
Boosted Decision Trees

Arun Nayak
(Institute of Physics, Bhubaneswar)

A Nayak8th Feb 2024

Introduction

2

• Supervised learning is a method where we use the labeled training
data (with multiple features) xi to predict a target variable yi.

• Model & Parameters:
o Model è mathematical structure by which the prediction yi is being

made from the input xi, i.e. yi = f(xi)
- e.g. the liner model: yi = Σwijxj

- wij are the undetermined, to be learnt from data
o The outcome/prediction (y) can be

Ø Quantitative (Regression), e.g. mass distributions, or
Ø Qualitative/categorical (classification), e.g. signal & background

A Nayak8th Feb 2024

Decision Trees

3

• Basic concept:
Extend the cut-based analysis by not rejecting events that fail a particular criterion,
instead, check if other criteria may help to classify these events correctly

• Decision Trees are a popular (supervised) machine learning
technique, commonly used in high energy physics data analysis
o First developed and formalised by Breiman et al.

Ø Proposed the CART algorithm (Classification And Regression Trees)
o Became very popular in HEP after use in MiniBooNE experiment

(arXiv: 0408124)
o Widely used in Run-1 and Run-2 physics analyses at LHC

A Nayak8th Feb 2024

Binary Tree

4

Perform recursive binary partitions of the feature space into a set of rectangles

Ref: Figure 9.2,T. Hastie et al.

A Nayak8th Feb 2024

Decision Tree

5

A Nayak8th Feb 2024 6

A Nayak8th Feb 2024 7

A Nayak8th Feb 2024 8

A Nayak8th Feb 2024

Binary Tree

9

• A key advantage of the recursive binary tree is its interpretability.
o The feature space partition is fully described by a single tree.
o With more than two inputs, partitions like the left one are difficult to

draw, but the binary tree representation works in the same way

A Nayak8th Feb 2024

Growing a Decision Tree

10

Root
node

• Sample: signal (si) and background(bi)
events, each with weights wi

s and wi
b,

respectively, described by a set of
variables (xj) (features)

x < c1 x > c1

y < c2 y > c2 y < c3 y > c3

z < c4 z > c4

B

B

S S

S

• Sample ßà root node
• Sort all events according to each

variable xj
• Find best splitting position for each

variable
• Select the variable and the

splitting position that gives best
separation
• Split the node to two new nodes

(branches)
• Declare the node as terminal (leaf) if

it satisfies stopping criterion

A Nayak8th Feb 2024

Decision Tree

11

Root
node

x < c1 x > c1

y < c2 y > c2 y < c3 y > c3

z < c4 z > c4

B

B

S S

S

• Leaves:
- Terminal nodes
- Represent a class label or

probability
- When the outcome is a continuous

variable it is considered a
regression tree.

• The splits are created recursively
- The process is repeated until

some stop condition is met
- Ex: depth of tree, no more

information gain, etc...

• Nodes:
- The data is split based on a value of one

of the input features at each code
- All variables can be considered at each

node (irrespective of their use in
previous node) à Allows to find intervals
of interest in a particular variable

A Nayak8th Feb 2024

Example

12

Classifying email from spam

Ref: T. Hastie et al.

A Nayak8th Feb 2024

Example from HEP

13

Signal/Background
MiniBooNE experiment

arXiv: 0408124

Particle identification:
Separating ne from

backgrounds

A Nayak8th Feb 2024

Decision Tree

14

Root
node

x < c1 x > c1

y < c2 y > c2 y < c3 y > c3

z < c4 z > c4

B

B

S S

S

Tree Output:
• The tree output for a given event i

is the value associated with the
leaf where the event falls.

• Several conventions used for the
value associated to leaf:
o Purity: p = s/(s+b), 0 < p < 1
o Binary:
- signal = 1 (if p > 0.5),
- bkg = 0 or -1 (if p < 0.5)

• Some signal events can be mis-
classified as background or bkg
classified as signal: Error (Loss)

A Nayak8th Feb 2024

Tree Parameters

15

Decision trees have relatively limited number of parameters
1. How to normalize signal & background before starting the training (applies to most

training techniques)
• Conventionally sum of weights (signal) = sum of weights (backgrounds)

Ø Purity = 0.5
2. Selection criteria for splits

• Requires a list of discriminating variables and a way to evaluate best separation
3. Stopping criteria

