
An introduction to
Artificial Neural Network

Arun Nayak
(Institute of Physics, Bhubaneswar)



A Nayak8th Feb 2024

Introduction

2

What is Machine Learning? 
• A method of data analysis that automates analytical model building
- Based on the idea that computers can learn from data, recognize 

patterns, and make decisions with minimal human intervention.
- Has made big advancement recently because of new computing 

technologies. 
Example Applications you are familiar with:
• Online recommendation offers, such as from google, Amazon, Netflix 
• Fraud Detection
• Spam detection in email
• Recognizing hand-written letters and digits



A Nayak8th Feb 2024

Popular Learning Methods

3

• Supervised Learning
- Algorithms are trained using labeled 

examples, i.e. with desired outputs 
known

- Learns by comparing actual output to 
correct/known outputs to find errors 
à Modifies the model accordingly

- Use patterns to predict values of the 
output for an unknown data. 

- commonly used in applications 
where historical data predicts likely 
future events

- Classification, Regression, Gradient 
Boosting etc..

• Unsupervised Learning
- Used against data that has no 

historical labels – unknown desired 
outputs

- Algorithm must figure out what is 
being shown

- Goal is to explore the data and find 
some structure within

- e.g. Detecting Anomalies
- Popular techniques like nearest-

neighbor mapping, k-means 
clustering

In this talk we will discuss only supervised learning methods



A Nayak8th Feb 2024

Popular Learning Methods

4

• Semisupervised Learning
- Similar application as supervised 

learning
- Uses both labeled and unlabeled data 

for training
- Small amount of labeled, large amount 

of unlabeled data

• Reinforcement Learning
- Often used for robotics, gaming 

and navigation
- the algorithm discovers through 

trial and error which actions yield 
the greatest rewards

In this talk we will discuss only supervised learning methods



A Nayak8th Feb 2024

Multivariate Analysis Methods

5

• Any statistical analysis technique 
that  analyzes many variables at 
once

• Normally, cut-based methods, that 
apply selections on one variables 
at a time, are robust, but result in a 
low signal efficiency 

• MVA techniques belong to the 
family of “supervised learning” 
algorithms

• MVA methods make use of training 
events, for which the desired 
output is known, to determine the 
mapping function

(images from google)



A Nayak8th Feb 2024

Multivariate Analysis Methods

6

• MVA methods are used for both 
classification and regression: 
- Classification: The mapping 

function describes a decision 
boundary

- Regression: The mapping 
function describes an 
approximation of the underlying 
functional behaviour defining the 
target value

• Example MVA techniques: 
- Artificial Neural Network, Boosted 

Decision Trees

e.g. learn to classify birds and animals

(images from google)



A Nayak8th Feb 2024

Why use MVA Analysis?

7

In High Energy Physics Experiments, we often perform data analysis to search for some 
signals which are produced at much smaller rate than that of the backgrounds. 

Signal: Some event/object that we are interested in
Backgrounds: Events/Objects that we are not interested, but they look very much 
similar to that of our signal. 

Cuts are not optimal
• Can not take 

correlations in to 
account

• Can lead to low signal 
efficiency and high 
background rate



A Nayak8th Feb 2024

Why use MVA Analysis?

8

Cuts are not optimal
• Can not take correlations in to account
• Can lead to low signal efficiency and high 

background rate

Data generated using 
Root/tutorials/tmva/create

Data.C



A Nayak8th Feb 2024

Why use MVA Analysis?

9

The actual boundary should be à



A Nayak8th Feb 2024

Why use MVA Analysis?

10

MVA

An Example

Combines many variables to a
single variable, on which a cut
can be applied depending on
the required signal efficiency
and purity

(figures from TMVA userguide)



A Nayak8th Feb 2024

Neural Network

11

Neural connections in human brain

Our brain uses the extremely large interconnected network of 
neurons for information processing and to model the world around 
us

• Collects inputs from other 
neurons using dendrites

• Sums all the inputs, and 
fires, if the value is greater 
than a threshold

• The fired signal is then sent 
to other neurons through the 
Axon



A Nayak8th Feb 2024

Artificial Neuron

12

Model of an artificial neuron

x1

x2

x3

x4

x5

w1
w2
w3
w4
w5

f(Σwixi + b)  
output

“f” is called “activation function”

b is a bias term à Can be represented by a node with input “1”. 

