
Introduction to Physics Computing

Arnulf QuadtArnulf Quadt

CERN School of Computing 2024CERN School of Computing 2024

DESY Hamburg, GermanyDESY Hamburg, Germany



Arnulf Quadt – Georg-August-Universität Göttingen

Physics Computing - Introduction to Physics Computing

2

Outline of the lecture

 Introduction

 Various aspects of Physics Computing:
 Event Filtering
 Calibration and alignment
 Event Reconstruction
 Event Simulation
 Physics Analysis
 Data Flow and Computing Resources
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Introduction
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Powers of Ten

 Goal: understand fundamental structures and forces
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Fundamental structures & forces

 From largest to smallest dimensions

 Reduction principle

→ few fundamental building blocks

→ few fundamental forces

... erforschen was die Welt... erforschen was die Welt
im Innersten zusammenhim Innersten zusammenhäält ...lt ...
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Rutherford scattering

 Need particles source

& detectors

E.Rutherford (1912)E.Rutherford (1912)
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(sub) structure - atoms
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Elementary building blocks

19951995

20002000

20122012

`LEGO bricks' of`LEGO bricks' of
Spin-1/2 quarks & leptonsSpin-1/2 quarks & leptons
+ antiparticles+ antiparticles
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Elementary building blocks (ctd)

Physics Nobel PrizePhysics Nobel Prize
20082008

Open questions:Open questions:
  Properties and role of fermions?Properties and role of fermions?
  Really only three generations?Really only three generations?
  Relation between leptons & quarks?Relation between leptons & quarks?
  Mass and role of neutrinos?Mass and role of neutrinos?
  Origin of mass and hierarchy?Origin of mass and hierarchy?
  Is there only ONE Higgs?Is there only ONE Higgs?
  Quark mixing and CP-violationQuark mixing and CP-violation
  

  What is dark matter?What is dark matter?
  ......
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Symmetries in Nature

Emmi Noether Emmi Noether 
(1882-1935)(1882-1935)

Natur is full of symmetries Natur is full of symmetries ⇨⇨ simple description simple description
symmetry symmetry ⇦⇨⇦⇨conservation lawconservation law

physics laws independent ofphysics laws independent of

originorigin ofof  time time axisaxis ⇨⇨conservation ofconservation of  energyenergy
originorigin ofof  space space axisaxis ⇨⇨conservation of conservation of momentummomentum
directiondirection ofof  space space axisaxis ⇨⇨conservation ofconservation of  angular momentumangular momentum

Symmetry breakingSymmetry breaking ⇨⇨new physical phenomenanew physical phenomena
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Example: gauge symmetries
local (time) gauge symmetry: time zoneslocal (time) gauge symmetry: time zones

... physics laws (and every day live) do not depend on... physics laws (and every day live) do not depend on
        choice of time = zero ...choice of time = zero ...



Arnulf Quadt – Georg-August-Universität Göttingen

Physics Computing - Introduction to Physics Computing

12

Fundamental interactions
  Quantum field theory, local gauge symmetryQuantum field theory, local gauge symmetry
  Interaction between spin-1/2 fermionsInteraction between spin-1/2 fermions
  via exchange of spin-1 vector bosons (via exchange of spin-1 vector bosons (γγ,W,Z,g),W,Z,g)

strong forcestrong force

gravitationgravitationweak forceweak force

electromagnet. forceelectromagnet. force
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Sun flowers

... look rotationally... look rotationally
and mirrorand mirror
symmetric ....symmetric ....

A closer lookA closer look
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34 spirals clock-w,34 spirals clock-w,
21 spirals counter21 spirals counter
clock-wise !clock-wise !
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Examples for symmetry breaking

  34 spirals cw, 34 spirals cw, 
  21 spirals21 spirals
  counter-cw!counter-cw!

  13 spirals cw, 13 spirals cw, 
  8 spirals8 spirals
  counter-cw!counter-cw!

  21 spirals cw, 21 spirals cw, 
  13 spirals13 spirals
  counter cw!counter cw!
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Particle masses – Higgs mechanics
Initially in Standard Model Initially in Standard Model ⇨⇨massless particlesmassless particles
BUT we know that they have mass !?BUT we know that they have mass !?

