
CERN School of Computing 2024

SW Design in the Many-Cores Era

1

CERN School of Computing 2024

Software Design in the Many-Cores era

A. Gheata, S. Hageböck

CERN, EP-SFT

CERN School of Computing 2024

SW Design in the Many-Cores Era

2

Base Concepts of Parallel Programming:
A Pragmatic Approach

Lecture II

CERN School of Computing 2024

SW Design in the Many-Cores Era

3

Outline of This Lecture

▪ Concurrency: asynchronous execution and threads

▪ Synchronisation: design principles, replication, atomics,

transactions and locks

The Goals:

1) Become familiar with the basic concepts of parallel programming

through the discussion of concrete examples in C++

2) Know what is behind the scenes of a task-based approach

3) Be able to start developing parallel applications.

CERN School of Computing 2024

SW Design in the Many-Cores Era

4

C++: A Reminder

▪ The approach of this lecture is pragmatic.

▪ “Forward declarations” to concepts treated later will be used!

▪ Concepts are illustrated through concrete examples involving C++ constructs.

▪ C++ is the programming language of HEP for frameworks, event generators, simulation

toolkits, analysis and reconstruction applications (number crunching code!)

▪ Python is also widespread for configuration, analysis and scripting – but it has a GIL…

▪ C++: “The power, elegance and simplicity of a hand grenade”

C was already powerful enough to shoot yourself in the foot

several times. With C++, you can blow your entire leg off
without too much difficulty
 O’Reilly

CERN School of Computing 2024

SW Design in the Many-Cores Era

5

Object Orientation

C++ allows OO programming.

Now, are objects good?

CERN School of Computing 2024

SW Design in the Many-Cores Era

6

Object Orientation

C++ allows OO programming.

Now, are objects good?

▪ Well, yes, it is easier to describe concepts this way

▪ Using features like: inheritance, encapsulation, polymorphism

Most of the HEP code

moved from FORTRAN

to C++ in the early 90s

CERN School of Computing 2024

SW Design in the Many-Cores Era

7

Object Orientation

C++ allows OO programming.

Now, are objects good?

▪ Well, yes, it is easier to describe concepts this way

▪ Using features like: inheritance, encapsulation, polymorphism

▪ And no, it is very easy to abuse OOP, creating inefficient code

▪ Search for: “OOP best practices” and “OOP anti-patterns”…

▪ CPU/memory price tags for the features above

▪ The data layout and access pattern are essential for performance

▪ Keyword: Data Oriented Design (re-design?)

All of the HEP code

moved from FORTRAN

to C++ in the early 90s

CERN School of Computing 2024

SW Design in the Many-Cores Era

8

C++ Evolves!

▪ A committee reviews the C++ standard

▪ CERN is part of it!

-std=c++NN

switch to activate standard <NN>

Support for parallelism

gradually introduced

and evolved

CERN School of Computing 2024

SW Design in the Many-Cores Era

9

C++ concurrency evolves!

▪ A committee reviews the C++ standard

▪ CERN is part of it!

parallel algorithms: std::sort(policy, v.begin(), v.end());

http://en.cppreference.com/w/cpp/algorithm/sort

CERN School of Computing 2024

SW Design in the Many-Cores Era

10

Concurrency

CERN School of Computing 2024

SW Design in the Many-Cores Era

11

Asynchronous Task Execution

▪ Problem: a long calculation, the result of which is not immediately needed

▪ Possible solution: asynchronous execution of the calculation, retrieval of the

result at a later stage

▪ Nuances: result may or may not be needed later depending on the control

flow steering the application

▪ Lazy evaluation?

Main “line of work”

Long calculation

Time

Among the simplest
asynchronous setups!

