
CSC – Software Design in the Many-core Era

A. Gheata, S. Hageboeck

Introduction

Welcome to the exercises section of Software Design in the Many-core Era! We
use the standard CSC machines with AlmaLinux 9 to work on the problems.

Please note that it is likely that you will not be able to finish all the exercises
in the allocated time. This is not a problem, as they are designed to also include
challenges for people who already know a part of the subject. You can leave
aside challenging tasks during a first pass if you wish, and you can come back
to them later. In any case, you are very welcome to ask the tutors for hints and
additional explanations during and after the exercises session. Remember that
this is not a competition: these exercises are designed to help you assimilate the
concepts to which you were exposed during the lectures, so go at the pace that
will allow you to learn the most.

Getting the code Let’s now fetch the exercises from the CSC Indico agenda.
Please follow the CSC instructions to establish an ssh connection to the CSC
machine that was assigned to you. If you have not done this before, you
can use the ssh example below, which executes a proxy jump (-J) through
lxtunnel.cern.ch, which might be necessary depending on firewall settings.

ssh -J <cern_username>@lxtunnel.cern.ch <cern_username>@XXXX.cern.ch

wget -O ManyCoreExercises.tar.gz https://cern.ch/bw8vd

tar -xf ManyCoreExercises.tar.gz

cd ManyCoreExercises

ManyCoreExercises contains one subdirectory for every exercise. If applicable,
these come also with the solution. Try to make as much progress as possible –
and do ask questions to the tutors – before looking at the solutions.

Given the central importance of compilers in the software development pro-
cess, we decided to let you see and execute the compilation commands yourself.
Try to craft the necessary commands yourself, but if in doubt, they can be found
on the top of the source files as a comment.

Setting up the environment on non-CSC hosts The CSC machines with
Alma9 contain all the software we need. However, if you want to repeat some
exercises on a host that doesn’t have all the necessary software installed, or if
you want a more modern compiler/gdb with nicer error messages, you can set
up an LCG software stack from cvmfs:

source setupScriptCvmfs.sh

1



Figure 1: Amdahl’s law for different values of P (from Wikipedia)

1 Amdahl’s Law

We will start with some warm up – no need to code in this exercise. Let’s
get practical experience with one of the most relevant concepts in the field of
parallel programming: Amdahl’s law. As a reminder, see again figure 1 and
equation 1:

S(N) =
1

(1− P ) + P
N

(1)

where S represents the speedup, N is the number of CPUs available, and P the
portion of the program that can run in parallel.

Suppose now to be in charge of the hardware resources of a small manufactur-
ing company. The main quad-core web-server works OK, but the performance
of your web application running on it is suboptimal. 75% of the total work done
by the program is spent in I/O, which runs purely sequentially. The rest of the
operations scale well with the number of available cores. What is the gain you
expect moving to an eight-core server? And to a hypothetical machine with 200
cores?

Let’s say that the price of server is 2000 Euros. You can decide to pay the
same amount of money to a consultant who is expert in software performance
and parallel software design. He or she is able, evolving the present design, to
reduce the serial part to 70% of the overall time. What would be the most
profitable solution? Why?

2 The Map-Reduce Pattern

Let’s get hands-on experience with the Map-Reduce pattern in Spark. We will
run this on CERN’s “Service for web-based analysis” SWAN. You will find the

2



instructions about how to proceed in the notebook itself.

• If you have never used SWAN before, you might need to create a cernbox
account (CERN cloud storage). Go to https://cernbox.cern.ch and
log in, and your cernbox will be created.

• Afterwards, go to SWAN: https://swan.cern.ch. The default configu-
ration is fine for this exercise.

• Click on the little cloud icon on the top right, and clone the following
repository:

https://github.com/hageboeck/CSC_Spark_Exercise.git

– If you started the jupyterlab interface in SWAN, use the little git
symbol on the left to clone the repository.