input



A Nayak8th Feb 2024

Perceptron

13

x1

x2

x3

x4

x5

w1
w2
w3
w4
w5

f(Σwixi + b)  

input
output

Binary output:
= 1, if Σwixi + b > 0
= 0, if Σwixi + b < 0



A Nayak8th Feb 2024

Sigmoid Neuron

14

x1

x2

x3

x4

x5

w1
w2
w3
w4
w5

f(Σwixi + b)  

input
output

f (x) = 1
1+ e−x

Smoother output
Small change in weight => small corresponding change in output

This property makes the learning possible



A Nayak8th Feb 2024

Activation Functions

15

It determines at what threshold the neuron will fire 
OR the frequency at which a neuron fires 
Linear Function Step Function Rectified Linear Units (ReLU)

Sigmoid Function Hyperbolic Tangent

f(x) = x f (x) = 1, x > 0
0, x < 0

⎧
⎨
⎩

f (x) =max(0,x)

f (x) = 1
1+ e−x

f (x) = tanh(x)
f (xi ) =

exi

exi∑

Softmax

(used in output layer of a 
multiclassification network)



A Nayak8th Feb 2024

Artificial Neural Network

16

x1

x2

x3

x4

x5

Output Layer

Input Layer

Hidden Layer A neuron becomes useful when 
connected in a larger network

Single hidden layer 
feed forward network



A Nayak8th Feb 2024

How Does a Network Learn?

17

x1

x2

x3

x4

x5

w + Dw

output + Doutput



A Nayak8th Feb 2024

Loss Function

18

1. Mean Squared Error:

Loss : measure of misclassification

L(w,b) = 1
2

yik − ŷik( )
2

i=1

N

∑
k=1

K

∑

2. Cross Entropy: L(w,b) = − yik log ŷik
i=1

N

∑
k=1

K

∑

Where, index “i” is for events and “k” is for output nodes

Network Training => Minimizing Loss in an iterative way



A Nayak8th Feb 2024

Loss Functions

19

T. Hastie et al. 



A Nayak8th Feb 2024

Backpropagation

20

Propagating in the backward direction to update the weights

Steps:
1. Compare the computed output to actual output and 

determine loss
2. Determine in which direction to change each weight to 

reduce the loss
3. Determine the amount by which to change the weights
4. Apply correction to the weights
5. Repeat the procedure in each iteration till the loss is reduced 

to an accepted value 



A Nayak8th Feb 2024

Backpropagation

21

Let’s consider only one output node in the network and MSE loss function

w
L(w,b) = 1

2
yi − ŷi( )

2

i=1

N

∑
L is a function of weights and biases
à A hypothetical surface in weight space

In every iteration, weights should be changed in a direction such 
that L is reduced (i.e. DL is –ve)

If we choose 

ΔL ≈ ∂L
∂wj

Δwj =∑ ∇L•Δw

Δw = −η∇L,⇒ΔL ≈ −η ||∇L ||2 ⇒ΔL < 0
Gradient descent



A Nayak8th Feb 2024

Gradient descent

22

Starting from an arbitrary weight vector, the weights are updated
after every iteration “t”,

wj (t +1) = wj (t)−η
∂L
∂wj

(t)

(figure from google)

h is called the learning rate



A Nayak8th Feb 2024

Learning rate

23

Learning steps

Local
minimum

Global
minimum

Loss

weights

Too small à Can be 
trapped in a local minimum
Too Large à Can jump out 
of global minimum

Possible to update lr as 
learning proceeds



A Nayak8th Feb 2024

Weights of hidden layer

24

• The output values of hidden layer is not known, so we don’t 
know what should be the correct outputs

• But, the total error is related to the output values on the 
hidden layer. 