CERN School of Computing 2024

SW Design in the Many-Cores Era

12

std::async

▪ A solution is provided by the standard library natively: std::async

▪ #include <future>

▪ Execute a function concurrently in a separate thread or on demand when

the result is needed (lazily)

▪ Result is a std::future : a “bridge” between the two locations:

▪ std::future “transports” results and exceptions from thread to thread

▪ In other words, code to be executed is passed around

CERN School of Computing 2024

SW Design in the Many-Cores Era

13

std::async in Action

#include <future> // Header for async and future

#include <iostream>

int lenghtyCalculation(){ /* independent calculation */ };

void doOtherStuff(){ /* do work here */ };

int main() {

 std::future<int> myAnswer = std::async(lenghtyCalculation);

 doOtherStuff();

 std::cout << "The result is: " << myAnswer.get() << std::endl;

}

CERN School of Computing 2024

SW Design in the Many-Cores Era

14

std::async in Action

#include <future> // Header for async and future

#include <iostream>

int lenghtyCalculation(){ /* independent calculation */ };

void doOtherStuff(){ /* do work here */ };

int main() {

 std::future<int> myAnswer = std::async(lenghtyCalculation);

 doOtherStuff();

 std::cout << "The result is: " << myAnswer.get() << std::endl;

}

“Launch” the calculation

Retreive the result

▪ std::async can have a second parameter, the “policy”:

▪ std::launch::async: execute function in a new separate thread

▪ std::launch::deferred: defer call until get() is called (lazy)

▪ Default: “async or deferred”, the implementation chooses!

CERN School of Computing 2024

SW Design in the Many-Cores Era

15

std::async in Action

Main “line of work”

Long calculation

Time

std::future<int> myAnswer = std::async(lenghtyCalculation);

myAnswer.get()

CERN School of Computing 2024

SW Design in the Many-Cores Era

16

std::async in Action

Main “line of work”

Long calculation

Time

std::future<int> myAnswer = std::async(lenghtyCalculation);

myAnswer.get()

It’s easy after all, isn’t it?

CERN School of Computing 2024

SW Design in the Many-Cores Era

17

Well, to be Honest

▪ Scientifically relevant / potentially lucrative real life use cases are complex

▪ Cannot be solved simply throwing threads at them ☺

▪ In addition, many existing high-quality non-parallel large software systems are in production

▪ Starting fresh may not be always possible

▪ Example: software stack of an LHC experiment

▪ Tens of (large) packages integrated

▪ O(102) shared libraries

▪ Experiment specific code

▪ → Millions of nicely working lines of code

Need to think parallel

• Evolve the existing systems

• Be disruptive and think to the future

Unity of opposites ☺

CERN School of Computing 2024

SW Design in the Many-Cores Era

18

Threads

CERN School of Computing 2024

SW Design in the Many-Cores Era

19

* Actually mapping user threads to kernel threads, but this simplification ok in first order!

Let’s switch gears: Threads

▪ From the operating system point of view:

▪ Process: isolated instance of a program, with its own space in (virtual) memory, can have multiple

threads

▪ Thread: light-weight process within a process, sharing the memory with the other threads living in

the same process

▪ The kernel manages the existing threads, scheduling them to the available resources

(CPUs)*

▪ There can be more threads in a single process than cores in the machine! (oversubscribing)

CERN School of Computing 2024

SW Design in the Many-Cores Era

20

Interlude: A Program in Memory

▪ Text Segment: code to be executed.

▪ Initialized Data Segment: global
variables initialized by the programmer.

▪ Uninitialized Data Segment: This
segment contains uninitialized global
variables.

▪ The stack: The stack is a collection of
stack frames. It grows whenever a new
function is called. “Thread private”.

▪ The heap: Dynamic memory (e.g.,
requested with “new”). Threads can
communicate via the heap.

HEP: depth

of ~50 not
seldom
reached

CERN School of Computing 2024

SW Design in the Many-Cores Era

21

Interlude: A Program in Memory

▪ Text Segment: code to be executed.

▪ Initialized Data Segment: global
variables initialized by the programmer.

▪ Uninitialized Data Segment: This
segment contains uninitialized global
variables.

▪ The stack: The stack is a collection of
stack frames. It grows whenever a new
function is called. “Thread private”.

▪ The heap: Dynamic memory (e.g.,
requested with “new”). Threads can
communicate via the heap.

HEP: depth

of ~50 not
seldom
reached

Terminology:

Threads have their own stack, but they share a common heap

CERN School of Computing 2024

SW Design in the Many-Cores Era

22

Processes and Threads: price tags

Process:

 Isolated (different address spaces)

 Easy to manage

 Communication between them possible but pricey

 Price to switch among them

Threads:

 Sharing memory (communication is a memory access)

 Lower overhead for creation, lower coding effort

 Fit well many-cores architectures

 Ideal for a task-based programming model

CERN School of Computing 2024

SW Design in the Many-Cores Era

23

Threads in C++

▪ C++ offers a construct to represent a thread: std::thread

▪ Interfaced to the underlying backend provided by the OS – 100% portable:

▪ Linux: pthreads

▪ Windows: Windows threads

▪ …

▪ A function (a callable in general) can be executed within a thread asynchronously

▪ Many more possibilities than the simple std::async execution

▪ Full control on the thread!