3 Modern C++ syntax

In this and the following exercises we will develop some code based on examples
reviewed in the lectures. In most of the cases, the compilation command is
given at the top of the example code. Solutions to the exercises are given in the
Solutions folder. Resist to the temptation to look at it too early. ;-)

C++ provides a few features that make the programmers’ life much easier,
and we will have a look at three of these features. You might wonder why we call
a more than 10-year old standard “modern” C++. This is because many of the
codes in HEP were started before this evolution of C++, so you will encounter
code that doesn’t use the idioms, and it might be a good idea to modernise
where possible.

3.1 The auto keyword and range-based loops

In the directory of this exercise you will find a file classical_looping.cpp

showing two standard ways of looping through vectors. Simplify the iteratorLoop
by using auto. Using range-based loops it can be simplified even further. Try
implementing another function: rangeLooping, which uses a range-based for
loop as an even simpler way to go through the data.

3.2 Programmer mistakes

The file range_looping.cpp contains an attempt by an inexperienced program-
mer to use range-based loops. It seems terribly slow. Can you spot the bugs
and fix them?

3.3 Lambdas

As you’ve learned in the lectures, C++11 and later support lambdas and clo-
sures. The file lambda.cpp uses a function and a function pointer to increment
a simple counter. Replace these with a lambda. Lambdas are helpful in par-
allel programming, so this brings you in position to put them to good use, for
example in the Fibonacci exercise.

3

https://cernbox.cern.ch
https://swan.cern.ch
https://github.com/hageboeck/CSC_Spark_Exercise.git


4 Introduction to GDB

As stressed during the lectures, debugging can be a crucial step in the develop-
ment cycle. One efficient way to debug programs is to use GDB. We provided
you with a precompiled program buggy that crashes. Fortunately, it was com-
piled with debugging symbols, so you can examine it with GDB.

Hints: to run a program in GDB you can perform these two operations

gdb ./myProgram

(gdb) run

Remember that once you put a break point in GDB, you can print the content
of a variable with p <variableName> and you can use the commands n and s

to go to next line or alternatively to step into function calls. You can set break
points with b. You can see the source with list, in particular you can list
source code between two line numbers with list n1,n2.

When the program crashes, you can show the stack trace with the command
bt and change to a stack frame with the command f N where N is the number
of the frame.

In this case the problem is quite simple. You can check the source code in the
Solution folder after you found the problem with GDB. But there are situations
in which looking at the code in order to find a bug is simply infeasible, for
example because of the size or complexity of the code base, or because you need
to know the run-time values of all variables.

5 Debugging Parallel Applications

5.1 GDB

GDB offers the possibility to debug parallel applications. In this exercise we
will inspect a simple program which increments a counter in two threads.

5.1.1 example1

First, compile the example with the following (plus appropriate warning flags if
desired):

g++ -o example1 -std=c++17 -pthread -g example1.cpp

The additional flag -pthread is not always needed, but we want to use the
pthread library for multithreading. Some compilers link to it automatically,
but it doesn’t do any harm to link again explicitly.

Running the program, we see that despite incrementing the counter in line
12 with

++counter;

the final result is still zero. Try to find the problem by setting breakpoints on
the lines where the increment happens.

We can also set a breakpoint to inspect counter at line 9. However, this
time we will set a temporary breakpoint via tbreak, that stops the execution
only once. Now we can make gdb watch the counter using watch (note that we

4



have to break into the scope where counter is defined before we can set this
watchpoint):

(gdb) watch counter

(gdb) watch (*counter)

(gdb) continue

The central feature of watch is that it prints the old and the new value of the
watched variable. It should now be possible to understand and fix the bug
in the lambda. After compiling and executing the fixed program, you might
get non-reproducible results: try to execute the program a few times using
watch ./example1. Note that this is unix watch, not gdb’s watch.