• Thus, weights of the hidden layer are also updated in the 
same way as that of the output layers



A Nayak8th Feb 2024

Derivatives of Loss function

25

For a network with only one output node and one hidden layer, 
and considering MSE loss function

The net input to the jth hidden unit is S j = wjl xl
l
∑ (ignoring bias)

The output of this node is I j = f (S j )

The equations for output node are: S = wjI j
j
∑ and y = f (S)

∂L
∂wj

= (y − ŷ) ∂f
∂S

∂S
∂wj

=
i=1

N

∑ (y − ŷ) ∂f
∂Si=1

N

∑ I j

 runs over input connections

Thus, for the weights of the output node:
j runs over hidden layer nodes



A Nayak8th Feb 2024

Derivatives of Loss function

26

∂L
∂wjl

= (y − ŷ)∂f (S)
∂S

∂S
∂I j

∂f (S j )
∂S j

∂S j
∂wjl

=
i=1

N

∑ (y − ŷ)∂f (S)
∂Si=1

N

∑ wj

∂f (S j )
∂S j

xl

For the weights of the hidden layer node:

The activation functions “f” need to be differentiable



A Nayak8th Feb 2024

Artificial Neural Network (ANN)

27Satyaki Bhattacharya

[ 3  7  1  3]
[-2  8  5  9]

[5]
[6]

[ 3 ]
[83]
[35]
[69]Input 

vector
U

(2x1)

Weight Matrix
Wij

(2x4)

Wij
T x U 

Ui

Multiplied
output 
vector
(4x1)

Output vector
H

(4x1)

W1j

W2j

[ 0.95]
[ 1.    ]
[ 1.    ]
[ 1.    ]

Input Layer

Output of 
Hidden 
Layer

Hj

Picture credit: Shamik Ghosh



A Nayak8th Feb 2024

Starting values of weights

28

• Usually starting values for weights are chosen to be 
random values near zero. 

• If the weights are near zero, then the operative part of the 
sigmoid is roughly linear => the neural network collapses 
into an approximately linear model

• Hence the model starts out nearly linear, and becomes 
nonlinear as the weights increase. 

• Use of exact zero weights leads to zero derivatives and 
perfect symmetry, and the algorithm never moves.

• Starting instead with large weights often leads to poor 
solutions. 



A Nayak8th Feb 2024

Stochastic gradient descent 

29

• The updates on weights that we discussed are kind of a batch 
learning, i.e. parameter updates are averaged over all of the training 
cases
o In this case the graph of loss vs epoch is quite smooth, and the loss keeps 

decreasing with epochs
o But it can be very slow if the dataset is very large

• Deep learning models use large amount of data (more data => better 
model)

• In this case one can use stochastic gradient descent, i.e. update 
weights after passing each event 
o Loss may fluctuate over the training examples (not necessarily always 

decrease), but decreases in the long run
o Converges faster for large dataset

• Combine batch processing with stochastic gradient descent, called 
“mini-batch gradient descent”
o Use a batch of a fixed number of training examples which is less than the 

actual dataset



A Nayak8th Feb 2024

Deep Neural Network

30

• Networks with many-layer structure  - two or more hidden layers
• Deep learning techniques are based on stochastic gradient descent 

and backpropagation, but also introduce new ideas
• Deep nets have ability to build up a complex hierarchy of concepts

(figure from google)



A Nayak8th Feb 2024 31

• To construct a neural network model you need to specify the following:
• The number of hidden layers and neurons in each layer.
• Activation function(eg Relu or tanh),Cost function(here cross entropy)
• Batch size,learning rate(here ‘adam’ optimises the learning rate for Gradient 

decent) 
• Number of epocs, i.e. the number of training cycles.

Practical information

Lets see what this model looks like(next slide)



A Nayak8th Feb 2024

Repeat for N=30 
epoch cycles 

Calculate 
the output 
and error

How  this model looks like



A Nayak8th Feb 2024

Classifier Output

33



A Nayak8th Feb 2024

• ROC (Receiver Operating Characteristic) Curves are a good way to  
illustrate the performance of given classifier

• Shows the background rejection over the signal efficiency of the remaining  
sample

• Best classifier can be identified by the largest AUC (Area under curve)

ROC Curves

Better



A Nayak8th Feb 2024

Choice of Activation function

35

• Usually nonlinear activation functions are preferred as they allow the 
nodes to learn more complex structures in the data.
o Widely used ones: sigmoid and tanh

• A general problem with both these functions is that they saturate.
o i.e. only sensitive to changes around their midpoint of their input

• Saturation happens regardless of whether the summed activation from 
the node provided as input contains useful information or not.
o Challenging for the learning algorithm to continue to adapt the weights to 

improve the performance of the model.
• Layers deep in large networks using these nonlinear activation 

functions fail to receive useful gradient information.
o the gradient diminishes dramatically as it is propagated backward through the 

network.
o The error may be so small by the time it reaches layers close to the input of the 

model that it may have very little effect.
• This is called the vanishing gradient problem è prevents deep 

networks from learning effectively.