CERN School of Computing 2024

SW Design in the Many-Cores Era

24

#include <thread> // header for std::thread

#include <iostream>

void f() { std::cout << "Hello Concurrent World!\n"; }

int main() {

 std::thread t(f);

 t.join();

}

Threads example

CERN School of Computing 2024

SW Design in the Many-Cores Era

25

#include <thread>

#include <iostream>

void f() { std::cout << "Hello Concurrent World!\n"; }

int main() {

 std::thread t(f);

 t.join();

}

Threads example

Create and start a thread

Wait for the thread to finish its job

▪ In general, it is possible that the thread does not need to be joined

▪ A “daemon thread”: the method to use is std::thread::detach()

▪ Once detached, the thread cannot be joined anymore!

▪ Possible use cases: I/O, monitor filesystems, clean caches…

CERN School of Computing 2024

SW Design in the Many-Cores Era

26

#include <thread>

#include <iostream>

void f(const std::string& s) { std::cout << s; }

void g() {

 std::string s("Hello\n");

 std::thread t(f,s);

 t.detach();

}

A Pitfall with Threads

CERN School of Computing 2024

SW Design in the Many-Cores Era

27

#include <thread>

#include <iostream>

void f(const std::string& s) { std::cout << s; }

void g() {

 std::string s("Hello\n");

 std::thread t(f,s);

 t.detach();

}

A Pitfall with Threads

Parallel programs: variables’ lifetime even more important than in sequential world

Typical behavior of the example above:

▪ Function g terminates before f : s is a dangling reference!

▪ Corruption and seg-faults are guaranteed

String s lives in the

scope of function g

Passed by
reference

CERN School of Computing 2024

SW Design in the Many-Cores Era

28

#include <thread>

#include <iostream>

void f(const std::string s) { std::cout << s; }

void g() {

 std::string s("Hello\n");

 std::thread t(f,s);

 t.detach();

}

A Pitfall with Threads

▪ A possible solution: create a string object and pass it by value

▪ But it’s a copy of a string! Yes.

▪ The phase-space of design and implementation choices significantly expands when
introducing concurrency!

Always carefully

consider ownership!

Passed by value

CERN School of Computing 2024

SW Design in the Many-Cores Era

29

#include <thread>

#include <mutex>

#include <vector>

#include <iostream>

std::mutex myMutex;

void printThreadID(int i) {

 std::lock_guard<std::mutex> myLock(myMutex);

 std::cout << "thread num " << i << " - id "

 << std::this_thread::get_id() << std::endl;

};

int main() {

 std::vector<std::thread> myThreads;

 myThreads.reserve(10);

 for (int i=0; i<10; i++)

 myThreads.emplace_back(printThreadID, i);

 for (auto& t : myThreads)

 t.join();

}

A possible prototype backend

behind task oriented programming!

A possible prototype backend

behind task-oriented programming!

A First Abstraction

CERN School of Computing 2024

SW Design in the Many-Cores Era

30

#include <thread>

#include <mutex>

#include <vector>

#include <iostream>

std::mutex myMutex;

void printThreadID(int i) {

 std::lock_guard<std::mutex> myLock(myMutex);

 std::cout << "thread num " << i << " - id "

 << std::this_thread::get_id() << std::endl;

};

int main() {

 std::vector<std::thread> myThreads;

 myThreads.reserve(10);

 for (int i=0; i<10; i++)

 myThreads.emplace_back(printThreadID, i);

 for (auto& t : myThreads)

 t.join();

}

A possible prototype backend

behind task oriented programming!

A possible prototype backend

behind task-oriented programming!

A First Abstraction

Be patient for the moment! ☺

Identify the thread

The first step towards
automating the

management of threads in
the application!

Limitation: cannot retrieve
the return value.