• Minimum leaf size
o Require at least Nmin events in each node after splitting

Ø Ensures statistical significance of purity measurement
• Reached perfect separation
• Insufficient improvement with further splitting
• A maximal tree depth

A Nayak8th Feb 2024

Node Splitting

16

Basic Concept:
• Consider an impurity/error measure, E

o Maximal for equal mix of signal and background
o Minimal for perfect separation
o Symmetric in signal & background purities

• Find the variable and its split value that decreases
impurity
o i.e. maximize DE = E(parent) – fc1 × E(child-1) – fc2 × E(child-

2)
fc1/c2 are the fraction of events falling to child-1/2 node

Common impurity functions:
• Misclassification error : 1 – max(p, 1 – p)
• The (cross) entropy : - p logp – (1 – p) log(1 – p)
• Gini index : 2p(1 – p)

x < c x > c

C1 C2

A Nayak8th Feb 2024

Impurity functions

17

Ref.: Yann Coadou,
EPJ Web of
Conferences 55,
02004 (2013)

A Nayak8th Feb 2024 18

A Nayak8th Feb 2024

Regression

19
x

y

• Fitting to a set of data points
• If the functional behaviour is known, then, perform a parametric fit by

minimising chi2 (or any other loss function)
• Not always easy, especially if the input feature is multi-dimensional

Regression: Finding the
mapping function that
describes an
approximation of the
underlying functional
behaviour defining the
target value

A Nayak8th Feb 2024

Regression Tree

20x

y

Growing a regression tree is similar to that of classification tree, except
• Model the response in each region as a constant (average of y in the region)
• Impurity function for node splitting: sum of squares Σ(y – y’)2

A Nayak8th Feb 2024

Regression Tree

21x

y

Growing a regression tree is similar to that of classification tree, except
• Model the response in each region as a constant (average of y in the region)
• Impurity function for node splitting: sum of squares Σ(yi – f(xi))2

A Nayak8th Feb 2024

Regression Tree

22x

y

Growing a regression tree is similar to that of classification tree, except
• Model the response in each region as a constant (average of y in the region)
• Impurity function for node splitting: sum of squares Σ(yi – f(xi))2

A Nayak8th Feb 2024

Regression Tree

23
x

y

Splitting minimises sum of squares Σ(yi – f(xi))2
i.e. split such that Σ(yj – c1)2 + Σ(yk – c2)2 < Σ(yi – c)2
Where, c = <yi|xi in R0> , c1 = <yj|xj in R1>, c2 = <yk|xk in R2>

c

R0

A Nayak8th Feb 2024

Regression Tree

24
x

y

Splitting minimises sum of squares Σ(yi – f(xi))2
i.e. split such that Σ(yj – c1)2 + Σ(yk – c2)2 < Σ(yi – c)2
Where, c = <yi|xi in R0> , c1 = <yj|xj in R1>, c2 = <yk|xk in R2>

c1

c2R1

R2

A Nayak8th Feb 2024

Example

25

regression surface
Represented by

node means

Ref: Figure 9.2,T. Hastie et al.

A Nayak8th Feb 2024

Tree Stability

26

Decision trees are usually unstable
• If too optimised for the training sample, may not generalize very well to

the unknown events
• subject to statistical uncertainty in training sample

o A small change in training sample can lead to drastically different
tree structure

• Output of a single decision tree is discrete
o Delta functions at ±1 for binary
o Spikes at specific purity values

Solution to these shortcomings are averaging
• Also increases discriminating power
• Several techniques: Bagging, Boosting, Random Forests

A Nayak8th Feb 2024

Example output of a single decision tree

27

Single tree
With max_depth=10

A Nayak8th Feb 2024

Tree Boosting

Boosting is a procedure that combines many “weak” classifiers to
produce a powerful one
• Weak classifier is one that is slightly better than random guessing
• The general idea is to use the weak learning method several times to get a

succession of hypotheses, each one refocused on the events that the previous
ones found difficult and misclassified

Popular Boosting Methods:
• AdaBoost
• e-Boost (shrinkage)
• Gradient Boost

A Nayak8th Feb 2024

AdaBoost
General Procedure:
• Each tree is created iteratively
• The tree’s output is given a weight relative to its

accuracy
• Events which are misclassified, increase their

weights
• Build a new tree, repeat the procedure for

several trees
• The final score of an event is the weighted

average of scores from all trees

This means that samples that are difficult
to classify receive increasing larger
weights until the algorithm identifies a
model that correctly classifies these
samples