One possible explanation: One possible explanation: TheThe  Higgs MechanismHiggs Mechanism
(electroweak symmetry breaking)(electroweak symmetry breaking)

Higgs fields fills spaceHiggs fields fills space

... a particle in... a particle in
Higgs field ...Higgs field ...

... couples to field ...... couples to field ...
inertia = massinertia = mass
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Particle masses – Higgs mechanism

Excitation ofExcitation of
Higgs fieldHiggs field

Excited Higgs fieldExcited Higgs field
 ≙ ≙ massive Higgs-bosonmassive Higgs-boson
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History of the universe
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Big bang in laboratory
Matter-antimatter collisionsMatter-antimatter collisions

At high energy (=temperature)At high energy (=temperature)

All particles have high energyAll particles have high energy
(temperature) and collide(temperature) and collide
uncontrolleduncontrolled

Individual collisionsIndividual collisions
controlled, selected andcontrolled, selected and
recordedrecorded
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Particle Accelerators
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Particle Accelerators I
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Particle Accelerators II

HeisenbergsHeisenbergs
uncertainty relationuncertainty relation

ΔΔxx  • • ΔΔpp  ≥≥  ℏℏ E = m cE = m c22 EinsteinEinstein

linear accelerator:linear accelerator:

studies ofstudies of
small structuressmall structures  oror
Heavy particlesHeavy particles

requiresrequires
Particles acceleratedParticles accelerated
toto  high energieshigh energies

repeated acceleration : 1, 2, ... 1 000 eV =repeated acceleration : 1, 2, ... 1 000 eV =
1 000 000 eV =1 000 000 eV =

1 000 000 000 eV =1 000 000 000 eV =
1 000 000 000 000 eV =1 000 000 000 000 eV =

101033  eV =  eV =
101066  eV =  eV =
101099  eV =  eV =
10101212 eV = eV =

1 keV1 keV
1 MeV1 MeV
1 GeV1 GeV
1 TeV1 TeV

`Tevatron' = TeV beam energy`Tevatron' = TeV beam energy
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Particle Accelerators III

FermilabFermilab
1987 - 20111987 - 2011
Tevatron Tevatron PPPP
1.8 - 1.96 TeV1.8 - 1.96 TeV
CDF, DCDF, DØØ

CERNCERN
1981 - 19901981 - 1990
SPPS SPPS PPPP
0.6 TeV0.6 TeV
UA1, UA2UA1, UA2

CERNCERN
2008 - 20302008 - 2030
LHC PPLHC PP
14 TeV14 TeV
ATLAS,CMS,ATLAS,CMS,
ALICE,LHC-BALICE,LHC-B

DESYDESY
1992 - 20071992 - 2007
HERA ePHERA eP
320 GeV320 GeV
H1, ZEUSH1, ZEUS
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Particle Accelerators IV

LEP/LHC

PS

SPPS
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Large Hadron Collider - LHC

ATLASATLAS

CMSCMS

  CERN: europ.center for particle physicsCERN: europ.center for particle physics
  Founded 1954Founded 1954
  LHC: PP colliderLHC: PP collider
  High energies:  High energies:  s = 7 (14) TeVs = 7 (14) TeV
  40 Mio. collisions / sec40 Mio. collisions / sec
  11stst beam: 10.Sept. 2008 beam: 10.Sept. 2008
  11stst collisions in Nov. 2009 collisions in Nov. 2009
  physics at 7 TeV since 31.3.2010physics at 7 TeV since 31.3.2010
  Phys. at 13 TeV since 20.5.2015Phys. at 13 TeV since 20.5.2015
  Phys. at 13.6 TeV since July 2022Phys. at 13.6 TeV since July 2022
  4 Expts:4 Expts:

    ATLAS, CMS, ALICE, LHC-BATLAS, CMS, ALICE, LHC-B
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Detectors / Experiments



Arnulf Quadt – Georg-August-Universität Göttingen

Physics Computing - Introduction to Physics Computing

27

Proton-Proton Collisions

pp pp

LLarge arge HHadron adron CCollider    ollider    
@ CERN, Switzerland@ CERN, Switzerland

pp collider at √s = 14 TeV

Luminosity L = 1034 cm-2s-1
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Caverns 100m underground
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Built like a bottle ship
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ATLAS and CMS experiments
45 m long45 m long
23 m high23 m high
7000 t7000 t