CERN School of Computing 2024

SW Design in the Many-Cores Era

31

#include <thread>

#include <mutex>

#include <vector>

#include <iostream>

std::mutex myMutex;

void printThreadID(int i) {

 std::lock_guard<std::mutex> myLock(myMutex);

 std::cout << "thread num " << i << " - id "

 << std::this_thread::get_id() << std::endl;

};

int main() {

 std::vector<std::thread> myThreads;

 myThreads.reserve(10);

 for (int i=0; i<10; i++)

 myThreads.emplace_back(printThreadID, i);

 for (auto& t : myThreads)

 t.join();

}

A possible prototype backend

behind task oriented programming!

A possible prototype backend

behind task oriented programming!

A First Abstraction

Be patient for the moment! ☺

Identify the thread

The first step towards
automating the

management of threads in
the application!

Limitation: cannot retrieve
the return value.

-> g++ –std=c++14 –lpthread -o myTest myTest.cpp

-> ./myTest

thread num 0 - id 139708894000896

thread num 5 - id 139708852037376

thread num 3 - id 139708868822784

thread num 2 - id 139708877215488

thread num 4 - id 139708860430080

thread num 8 - id 139708826859264

thread num 1 - id 139708885608192

thread num 7 - id 139708835251968

thread num 6 - id 139708843644672

thread num 9 - id 139708818466560

When dealing with
concurrency,

asynchronous
events are daily

business!

CERN School of Computing 2024

SW Design in the Many-Cores Era

32

The Thread Pool Model
▪ Thread pool: ensemble of worker threads which are …

▪ Initialised once, consuming work from …

▪ .. A work queue …

▪ .. to which elements of work (tasks) can be added

Hard to program in an optimised and general way!

(usually provided by 3rd part libraries: TBB, boost, …)

Thread Pool

Task Queue

Completed Tasks

Running task

Free Worker

self-balancing !

CERN School of Computing 2024

SW Design in the Many-Cores Era

33

Modern Syntax: An Interlude

▪ A nice byproduct of the previous examples - three C++ constructs:

▪ std::vector<T>::emplace_back(T&&)

▪ auto

▪ for (auto& element : myCollection)

▪ emplace_back: do not construct and then copy/move back in the vector (push_back) but

construct in place. One copy less!

▪ auto: do not specify the type, the compiler finds it out at compile time. Useful to avoid tedious

typing also detrimental for readability of the code!

▪ Be careful: const-ness and referencing still needs to be explicit !

▪ Range based loops: build a loop with a concise syntax!

A modern approach to scientific computation cannot avoid

the usage of the most modern tools!

?!

CERN School of Computing 2024

SW Design in the Many-Cores Era

34

Synchronisation:
Good Design, Replication, Atomics,

Transactions and Locks

CERN School of Computing 2024

SW Design in the Many-Cores Era

35

The Problem
▪ Fastest way to share data: access the same shared memory

▪ One of the advantages of threads

▪ Parallel memory access: delicate issue - race conditions

▪ I.e. behaviour of the system depends on the sequence of events which are intrinsically

asynchronous

▪ Consequences, in order of increasing severity

▪ Catastrophic terminations: seg-faults, crashes

▪ Non-reproducible, intermittent bugs

▪ Apparently sane execution but data corruption: e.g. wrong value of a variable or of a result

Operative definition: An entity which cannot run w/o issues linked to parallel execution is said to

be thread-unsafe (the contrary is thread-safe)

CERN School of Computing 2024

SW Design in the Many-Cores Era

36

To Be Precise: Data Race

Standard language rules, §1.10/4 and /21:

▪ Two expression evaluations conflict if one of them
modifies a memory location (1.7) and the other one
accesses or modifies the same memory location.

▪ The execution of a program contains a data race if it
contains two conflicting actions in different threads,
at least one of which is not atomic, and neither
happens before the other. Any such data race
results in undefined behaviour.

CERN School of Computing 2024

SW Design in the Many-Cores Era

37

Simple Example

Concurrency can compromise correctness

▪ Two threads: A and B, a variable X (44)

▪ A adds 10 to a variable X

▪ B subtracts 12 to a variable X

2 threads only

No crash

Bogus results

CERN School of Computing 2024

SW Design in the Many-Cores Era

38

Why so many strategies?

▪ Design, replication, atomics, transactions (DB like) and locks !

