At each step, tree is selected by optimized objective function.

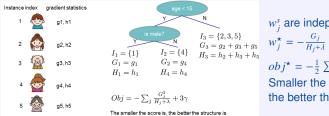
 $\hat{v}^{(0)} = 0$

$$obj^{(t)} = \sum_{i=1}^{n} l\left(y_i, \hat{y}_i^{(t)}\right) + \sum_{i=1}^{t} w\left(f_i\right) = \sum_{i=1}^{n} \left(y_i - \left(\hat{y}_i^{(t-1)} + f_t(x_i)\right)\right)^2 + \sum_{i=1}^{t} w(f_i), \text{ (MSE)}$$

Objective at step $t \equiv$ goal for new tree

$$\sum_{i=1}^{n} \left[g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i) \right] + w(f_t)$$
$$g_i = \partial_{\hat{y}_i^{(t-1)}} l(y_i, \hat{y}_i^{(t-1)}) \qquad h_i = \partial_{\hat{y}_i^{(t-1)}}^2 l(y_i, \hat{y}_i^{(t-1)})$$

$$\begin{split} obj^{(t)} &\approx \sum_{i=1}^{n} \left[g_{i} w_{q(x_{i})} + \frac{1}{2} h_{i} w_{q(x_{i})}^{2} \right] + \gamma T + \frac{1}{2} \lambda \sum_{j=1}^{T} w_{j}^{2}, \\ &= \sum_{j=1}^{T} \left[w_{j} \sum_{i \in I_{j}} g_{i} + \frac{1}{2} \left(\sum_{i \in I_{j}} h_{i} + \lambda \right) w_{j}^{2} \right] + \gamma T, (\forall \text{ data in same leaf gets same score.}) \\ &= \sum_{j=1}^{T} \left[G_{j} w_{j} + \frac{1}{2} \left(H_{j} + \lambda \right) w_{j}^{2} \right] + \gamma T \quad \Rightarrow I_{j} = \{i \mid q(x_{i}) = j\}. \end{split}$$

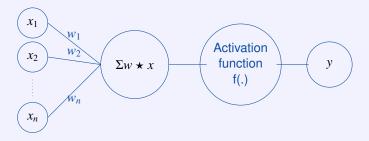


$$\begin{split} w_{j}^{s} & \text{are independent.} \\ w_{j}^{\star} &= -\frac{G_{j}}{H_{j+\lambda}} \\ ob \, j^{\star} &= -\frac{1}{2} \sum_{j=1}^{T} \frac{G_{j}^{2}}{H_{j+\lambda}} + \gamma T \\ \text{Smaller the score is,} \\ \text{the better the structure is.} \end{split}$$

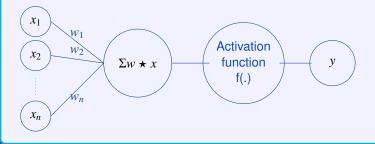
AdaBoost (Adaptive Boosting) : Ensemble Learning

- Enhances weights of misclassified events after each training
- Reduces weights of correctly classified events so that future trees learn better
- Iteration continues until weight of misclassified . 50%
- Final weight is the sum of all classifiers weighted by their errors

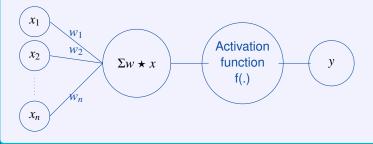
• Artificial system being inspired from biological neural networks.



- Artificial system being inspired from biological neural networks.
- The computational model is based on Threshold Logic.



- Artificial system being inspired from biological neural networks.
- The computational model is based on Threshold Logic.
- It is a type of ML process that uses interconnected nodes/neurones in a layered structure called as Deep learning.



TIFR	Machine Learning	Feb 8, 2024	35/35
		reb 0, 2024	33/33

- Artificial system being inspired from biological neural networks.
- The computational model is based on Threshold Logic.
- It is a type of ML process that uses interconnected nodes/neurones in a layered structure called as Deep learning.
- Algorithm updates itself through "backpropagation" as per optimization strategy.