A Nayak8th Feb 2024

Choice of Activation function

36

• The solution to these issues are the use of “rectified linear activation unit” 
or “ReLU” 

• It looks and acts like a linear function, but is a nonlinear function allowing 
complex relationships in the data to be learned
o A neural network is easier to optimize when its behavior is linear or 

close to linear.
• This is the default activation function in modern deep learning networks

f (x) =max(0,x)



A Nayak8th Feb 2024

Choice of Activation function

37

• Some popular extensions to the ReLU relax the non-linear output of the 
function to allow small negative values.

• For the ReLU activation function, the gradient is 0 for all the values of 
inputs that are less than zero, which would deactivate the neurons in 
that region and may cause dying ReLU problem.

• The Leaky ReLU modifies the function to allow small negative values 
when the input is less than zero.

• It is an improved version of the ReLU activation function



A Nayak8th Feb 2024

Validation of NN performance

38

Usually, the performance of the NN model is accessed using an 
independent data set, called “test dataset”, which is not used in training the 
model 
Typically, the whole dataset is divided randomly to a “training dataset” and 
“test dataset” before starting the training. 
Training dataset: The sample of data used to fit the model.
Test dataset: The sample of data used to provide an unbiased evaluation of a final 
model fit on the training dataset.

In addition, training dataset can be split further to get a “validation dataset”, 
that can be used to get an unbiased evaluation of the model while tuning 
model hyperparameters, e.g. choosing number of hidden units
Validation dataset: The sample of data used to provide an unbiased evaluation of a 
model fit on the training dataset while tuning model hyperparameters. 

The evaluation becomes more biased as skill on the validation dataset is 
incorporated into the model configuration.



A Nayak8th Feb 2024

Validation of NN performance

39

A typical split might be 50% for training, and 25% each 
for validation and testing:



A Nayak8th Feb 2024

Cross-Validation 

40

• The simplest and most widely used method for estimating prediction error
• If dataset size is not large enough, it is difficult to set aside a validation set 

to assess the performance of prediction model 
• K-fold cross- validation uses part of the available data to fit the model, and 

a different part to test it. 
• e.g., for K = 5

Repeat this for k = 1,2,...,K and combine the 
K estimates of prediction error.

Typical choices of K are 5 or 10



A Nayak8th Feb 2024

K-Fold Cross Validation

41

Ref: https://www.analyticsvidhya.com/blog/2021/06/tune-
hyperparameters-with-gridsearchcv/



A Nayak8th Feb 2024

Hyperparameter Tuning

42

• Various techniques to perform hyperparameter tuning
e.g. Manual Search, Random Search, Grid Search, Bayesian 
Optimizations, etc

• e.g., one can use GridSearchCV in scikit-learn, that performs 
grid-search with k-fold cross validation 

Grid Search across Two Parameters
Ref: 
https://www.analyticsvidhya.com/blog/2021/06/tun
e-hyperparameters-with-gridsearchcv/ )

https://www.analyticsvidhya.com/blog/2021/06/tune-hyperparameters-with-gridsearchcv/


A Nayak8th Feb 2024

Overtraining
Overtraining is a situation where a network learns to  predict the training 
examples with very high accuracy but cannot generalize to new data. 
• Leads to poor performance in other samples
• Mostly due to small training sample size, or data that is too homogenous
• Over sensitive to some features of the training data 

Large difference in 
performance of training and 
testing dataset usually is an 

indicator of overtraining



A Nayak8th Feb 2024

Regularization

44

• Fitting the training data too 
well can lead to overfitting
and degrade future 
predictions