If your results are not reproducible, a deeper analysis may be needed! You
may have noticed lines like

[New Thread 0x7ffff78d5700 (LWP 9017)]

in the GDB output (the value is of course not the same for every execution).
The GDB session automatically switches to the thread reaching a breakpoint
and stops the other threads at the same time. Let’s watch the counter again,
and observe how it is incremented from the two threads. To know which thread
you are currently in you can use thread. To know the status of all threads use
info threads.

This thread switching in the context of the increment of a variable is an
alarm – multiple threads modifying the same data, so we would need to somehow
protect this resource. If you like, try to fix the bug using what you’ve learned
about atomics during the lectures.

5.1.2 example2

Now, things become a little bit trickier. In this example, the threads are reaching
the counter in different functions. You might be tempted to watch counter in line
10, but that may not be enough, since this doesn’t cover the other thread. But
even here GDB gives us a handle to find out what’s happening – by monitoring
explicit memory addresses like in the example below:

(gdb) tbreak example2.cpp:21

...

(gdb) watch -l counter

Now every change to the memory location of counter will be watched and we
see which threads accesses it1.

Remember this functionality when a memory location seems to change with-
out an obvious reason. It might be another thread or an accidental use of that
memory location, and watch -l can reveal this.

5.1.3 example3

As last GDB exercise, we change the stopping behaviour of GDB. We will
demonstrate that GDB is not only a debugging tool but it can alter the runtime
behaviour of an application!

1In older GDB versions one has to retrieve first the address and then set a watchpoint to
the adress explicitly, so always use modern versions of gdb if possible.

5



By default, a breakpoint stops all threads. This is called all-stop mode. One
can instruct GDB to halt only the thread that reaches the breakpoint, though.
This is called non-stop mode. To see the difference, compile example3.cpp, and
familiarise yourself with how it uses the counters: set a temporary break point
to the line that increments counter, and print its value a few times in a row
after you hit the breakpoint.

Now restart GDB and issue the following two commands before running the
example:

set mi-async on

set non-stop on

Set again a temporary breakpoint where the threads increment the counter. Run
the executable. You will notice that GDB will tell you about the breakpoint
being reached, but it will not automatically switch into the halted thread. You
have to do this explicitly. Use info thr or info threads to see what the
threads are doing, and change to the halted thread using thread <id>. Once
you did that, print the value of the counter (p counter) a few times. The
value should be changing. Did you expect that? What is going on? Check
again info threads if necessary.

5.2 Optional: Thread sanitizer

Thread sanitizer was briefly mentioned in the lecture. Let’s go back to example2,
and try to debug it again using thread sanitizer. Since libtsan is not installed
on the CSC machines, we need to set up an LCG view (see first page). We can
now compile as follows:

source setupScriptCvmfs.sh

g++ -std=c++17 -fsanitize=thread -g example2.cpp -o example2

You should notice that we asked the compiler to ”sanitize” the executable using
an additional flag. This will add run-time checks to the program, which make
it run slower. Now run the program and see what the result is. If you used -g

as shown above, you should get a very clear indication where the race condition
happens. Try removing -g to see the difference if you have the time.

The downside of thread sanitizer is that you have to recompile everything,
so using gdb might be the quicker option. Sometimes, however, the programs
are so complicated that it’s difficult to find a data race with gdb.

If you finished all other tasks, your last option to debug race conditions is
valgrind --tool=helgrind <program>. Usually, you don’t need to recompile
the program, but helgrind can be very slow. Of course, we shouldn’t run both
helgrind and thread sanitizer, so now you have to recompile if you want to try
it.