▪ There is no silver bullet to solve the issue of “resources protection”

▪ Complex problematic

▪ Case by case investigation needed

▪ Better to be aware of several strategies

▪ Best solution: often a trade-off

▪ The lightest in the serial case?

▪ The lightest in presence of high contention?

CERN School of Computing 2024

SW Design in the Many-Cores Era

39

What is not Thread Safe?
Everything, unless explicitly stated!

In four words: Shared State Among Threads

Examples:

▪ Static non const variables

▪ STL containers
▪ Some operations are thread safe, but useful to assume none is!
▪ Very well documented (e.g. http://www.cplusplus.com/reference)

▪ Many random number generators (the stateful ones)

▪ Calls like: strtok, strerror, asctime, gmtime, ctime …

▪ Some math libraries (statics used as cache for speed in serial execution…)

▪ Const casts, singletons with state: indication of unsafe policies

It sounds depressing. But there are several ways to protect thread unsafe resources!

CERN School of Computing 2024

SW Design in the Many-Cores Era

40

Const Means Thread Safe

“I do point out that const means immutable and
absence of race conditions[…]” B. Stroustrup

More a “new convention” rather than a technique.

• True for the STL and all at least C++11 compliant code.

F
ro

m
 H

.
S

u
tt

e
r,

 “
Y

o
u

 d
o

n
’t
 k

n
o

w
 c

o
n

s
t
a

n
d

 m
u

ta
b
le

”

CERN School of Computing 2024

SW Design in the Many-Cores Era

41

Functional Programming Style

Operative definition: computation as evaluation of functions the result of which depends only on
the input values and not the program state.

 value ≠ non constant reference/pointer !

▪ Functions: no side effects, no input modification, return new values

3 examples of functional languages: Haskell, Erlang, Lisp.

C++: building blocks to implement functional programming.

▪ STL algorithms: map an operation to a list of values.

▪ Decompose operations in functions, percolate the information through their arguments

Even without becoming purists, functional programming principles

can avoid lots of headaches typical of parallel programming

CERN School of Computing 2024

SW Design in the Many-Cores Era

42

One copy of the data per Thread
▪ Sometimes it can be useful to have thread local variables

▪ A “private heap” common to all functions executed in one thread

▪ Thread Local Storage (TLS)

▪ Replicate per thread some information

▪ C++ keyword thread_local

▪ Analogies with multi-process approach but

▪ Does not rely on kernel features (copy-on-write)

▪ Can have high granularity

▪ E.g.: build “smart-thread-local pointers”

▪ De-reference: provide the right content for the current thread

▪ Not to “one size fits them all” solution

▪ Memory usage

▪ Overhead of the implementation, also memory allocation strategy

Example:

boost::thread_specific_ptr

CERN School of Computing 2024

SW Design in the Many-Cores Era

43

TLS in Action

#include <thread>

#include <mutex>

#include <vector>

#include <iostream>

thread_local unsigned int tlIndex = 0;

std::mutex myMutex;

void IncrAndPrint(const char* tName,unsigned int i) {

 tlIndex+=i;

 std::lock_guard<std::mutex> myLock(myMutex);

 std::cout << tName << " - Thread loc. Index " << tlIndex

 << std::endl;

};

int main() {

 auto t1 = std::thread(IncrAndPrint,"t1",1);

 auto t2 = std::thread(IncrAndPrint,"t2",2);

 IncrAndPrint("main",0);

 t1.join(); t2.join();

}

Global variable, but one private
copy per thread will exist

Thread 1, 2 and main thread
(de facto just “threads” for the OS)

CERN School of Computing 2024

SW Design in the Many-Cores Era

44

TLS in Action

#include <thread>

#include <mutex>

#include <vector>

#include <iostream>

thread_local unsigned int tlIndex = 0;

std::mutex myMutex;

void IncrAndPrint(const char* tName,unsigned int i) {

 tlIndex+=i;

 std::lock_guard<std::mutex> myLock(myMutex);

 std::cout << tName << " - Thread loc. Index " << tlIndex

 << std::endl;

};

int main() {

 auto t1 = std::thread(IncrAndPrint,"t1",1);

 auto t2 = std::thread(IncrAndPrint,"t2",2);

 IncrAndPrint("main",0);

 t1.join(); t2.join();

}

Global variable, but one private
copy per thread will exist

Thread 1, 2 and main thread
(de facto just “threads” for the OS)