22 m long22 m long
15 m high15 m high
14000 t14000 t

internat.internat.
collaborationscollaborations
with respect.with respect.
~2000 – 3000~2000 – 3000

physicistsphysicists
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Date rate and size

data at LHC:data at LHC:
15 PetaByte /year15 PetaByte /year
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Date rate and size
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Expected pictures: Higgs decay
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Search for new physics

single 
top

t
t
-

2
 :=1

W
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Search for needle in the hay stack
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Physics
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Expectations and measurements
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Higgs production at the LHC• H→γγ: 
   → rare channel
   → best for low Higgs masses

• H→WW(*):
   →lνlν: very important for intermed. masses
   →lνqq: high rate, important at high mass

• H→ZZ(*):
   → 4l: golden channel
   → llνν: good for high masses
   → llbb: also at high masses

• H→ττ:
   → good signal-background ratio
   → important at low masses, rare channel
   → very important for Higgs properties

Expected nr. events
MH [GeV] →WW→lνlν →ZZ→4l →γγ
120 127 1.5 43
150  390 4.6 16
300    89 3.8 0.04
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Higgs → γγ
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Higgs production at the LHC



Arnulf Quadt – Georg-August-Universität Göttingen

Physics Computing - Introduction to Physics Computing

41

Higgs production at the LHC
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Higgs production at the LHC
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Higgs production at the LHC
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Higgs production at the LHC
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Higgs production at the LHC
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Higgs production at the LHC
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Higgs exclusion
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Higgs combination (4th July 2012)
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As a Layman: We have it!
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Computing
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The technical challenge at LHC

Everything in
LHC

computing is
connected to
processing
such data !!
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The technical challenge at LHC (ctd)

 Very high (design) event rate: 40 MHz
 Large event size: O(1) MB
 Large background of uninteresting events
 Large background in each event
 many interactions in each beam crossing
 pile-up from adjacent beam crossing
 many low-momentum particles
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The technical challenge at LHC (ctd)

 Large number of physicists doing analysis
 ATLAS and CMS experiments at the LHC: both

consist of 170-180 institutes in about 40 countries
 Distribution of data and programs
 Bookkeeping is crucial

 High pressure, competitive spirit
 Important discoveries to be (and have been) made
 Computing has to be as fast as possible
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What is Physics Computing?

 Yearly input: A few petabytes of data
 Yearly output: A few hundred physics papers
 Data reduction factor of 107 to 108 !!
 How is it done?
 Will try to answer this question in this and

tomorrow’s lectures
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It’s simple … is it?

Paper paper15
Data higgsdata
...
paper15=make_paper(higgsdata)
...
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Actually, at LHC we need…

 Millions of lines of code (C++,Python, …)

 Hundreds of neural networks (BNNs, not ANNs)

 Large infrastructure
 Customized hardware
 PC farms
 Database and storage systems
 Distributed analysis facilities
 The grid
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What happens to the data?

 Event filtering, tagging and storage

 Calibration, alignment

 Event reconstruction

 Storage

 Event simulation

 Physics analyses
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Step by step

 Each step involves some data reduction
 data are discarded (online)
 data are compressed (offline)

 In each step the data get closer to be interpretable in

physical terms

 Some steps are repeated many times until the output is

satisfactory (offline reprocessing)
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Online vs Offline computing

 Online
 In real time, fast!
 Decisions are irreversible
 Data cannot be recovered

 Offline
 From almost real time to long delays
 Decisions can be reconsidered
 Data can be reprocessed
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Online processing

 Trigger: event selection
 Needs only a (small) subset of the detector data
 Fast, as little dead-time (time period when triggering 

system is insensitive to new data) as possible
 Gives “green” or “red” light to the data acquisition
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Online processing (ctd)

 Data acquisition
 Interfaces to detector hardware
 Builds complete events from fragments
 Sends them to the higher level event filter(s)
 Writes accepted events to mass storage
 Very complex system
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Complexity of Data acquisition
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Online processing (ctd)
 Monitoring
 Detector status
 Data acquisition performance
 Trigger performance
 Data quality check