6 Optional: Computing Fibonacci Numbers in
Parallel using Scan

In the lecture we discussed whether Fibonacci numbers can be computed in
parallel using scan. A parallel scan needs to know the previous element of the

6



sequence, but for Fibonacci numbers we need the two previous elements:

Fn = Fn−1 + Fn−2 (2)

(a) Simple scan (b) Parallel scan

However, if we use a more complicated algorithm to compute the numbers,
we can fit two Fibonacci numbers into a single element of a new sequence. This
is done by applying a 2x2 matrix to a vector of two Fibonacci numbers:(

Fn+1

Fn

)
=

(
A = B =
C = D =

)
·
(

Fn

Fn−1

)
(3)

The subsequent element can be reached by applying the matrix twice:(
Fn+2

Fn+1

)
=

(
A B
C D

)
·
(
A B
C D

)
·
(

Fn

Fn−1

)
(4)

Therefore, we can reach any number by starting at

(
1
0

)
, and repeatedly

applying the matrix.

Tasks:

1. Figure out the coefficients of the matrix in eq. 3.

2. Convince yourself that all prerequisites for a parallel scan are fulfilled.

3. Go to the exercise folder, and have a look at the FiboMatrix class. Fill
the matrix coefficients at the location marked with “Task 3”.

4. Test the implementation (see details in the code, marked with “Task 4”)
To compile the code, you need to link against the TBB library, so the
compilation will look like:

g++ Fibonacci.cxx -o Fibonacci -O2 -g -std=c++17 -Wall -ltbb

To test the algorithms, let’s now:

(a) Implement a trivial sequential Fibonacci computation “Task 4.(a)”.

(b) Run a few steps of the matrix algorithm, and look at the results.

7



(c) If necessary, correct the matrix until the Fibonacci sequences show
up.

5. Now let’s use a full scan to compute thousands of elements of the se-
quence. We don’t need to implement scan ourselves, though, since C++
has inclusive scan or exclusive scan. Hints to do this can be found
in the code.

Compare the run times with the trivial Fibonacci algorithm. Since you
share the CSC machine with other students, you might be competing
for CPUs with them. In order to get stable run times, you can run the
Fibonacci program within the tool “watch” (watch ./Fibonacci, this is
not gdb’s watch), which will run your program in a loop, and update its
output on the screen. If the output fills the whole terminal, comment out
the print() functions or run “watch ./Fibonacci | grep ms”.

Keep the program running until you are confident that the run times are
stable. You should observe that the matrix algorithm is slower. What is
the reason? What is the difference between inclusive and exclusive scan?

6. In C++17, scan can be parallelised easily by using the parallel algorithms
library. Implement the parallel computation, and measure the speedup
using “watch”. Again, details on how to do this are given in the code.
What speedup did you expect, and what did you achieve?

7. Optional: If you have time, you can use TBB to exert more control over
the computation. We can for example change the number of threads by
passing them as an argument to the program. Since TBB has a steep
learning curve, the implementation is already given. Note how lambdas
help us to express the iteration and reduction steps of a scan. Uncomment
the code and compile the program. You can now change the number of
elements2 and the number of threads using command line arguments:

g++ Fibonacci.cxx -o Fibonacci -O2 -g -std=c++17 -ltbb

./Fibonacci <nFibonacci> <nThread>

Study the details of the TBB implementation a bit, and ask the tutors if
you want to know more. Note that most TBB algorithms have a similar
interface, so understanding parallel scan will unlock your understanding
of map, reduce, for each etc.

Now measure the scaling behaviour using TBB on e.g. 1M to 10M ele-
ments, and change the number of threads from 1 to the number of cores
of your machine. Does the speedup scale linearly? What did you expect?

2Note: The Fibonacci numbers grow very quickly, so if you ask for a large number of
elements, this will very quickly overflow our 64-bit integer. We will accept to get wrong
numbers, because we want to stress our algorithms a bit, but in a real setting, we would have
to move to 128- or 256-bit integers.

8


	Amdahl's Law
	The Map-Reduce Pattern
	Modern C++ syntax
	The auto keyword and range-based loops
	Programmer mistakes
	Lambdas

	Introduction to GDB
	Debugging Parallel Applications
	GDB
	example1
	example2
	example3

	Optional: Thread sanitizer

	Optional: Computing Fibonacci Numbers in Parallel using Scan