Possible output:
main - Thread loc. Index 0

t2 - Thread loc. Index 2

t1 - Thread loc. Index 1

Possible output w/o tls (not correct!):
main - Thread loc. Index 0

t2 - Thread loc. Index 3

t1 - Thread loc. Index 3

CERN School of Computing 2024

SW Design in the Many-Cores Era

45

Atomic Operations

▪ Building block of thread safety: an atomic operation is an operation seen as non-splittable

by other threads

▪ Other real life examples: database transactions

▪ Either entirely successful (subtract from A, add to B) or rolled back

▪ C++ offers support for atomic types

▪ #include <atomic>

▪ Usage: std::atomic<T>

▪ Operations supported natively vary according to T

▪ Subtleties present: e.g. cannot instantiate atomic<MyClass> under all circumstances

(must be trivially copyable)

▪ Well behaved with:

▪ boolean, integer types. E.g. std::atomic<unsigned long>

▪ Pointer to any type. E.g. std::atomic<MyClass*>

CERN School of Computing 2024

SW Design in the Many-Cores Era

46

Atomic Counter

3 observations:

• Atomics allow highly granular resources

protection.

• Real life example: incorrect reference

counting leads to double frees!

• Bugs in multithreaded code can have

extremely subtle effects and are in general

not-reproducible!

#include <atomic> // and others…

std::atomic<int> gACounter;

int gCounter;

void f(){ // increment both

 gCounter++;gACounter++;}

int main() {

 std::vector<std::thread> v;

 v.reserve(10);

 for (int i=0;i<10;++i)

 v.emplace_back(std::thread(f));

 for (auto& t:v) t.join();

 std::cout << "Atomic Counter: "

 << gACounter << std::endl

 << "Counter: "

 << gCounter << std::endl;

}

$ g++ -o atomic atomic.cpp -std=c++14 –lpthread

$./atomic

Atomic Counter: 10
Counter: 9

$./atomic

Atomic Counter: 10
Counter: 10

CERN School of Computing 2024

SW Design in the Many-Cores Era

47

The Cornerstone of Atomics
▪ Compare/exchange operation: fundamental in programming with atomics

▪ At the core of implementing lock-free data structures

▪ Check the value of the atomic

1) If equal to expected, store into the atomic the value of desired. Return true if

successful

2) If different from expected, load value of the atomic into it and return false

bool std::atomic<T>::compare_exchange_strong (T& expected, T desired);

All of these operations are seen as a single step by all threads:

no race conditions are possible

Usable also with pointer types

Food
For

Thought

CERN School of Computing 2024

SW Design in the Many-Cores Era

48

Compare/Exchange Example

▪ Problem: build cache in an object, many threads can ask the cached value

▪ Example:  angle between x=0 axis and vector initialised only with x, y and z

enum class cacheStates : char { kSet, kSetting, kUnset };

float myVect::phi() {

 if(cacheStates::kSet == m_phiCacheStatus.load()) return m_phi;

 float stackPhi = myMath::phi(m_x,m_y);

 auto expected = kUnset;

 if(m_phiCacheStatus.compare_exchange_strong(expected, cacheStates::kSetting)) {

 m_phi = stackPhi ;

 m_phiCacheStatus.store(cacheStates::kSet);

 return m_phi;

 }

 return stackPhi;

}

Food
For

Thought

CERN School of Computing 2024

SW Design in the Many-Cores Era

49

Compare/Exchange Example

▪ Problem: build cache in an object, many threads can ask the cached value

▪ Example:  angle between x=0 axis and vector initialised only with x, y and z

enum class cacheStates : char { kSet, kSetting, kUnset };

float myVect::phi() {

 if(cacheStates::kSet == m_phiCacheStatus.load()) return m_phi;

 float stackPhi = myMath::phi(m_x,m_y);

 auto expected = kUnset;

 if(m_phiCacheStatus.compare_exchange_strong(expected, cacheStates::kSetting)) {

 m_phi = stackPhi ;

 m_phiCacheStatus.store(cacheStates::kSet);

 return m_phi;

 }

 return stackPhi;

}

Food
For

Thought

If already calculated (ask
atomically), return it!

Otherwise, calculate it

Only 1 thread will make it
through this barrier!