 Control
 Configure systems
 Start/stop data taking
 Initiate special runs (calibration, alignment)
 Upload trigger tables, calibration constants, …
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Event selection

 Primary (design) collision rate: 40 MHz

 Recording rate: a few hundred Hz to kHz

 How is this achieved?
 Multi-level trigger – chain of yes/no decisions
 Very fast first level: (Programmable) hardware
 Slower higher level(s): Software on specialized or 

commodity processors



Arnulf Quadt – Georg-August-Universität Göttingen

Physics Computing - Introduction to Physics Computing

65

Event selection (ctd)

 Has to be reliable

 Rejected data are lost forever

 Continuous monitoring

 Do not lose new physics

 Must therefore be open to many different signatures of 
potentially new physics in the detector system
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Example: ATLAS
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What ATLAS subdetectors measure

 Inner detector
 Momentum and position of charged particles

 Electromagnetic calorimeter
 Energy of photons, electrons and positrons

 Hadron calorimeter
 Energy of charged and neutral hadrons

 Muon system
 Momentum and position of muons
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ATLAS detector
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ATLAS detector, calorimeter
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ATLAS detector, inner tracker
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ATLAS detector, inner tracker
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Event selection (ctd)

 Overall guideline in designing trigger system: what are
the essential features of interesting physics in the
detectors?
 Typically high-energy particles moving transversely to the
 beam direction
 Results in large energy deposits in the calorimetric
 systems, high-energy muons in the muon system, etc.

 Multi-level trigger explores such features in various
degrees of detail
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Multi level selection

 Many events can be discarded very quickly – fast level-1 
trigger

 Only the surviving ones are scrutinized more carefully – 
high-level filter(s)

 Triggers are tailored to specific physics channels 
(Higgs, top, WW, ZZ, …)
 Many such hypotheses are investigated in parallel
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ATLAS triggering system

 ATLAS has three-level trigger system
 Level 1 purely hardware-based (ASICs and FPGAs)
 High-level trigger (level 2 and Event Filter (EF)) 

softwarebased
 Level 1 uses information mainly from calorimeters and 

muon system
 Level 2 also includes information from Inner Detector, 

uses data from Regions of Interest (RoI) identified by 
level 1

 EF has access to complete set of data and uses same 
algorithms as offline event reconstruction
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ATLAS triggering system
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ATLAS triggering system
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5 to 7.5 x nominal Lumi

13 TeV

integrated luminosity

2 x nominal Lumi2 x nominal Luminominal Lumi75% nominal Lumi

cryolimitinteractionregions inner triplet radiation limit

LHC HL-LHC

Run 4 - 5...Run 2Run 1

DESIGN STUDY PROTOTYPES CONSTRUCTION INSTALLATION & COMM. PHYSICS

DEFINITION EXCAVATION

HL-LHC CIVIL ENGINEERING:

HL-LHC TECHNICAL EQUIPMENT:

Run 3

ATLAS - CMSupgrade phase 1

ALICE - LHCbupgrade

Diodes ConsolidationLIU Installation

Civil Eng. P1-P5

experiment beam pipes

splice consolidationbutton collimatorsR2E project

13.6 TeV 13.6 - 14 TeV

7 TeV 8 TeV

LS1 EYETS EYETS LS3

ATLAS - CMSHL upgrade

HL-LHC installation

LS2

30 fb-1 190 fb-1 450 fb-1 3000 fb-1

4000 fb-1

BUILDINGS

20402027 20292028

pilot beam

Towards High-Lumi LHC

Two upgrade steps towards HL-LHC
Ø LHC injector upgrade (LIU) during LS2
Ø Upgrade to HL-LHC upgrade during LS3
Ø Both upgrades are needed to reach the ultimate luminosity of 5–7.5 e34 cm-2s-1