• The regularization controls 
the complexity of the 
model, which helps us to 
avoid overfitting

(ref: XGBoost userguide)



A Nayak8th Feb 2024

Regularization

45

Increase in complexity of the model can lead to overfitting

Ref: 
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-
deep-learning-regularization-techniques/



A Nayak8th Feb 2024

Regularization

46

Regularization penalizes the coefficients (weight matrices of the nodes)  

Assume regularization coefficient is so high that  some of the weight 
matrices are nearly equal to zero è much simpler network

Ref: 
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-
deep-learning-regularization-techniques/



A Nayak8th Feb 2024

Regularization

47

Regularization penalizes the coefficients (weight matrices of the nodes)  

Need to optimize the value of regularization coefficient in order to 
obtain a well-fitted model, e.g. like this

Ref: 
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-
deep-learning-regularization-techniques/



A Nayak8th Feb 2024

Regularization Techniques

48

Different regularization techniques:
1. L1 & L2 Regularization 
2. Dropout
3. Early stopping
4. Data Augmentation



A Nayak8th Feb 2024

L1 & L2 Regularization

49

• Add regularization term to the cost function
- Reduces complexity of the network by penalizing weights

obj = L(w)+Ω(w) Regularization term

• L1 Regularization:

obj = L(w)+λ |w |∑

Penalizes weights to 
remain small. Can make 
some of the weights to be 
zeros

• L2 Regularization:

obj = L(w)+λ |w |2∑
Makes weights close to 
zero, but not zero.
aka “weight decay”

l is a hyperparameter, large l => small w



A Nayak8th Feb 2024

Weight decay

50
Ref: T. Hastie et al.



A Nayak8th Feb 2024

Weight decay

51

Ref: T. Hastie et al.



A Nayak8th Feb 2024

Dropout

52

• You can randomly drop a predefined set of neurons during each epoch.
• So, each iteration has a different set of nodes
• Can be thought of as an ensemble technique in machine learning

Ref: 
https://www.analyticsvidhya.c
om/blog/2018/04/fundamental
s-deep-learning-
regularization-techniques/



A Nayak8th Feb 2024 53

Early Stopping

• In most neural network packages like Keras or  DNN in TMVA, the 
training set can divided into a training and validation set. Monitor the 
valiation error for each epoc and stop when the valiation error is no more 
improving (or starts to increase). 

Epochs

lo
ss

Test set

Training set

Early stopping



A Nayak8th Feb 2024

Augmenting training sample

54

• The simplest way to reduce overtraining is by increasing the training 
statistics 
o Not always possible, labeled data are too costly

• Training sample can be augmented by generating new events from the 
existing training sample (e.g. by process of flipping, rotating, scaling, 
shifting etc.. of the images)

Ref: 
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-
deep-learning-regularization-techniques/



A Nayak8th Feb 2024

Scaling of the Inputs 

55

• The scaling of the inputs determines the effective scaling 
of the weights in the bottom layer
o Can have a large effect on the quality of the final 

solution
• Usually, it is best to standardize all inputs to have mean 

zero and standard deviation one 
o Ensures all inputs are treated equally in the 

regularization process, 
o Allows one to choose a meaningful range for the 

random starting weights. 



A Nayak8th Feb 2024 56

Separate H àZZ* à 2e2µ (signal*) from ZZà 2e2µ (background*)

Input Variables used : pT of individual leptons, Delta Phi combinations of each                                      
lepton pair, eta of each lepton(total 14 variables)

* Both signal and background mc samples taken from cms open data

Example from Physics



A Nayak8th Feb 2024

l 5 Hidden layers with 100(relu) x 100 x 100 x 32 x 32 neurons
l Relu activation function 

l Batch size 256 ,epochs = 30
l Early stopping with patience = 5

Will be discussed in more detail at the tutorial tomorrow

Performance



A Nayak8th Feb 2024

References

58

1. The elements of statistical learning, Hastie, Tibshirani, Friedman
2. Neural Networks, Freeman & Skapura
3. http://neuralnetworksanddeeplearning.com/
4. https://machine-learning-for-physicists.org/
5. TMVA userguide



A Nayak8th Feb 2024

Thanks

59