Set the state to kSet after
changing m_phi and return

Return the calculated cache: you may do the work multiple times (in
presence of high contention), but you never block!

CERN School of Computing 2024

SW Design in the Many-Cores Era

50

Transactional Memory (TM)

Simple example: increment variable x
Steps:

1.Check x “version” and record it

2.Increment x, do not actually change

the value of x

❖Is the version of x now the same of

the one recorded?

YES: No thread varied the value of x

during the increment operation: commit

new value

NO: Roll back to point 1

CPU 0

transaction{

 ++x;

 commit{

 x version is v

 x version was v

 update x

 }

}

...

Commit
successful

CPU 1

…

transaction{

 ++x;

 commit{

 x version is v’

 x version was v

 repeat

 }

 ++x;

 commit{

 x version is v’

 x version was v’

 update x

 }

}

…

Commit
successful

Commit
failed

Pseudo-code

T
im

e

Roll-back and retry if

needed!

“like a DB”

CERN School of Computing 2024

SW Design in the Many-Cores Era

51

Transactional Memory (TM)

Simple example: increment variable x
Steps:

1.Check x “version” and record it

2.Increment x, do not actually change

the value of x

❖Is the version of x now the same of

the one recorded?

YES: No thread varied the value of x

during the increment operation: commit

new value

NO: Roll back to point 1

CPU 0

transaction{

 ++x;

 commit{

 x version is v

 x version was v

 update x

 }

}

...

Commit
successful

CPU 1

…

transaction{

 ++x;

 commit{

 x version is v’

 x version was v

 repeat

 }

 ++x;

 commit{

 x version is v’

 x version was v’

 update x

 }

}

…

Commit
successful

Commit
failed

Pseudo-code

T
im

e

Roll-back and retry if

needed!

“like a DB”

C++ has supported a provisional version of

Transactional Memory (TM) since 2015, via a

technical specification, supported by GCC.

Implementation by vendors still lagging.

CERN School of Computing 2024

SW Design in the Many-Cores Era

52

Locks and Mutexes

▪ Make a section of the code executable by one thread at the time

▪ Use case: detect condition (concurrently) → modify memory (once)

▪ Locks should be avoided, but yet known

▪ They are a blocking synchronisation mechanisms

▪ They can suffer pathologies

▪ … they could be present in existing code: use your common sense and a grain of salt!

Terminology:

▪ Before the section, the thread is said to acquire a lock on a mutex

▪ After that, no other thread can acquire the lock

▪ After the section, the thread is said to release the lock

CERN School of Computing 2024

SW Design in the Many-Cores Era

53

n

p
p

Speedup

+−

=

)1(

1

n: number of cores

p: parallel portion

“… the effort expended on achieving high parallel processing rates is wasted
unless it is accompanied by achievements in sequential processing rates of very

nearly the same magnitude.” - 1967

▪ It predicts the maximum

speedup achievable given a

problem of fixed size

Amdahl’s Law

CERN School of Computing 2024

SW Design in the Many-Cores Era

54

A first Lock Example

[…]

std::mutex gMutex;

void g() {

 std::lock(gMutex);

 doWork();

 std::unlock(gMutex);

}
[…]

Only one thread at the
time can access this

section
Acquire/release
lock on the

mutex

g
M

u
te

x doWork()

g
M

u
te

x

lock unlock

threads

time

serial

CERN School of Computing 2024

SW Design in the Many-Cores Era

55

A first Lock Example

▪ Potential issue: doWork() throws an exception

▪ The lock is never released: the program will stall forever

▪ A possible solution: a scoped lock (seen in the previous slides!)

[…]

std::mutex gMutex;

void g() {

 std::lock(gMutex);

 doWork();

 std::unlock(gMutex);

}
[…]

Only one thread at the
time can access this

section
Acquire/release
lock on the

mutex

CERN School of Computing 2024

SW Design in the Many-Cores Era

56

Scoped Locks: the Proper Way

[…]

std::mutex gMutex;

void g(){

 std::lock_guard<std::mutex> lg(gMutex);

 doWork();

}
[…]

Instance of a
class, locks the

scope!