ŷ = αmTm(x)
m
∑ , The goal is to minimize training loss,

defined by

L = l(yi , ŷi)
i=1

n

∑

(distance between truth and
prediction value for ith sample)

A Nayak8th Feb 2024

AdaBoost

30

Change the weight of each event by

Normalize weights

Repeat training for Ntrees
The score of a given event is:

For mth tree, define error and tree weight

Let’s weights of each event is wi

errm =
wiI (yi

i=1

N

∑ ≠Tm(xi))

wi
i=1

N

∑
,

αm = β × log((1− errm) / errm)

wi →wi × exp(αmI (yi ≠Tm(xi))

wi →wi / wi
i=1

N

∑ T (x) = αmTm(x)
m=1

Ntree

∑

A Nayak8th Feb 2024

e-Boost (shrinkage)

31

Change the weight of the ith event as

e is a constant of the order of 0.01

Normalize weights

The score for a given event is

renormalized, but
unweighted, sum of the

scores over individual trees.

Both the boosting algorithms minimize
the expectation value of the loss function:

L(T (x), y) = e− yT (x)

Where y = 1 for signal,
-1 for background

T (x) = ΣNtreem=1 (αmorε)Tm(x)
Tm(x) =1
Tm(x) = −1

If event lands
on signal leaf

If event lands on
background leaf

wi →wi × exp(2εI (yi ≠Tm(xi))

wi →wi / wi
i=1

N

∑

T (x) = εTm(x)
m=1

Ntree

∑

A Nayak8th Feb 2024

A simple example

32Data generated using
Root/tutorials/tmva/createData.C

Ref.: Yann Coadou,
EPJ Web of
Conferences 55,
02004 (2013)

A Nayak8th Feb 2024

Gradient Boosting

33

• Exponential loss has the shortcoming that it lacks robustness in
presence of outliers or mislabelled data points
• The performance of AdaBoost therefore is expected to degrade

in noisy settings
• The Gradient Boosting algorithm attempts to cure this weakness by

allowing for other, potentially more robust, loss functions without
giving up on the good out-of-the-box performance of AdaBoost

(ref: TMVA userguide)

A Nayak8th Feb 2024

Gradient Boosting

34

The goal is to minimize L(f) = Σ L(yi, f(xi)) with respect to f,
Where, f(x) = sum of trees = Σ Tm(x)
The gradient of L with respect to f, evaluated at mth iteration

∂L(yi , f (xi))
∂f (xi)

⎡

⎣
⎢

⎤

⎦
⎥
f (xi)= fm−1(xi)

= gim

Add a Tree such that

fm = fm−1 +Tm = fm−1 −ηmgm

Where, ηm is a scalar, called “step length or learning length”
i.e., at mth iteration, introduce a Tree, whose predictions are as close as
possible to negative gradient (-gim) (for ηm = 1)

A Nayak8th Feb 2024

Gradient Boosting

35

If L(f) = ½Σ (yi - f(xi))2 , i.e. square error loss
The negative gradient of L would be

−
∂L(yi , f (xi))

∂f (xi)

⎡

⎣
⎢

⎤

⎦
⎥= −gim = (yi − f (xi))

(yi − f (xi)) = yi− < yi | xi >
i.e. Residual

Thus, at each iteration, add a Tree, which fits to the residual
from previous iteration

A Nayak8th Feb 2024

Gradient Boosting

36

y

Residual for each xi : yi - <yi>

A Nayak8th Feb 2024

Gradient Boosting

37

y

Residual for each xi = yi - <yi>
Fitting to residual gives new average <yi> for each xi

So, the net output for xi is f(xi) = <yi> + <yi>
The loss is reduced at
every iteration

Boundaries of the new
tree are in general
different

A Nayak8th Feb 2024

Loss Functions for Classification

38

T. Hastie et al.

A Nayak8th Feb 2024

Loss Functions for Regression

39

• Huber loss is more robust
against outliers

• Squared error gives more
weightage to outliers,
making the trees less
robust.

T. Hastie et al.

A Nayak8th Feb 2024

Gradients of loss functions

40

T. Hastie et al.

A Nayak8th Feb 2024

Classification Example

41

• XGBoost Algorithm trained on 1000 trees, Depth=4 ,learning rate = 0.01,
with bagged boost.

• Signal: tth, h à di-tau (with SS leptons), bkg: ttbar

A Nayak8th Feb 2024

Regression Example

42

• GradientBoostingRegressor in scikit-learn, trained with 1000 trees,
Depth=3 ,learning rate = 0.01

• 10000 events (5K train + 5K test) generated with a function
2*sin(x)*exp(-x/300.)+random.normal(0,0.5,*x.shape)

A Nayak8th Feb 2024

Regularization

43

• Fitting the training data too
well can lead to overfitting
and degrade future
predictions

• The regularization controls
the complexity of the
model, which helps us to
avoid overfitting

(ref: XGBoost userguide)

A Nayak8th Feb 2024

Overtraining example

44

A Nayak8th Feb 2024

Regularization

45

There are various parameters of BDTs that can be optimized to
reduce overtraining

• Number of Boosting Iterations (Mtree):
- Having large enough Mtree can make training loss arbitrarily

small, but can lead to large overtraining problem
- One can monitor the prediction loss on a validation sample

as function of Mtree and find an optimal value for Mtree for a
given training sample (similar to early stopping in NN)

• Shrinkage (learning rate):
- Scale the contribution of each tree by a factor 0 < η < 1
- Controls the learning rate of the boosting procedure
- η and Mtree are related: small η è large Mtree and vice-versa
- Typical values of η < 0.1

A Nayak8th Feb 2024

Shrinkage

46

Ref: Fig.10.11
T. Hastie et al.

A Nayak8th Feb 2024

Regularization

47

• Subsampling (Stochastic Gradient Boosting):
- Introduce a resampling procedure using random

subsamples of the training events for growing trees – called
“bootstrap averaging” or “Bagging”

- The sample fraction used in each iteration can be controlled
through a parameter, typical values to get best results are
0.5—0.8.

- Stability against statistical fluctuations

A Nayak8th Feb 2024

Stochastic Gradient Boosting

48

T. Hastie et al.

A Nayak8th Feb 2024

Regularization

49

• Add regularization term to the objective function (it penalizes
the complexity of the kth tree)

obj = l(yi , ŷi)+ Ω(fk)
k=1

K

∑
i=1

n

∑

Ω(ft) = γT +
1
2
λ ω j

2

j=1

T
∑

In XGBoost, the tree complexity function is defined as:

w is the vector of scores on leaves
T is the number of leaves

A Nayak8th Feb 2024

Variable Selection

50

• In general it is good to check the data/mc agreement of a variable
before using in any MVA methods

• BDTs can handle large number of input variables, but the hyper-
parameters need to be optimized to get best out of them, and also large
number of training events may be needed.

• This might increase the CPU processing time
• BDTs are immune to duplicate variables. The sorting of events

according to them would be identical, leading to same tree
• If variables are not discriminating, they are typically ignored.
• Unlike NNs, it is not necessary to transform (scale) the variables to

certain range. Since the separation by split on a variable and its
transformed variable would be almost same.

A Nayak8th Feb 2024

Relative Importance of Input Variables

51

The relative importance of an input variable in BDT is derive by counting
the number of times the variable is used to split decision tree nodes and
by weighting each split occurrence by the separation gain-squared it has
achieved and by the number of events in the node

However, variable ranking
should not be taken at face
value, because of possibility
variable masking.
e.g. variable xj may be little
worse than xi, but end up
never being picked in the
decision tree growing
process, and so, ranked as
irrelevant. So, you may
conclude it has no
discriminating power

A Nayak8th Feb 2024

Tools

52

TMVA:
Based on ROOT framework (available directly in ROOT package)
Many MVA methods implemented including ANNs.
BDT: with BoostType “AdaBoost, Grad, Bagging”
https://root.cern.ch/download/doc/tmva/TMVAUsersGuide.pdf

Scikit-Learn:
Based on python. Supports binary and multiclass classification
BDT methods: DecisionTreeClassifiers, AdaBoostClassifier,
GradientBoostingClassifier, BaggingClassifier, RandomForestClassifier,
SGDClassifier
https://scikit-learn.org/stable/documentation.html

https://root.cern.ch/download/doc/tmva/TMVAUsersGuide.pdf
https://scikit-learn.org/stable/documentation.html

A Nayak8th Feb 2024

Tools

53

XGBoost (eXtreme Gradient Boosting):