▪ Construct an object which lives in the scope to be locked

▪ C++ provides a class to ease this: std::lock_guard<T>(T&)

▪ When the scope is left, the object is destroyed and the lock is released

▪ Application of the RAII idiom (Resource Acquisition Is Initialisation)

▪ operation lifetime = object lifetime

Food
For

Thought

CERN School of Computing 2024

SW Design in the Many-Cores Era

57

Pathologic Behaviours of Locks

Deadlock: Two tasks are waiting for each other to finish in order to proceed.

▪ One task tries to acquire a lock it already acquired and the mutex is not recursive

Convoying: A thread holding a lock is interrupted, delayed (by the OS, to do some I/O). Other

threads wait that it resumes and releases the lock.

Priority inversion: A low priority thread holds a lock and makes a high priority one wait.

Lock based entities do not compose: the combination of correct components may be ill

behaved.

CERN School of Computing 2024

SW Design in the Many-Cores Era

58

A deadlock

CERN School of Computing 2024

SW Design in the Many-Cores Era

59

Good Practices with Locks

▪ Don’t use them if possible

▪ … Really, don’t!

▪ Hold locks for the smallest amount of time possible

▪ Avoid nested locks

▪ Avoid calling user/library code you don’t control which holds locks

▪ Acquire locks in a fixed order

CERN School of Computing 2024

SW Design in the Many-Cores Era

60

Take Away Messages

Concurrency:

▪ Know the internals behind a task-based approach

▪ Threads and shared memory

▪ Asynchronous execution and non-determinism permeate concurrent applications:

▪ Paradigm shift needed to understand and design parallel software solutions

Synchronisation:

▪ Try not to be obliged to synchronise: choose the right design

▪ Choose atomic types and memory transactions whenever possible

▪ Atomic types supported by C++

▪ Locks are the last resort:

▪ Reduce the critical sections to the bare minimum

▪ Hold locks for the smallest time possible

	Slide 1: Software Design in the Many-Cores era
	Slide 2: Base Concepts of Parallel Programming: A Pragmatic Approach
	Slide 3: Outline of This Lecture
	Slide 4: C++: A Reminder
	Slide 5: Object Orientation
	Slide 6: Object Orientation
	Slide 7: Object Orientation
	Slide 8: C++ Evolves!
	Slide 9: C++ concurrency evolves!
	Slide 10: Concurrency
	Slide 11: Asynchronous Task Execution
	Slide 12: std::async
	Slide 13: std::async in Action
	Slide 14: std::async in Action
	Slide 15: std::async in Action
	Slide 16: std::async in Action
	Slide 17: Well, to be Honest
	Slide 18: Threads
	Slide 19: Let’s switch gears: Threads
	Slide 20: Interlude: A Program in Memory
	Slide 21: Interlude: A Program in Memory
	Slide 22: Processes and Threads: price tags
	Slide 23: Threads in C++
	Slide 24: Threads example
	Slide 25: Threads example
	Slide 26: A Pitfall with Threads
	Slide 27: A Pitfall with Threads
	Slide 28: A Pitfall with Threads
	Slide 29: A First Abstraction
	Slide 30: A First Abstraction
	Slide 31: A First Abstraction
	Slide 32: The Thread Pool Model
	Slide 33: Modern Syntax: An Interlude
	Slide 34: Synchronisation: Good Design, Replication, Atomics, Transactions and Locks
	Slide 35: The Problem
	Slide 36: To Be Precise: Data Race
	Slide 37: Simple Example
	Slide 38: Why so many strategies?
	Slide 39: What is not Thread Safe?
	Slide 40: Const Means Thread Safe
	Slide 41: Functional Programming Style
	Slide 42: One copy of the data per Thread
	Slide 43: TLS in Action
	Slide 44: TLS in Action
	Slide 45: Atomic Operations
	Slide 46: Atomic Counter
	Slide 47: The Cornerstone of Atomics
	Slide 48: Compare/Exchange Example
	Slide 49: Compare/Exchange Example
	Slide 50: Transactional Memory (TM)
	Slide 51: Transactional Memory (TM)
	Slide 52: Locks and Mutexes
	Slide 53: Amdahl’s Law
	Slide 54: A first Lock Example
	Slide 55: A first Lock Example
	Slide 56: Scoped Locks: the Proper Way
	Slide 57: Pathologic Behaviours of Locks
	Slide 58: A deadlock
	Slide 59: Good Practices with Locks
	Slide 60: Take Away Messages