It is an implementation of gradient boosted decision trees designed for speed and
performance
The implementation of the model supports the features of the scikit-learn
Models supported: Gradient Boosting, Stochastic Gradient Boosting, Regularized
Gradient Boosting
Some system Features:
Parallelization of tree construction using all of your CPU cores during training.
Distributed Computing for training very large models using a cluster of machines.
Out-of-Core Computing for very large datasets that don’t fit into memory.
Cache Optimization of data structures and algorithm to make best use of hardware.

https://xgboost.readthedocs.io/en/latest/
https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf
arXiv:1603.02754v3 [cs]

https://xgboost.readthedocs.io/en/latest/
https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf
https://arxiv.org/pdf/1603.02754.pdf

A Nayak8th Feb 2024

References

54

1. The elements of statistical learning, Hastie, Tibshirani, Friedman
2. Yann Coadou, EPJ Web of Conferences 55, 02004 (2013)
3. TMVA userguide
4. XGBoost userguide

A Nayak8th Feb 2024

Thanks

55

A Nayak8th Feb 2024

Installation Guide

56

We will install all packages using ANACONDA (Python, Numpy, Scipy, Pandas,
ROOT/TMVA, Scikit-Learn, XGBoost etc..)

Download and install anaconda for Python 3 version, according to your operating
system and machine architecture:
https://www.anaconda.com/distribution/

Go to a terminal and activate anaconda environment using command
conda activate

Then Install XGBoost using command:
conda install -c conda-forge xgboost

Install root_numpy:
conda install -c conda-forge root_numpy

Then, check if ROOT is automatically installed using the command:
root (it should create root prompt)

Otherwise, install ROOT:
conda install -c conda-forge root

https://www.anaconda.com/distribution/

A Nayak8th Feb 2024 57

https://www.dropbox.com/sh/zc6r87qnn1y284a/AADzkt
HKBG5NVIJbkiW9FJrRa?dl=0

Download data files from this location

A Nayak8th Feb 2024

Gradient Boosting in TMVA

58

• Current TMVA implementation uses the binomial log-likelihood loss:

• Minimization is performed using steepest-descent approach
• Implementation in TMVA: Calculate the current gradient of the loss function

and then grow a regression tree whose leaf values are adjusted to match the
mean value of the gradient in each region defined by the tree structure –
www.jstor.org/stable/2699986

• Iterating this procedure yields the desired set of decision trees which
minimizes the loss function

• Robustness can be enhanced by reducing the learning rate of the algorithm
(shrinkage), which controls the weight of the individual trees

(ref: TMVA userguide)

http://www.jstor.org/stable/2699986

A Nayak8th Feb 2024

Tree Boosting in XGBoost

59

obj = l (yi , ŷi)+ Ω(f k)
k =1

K

∑
i =1

n

∑

Procedure:
• Each tree is created iteratively
• The tree’s output (f(x)) is given a weight (w) relative to its accuracy
• Events which are misclassified, increase their weights
• Build a new tree, repeat the procedure for several trees
• The final score of an event is the weighted average of scores from all trees

• This means that samples that are difficult to classify receive increasing larger
weights until the algorithm identifies a model that correctly classifies these
samples

• The goal is to minimize an objective function

ŷ = wk f k (x)
k
∑ ,

is the loss function (distance between truth and prediction value for ith sample)
is the regularization function (it penalizes the complexity of the kth tree)

l (ŷi , yi)
Ω(f t)

f k ∈ F
Space of functions containing

all regression tree

A Nayak8th Feb 2024

Gradient Boosting: How does it learn?

60

Objective function: obj = l (yi , ŷi)+ Ω(f k)
k =1

K

∑
i =1

n

∑

What are the parameters of the trees?
• What we need to learn are these functions
• Contains the structure of the tree and the leaf scores
• Instead of learning weights, we are learning functions (trees)

f i

It is not easy to use steepest decent method to find f (since these are trees,
instead of just numerical vectors)

Additive Training:
Start from a constant prediction and add one new tree a time

ŷi
(0) = 0

ŷi
(1) = f1(xi) = ŷi

(0) + f1(xi)

ŷi
(2) = f1(xi)+ f 2 (xi) = ŷi

(1) + f 2 (xi)
........................

ŷi
(t) = f k (xi) = ŷi

(t−1) + f t (xi)k =1

t
∑

Model at training round t Keep functions in previous round

Add new function

A Nayak8th Feb 2024

Additive Training

61

Which tree do we want at each step?
A natural thing is to add the one that optimizes our objective.

Obj (t) = l (yi , ŷi
(t))+ Ω(f k)

k =1

t

∑
i =1

n

∑

= l (yi , ŷi
(t−1) + f t (xi))+Ω(f t

i =1

n

∑)+constant Goal is to find ft that minimize it.

Consider square loss

Obj (t) = yi − (ŷi
(t−1) + f t (xi))()

2
+Ω(f t

i =1

n

∑)+constant

= 2(ŷi
(t−1) − yi) f t (xi)+ f t (xi)

2()+
i =1

n

∑ Ω(f t)+const .

Residual from previous round For other losses of interest (for example, logistic loss), it
is not so easy to get such a nice form. So in the general
case, the Taylor expansion of the loss function up to the

second order is considered.

A Nayak8th Feb 2024

Additive Training

62

Taking the Taylor expansion of the loss function and keeping up to 2nd order

Obj (t) = l (yi , ŷi
(t−1))+ gi f t (xi)+

1
2
hi f t

2 (xi)
⎡

⎣
⎢

⎤

⎦
⎥+

i =1

n

∑ Ω(f t)+const .

Where
gi = ∂ ŷi(t−1)l (yi , ŷi

(t−1))

hi = ∂ ŷi(t−1)
2 l (yi , ŷi

(t−1))

After removing all the constants, the specific objective at step 𝑡 becomes

gi f t (xi)+
1
2
hi f t

2 (xi)
⎡

⎣
⎢

⎤

⎦
⎥+

i =1

n

∑ Ω(f t) This becomes the optimization
goal for the new tree

• gi and hi comes from definition of loss function
• The learning of function only depend on the objective via gi and hi

This is how XGBoost supports custom loss functions

A Nayak8th Feb 2024

Tree Complexity

63

In XGBoost, the complexity is defined as

Ω(f t) = γT +
1
2
λ ω j

2

j =1

T
∑

w is the vector of scores on leaves

q(x) is a function assigning each data
point to the corresponding leaf.

T is the number of leaves

One can refine the definition of the tree

f t (x) =ωq (x)

A Nayak8th Feb 2024

The Structure Score

64

One can write the objective value with the tth tree as

Obj (t) ≈ gi f t (xi)+
1
2
hi f t

2 (xi)
⎡

⎣
⎢

⎤

⎦
⎥+

i =1

n

∑ Ω(f t)

= giωq (xi)
+
1
2
hiωq (xi)

2⎡

⎣
⎢

⎤

⎦
⎥

i =1

T

∑ + γT +
1
2
λ ω j

2

j =1

T

∑

= (gi)
i∈I j

∑ ω j +
1
2
(hi
i∈I j

∑ +λ)ω j
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i =1

T

∑ + γT

where 𝐼𝑗={𝑖|𝑞(𝑥𝑖)=𝑗} is the set of indices of data points assigned to the 𝑗th leaf

Compressing further, by defining 𝐺𝑗=∑𝑖∈𝐼𝑗𝑔𝑖 and 𝐻𝑗=∑𝑖∈𝐼𝑗ℎ𝑖

Obj (t) ≈ G jω j +
1
2
(H j +λ)ω j

2⎡

⎣
⎢

⎤

⎦
⎥

i =1

T

∑ + γT
w𝑗 are independent with
respect to each other

Since it is quadratic, the best w𝑗 for a given structure 𝑞(𝑥) and the best objective reduction one can get is:

ω j
* = −

G j

H j +λ
and Obj * = − 1

2
G j

2

H j +λ
+γT

j =1

T

∑

A Nayak8th Feb 2024

The Structure Score

65

This is a simple pictorial example

A Nayak8th Feb 2024

Learning the Tree Structure

66

Ideally one would enumerate all possible trees and pick the best possible one
(by computing the tree structure score and optimal leaf weight)
However, there can be infinite possible tree structures.
Thus, in practice, one tries to optimize one level of the tree at a time.

The idea is:
• Start from a tree with depth 0
• For each leaf node, split the leaf into two leaves and compute the gain in the objective score:

Gain = 1
2

GL
2

H L +λ
+
GR

2

H R +λ
+
(GL +GR)

2

H L +H R +λ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−γ

the score of left child
the score of right child

the score of parent

The complexity cost by
introducing additional leaf

Important fact: if the gain is smaller than 𝛾, it would be better not to add that branch

To search for an optimal
split and to do it efficiently,
place all the instances in
sorted order, like in this
picture