ATLAS upgrades, including TDAQ and Trigger, match the LHC upgrades

nominal luminosity:  1e34 cm-2s-1

Energy: 13 TeV
Peak lumi: 2.2e34 cm-2s-1

Peak <μ>: 65
L1 peak rate: 100 kHz
HLT av. rate: 1 kHz

Energy: 14 TeV
Peak lumi: 2.0e34 cm-2s-1

Peak <μ>: 60
L1 peak rate: 100 kHz
HLT av. rate: 1 kHz

Energy: 14 TeV
Peak lumi: 5-7.5e34 cm-2s-1

Peak <μ>: 140-200
L1 peak rate: 1 MHz
HLT av. rate: 10 kHz

Energy: 7-8 TeV
Peak lumi: 0.8e34 cm-2s-1

Peak <μ>: 40
L1 peak rate: 70 kHz
HLT av. rate: 400 Hz

Run 1 Run 3Run 2 Run 4 - 6
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ATLAS L1 trigger

 Input (design) rate: 40 MHz
 Output rate: up to 100 kHz
 Latency (time to reach trigger decision):

O(1 μs)
 Data pipelined until trigger decision can be made
 Mainly 2 detector systems:

muons/calorimeters
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ATLAS L1 trigger
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ATLAS L1 calorimeter trigger
 High-energy objects in an event:
 Electrons/photons
 Hadronic decays of tau lepton
 Jet candidates

 Global event properties:
 Total transverse energy (ET)
 Missing ET
 Jet sum ET

 Sends to Central trigger:
 Multiplicity of electrons/photons and jets passing 

thresholds
 Thresholds passed by total and missing ET
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ATLAS L1 muon trigger
 Dedicated muon trigger chambers with good time 

resolution:
 RPCs (barrel region)
 TGCs (endcap regions)
 Search for patterns of

 measurements consistent
with high momentum 
muons coming from
collision point
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ATLAS L1 CTP
 Central Trigger Processor
 L1 inputs are combined to form L1 items
 e.g. an input EM10 (electromagnetic cluster above 10 

GeV) can be used in the generation of several L1 items:
 L1_EM10: At least one EM cluster above 10 GeV
 L1_2EM10: At least two EM clusters, each above 10 

GeV
 L1_EM10_MU6: An EM cluster above 10 and a muon 

above 6 GeV.
 A L1 Accept is generated and sent to the detector 

readout electronics only if at least one L1 item survives.
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High-Level Filter
 Further data selection:
 Up to 100 kHz input rate
 A few hundred Hz output rate

 Event tagging:
 Reconstruct physics objects
 Mark events having

interesting features
 Facilitates quick access later
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High-Level Filter (ctd)

 More detailed analysis of event and underlying physics

 Runs on standard processors (commodity PCs)

 CMS: 1 stage (in contrast to ATLAS two-stage solution)



Arnulf Quadt – Georg-August-Universität Göttingen

Physics Computing - Introduction to Physics Computing

86

CMS high-level trigger

 Has to keep pace with the L1 Output (up to 100 kHz)

 Solution: massive parallelism

 Filter farm

 O(10000) cores

 Decision time: O(100) ms
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CMS high-level trigger (ctd)

 Same software framework as in offline reconstruction

 Transparent exchange of algorithms with offline code

 Regional reconstruction
 Concentrates on region(s) found by Level 1

 Partial reconstruction
 Stop as soon specific questions are answered



Arnulf Quadt – Georg-August-Universität Göttingen

Physics Computing - Introduction to Physics Computing

88

Output of CMS high-level trigger

 Raw data are sent to Tier-0 farm (at CERN)
 Detector data (zero compressed)
 Trigger information + some physics objects
 O(50) physics datasets, depending on trigger history, 

O(10) online streams (calibration/monitoring/alignment)

 Physics: O(1) MB @ a few hundred Hertz =                       
a few hundred MB/sec

 Alignment/Calibration: O(50) MB/sec
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Output of CMS high-level trigger (ctd)

 LHC runs for ~ 107 sec/year

 A few PB per year at design luminosity
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Tier-0 processing

 Archive raw data on mass storage

 First event reconstruction without or with a small delay

 Archive reconstructed data on mass storage
 A few hundred kByte/event, depending on physics
 Reconstructed objects (hits/clusters, tracks, vertices, jets, 

electrons, muons)

 Send raw and processed data to Tier-1
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Tier-0 processing (ctd)
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Summary, event selection

 Selecting a small subset of all collision events for offline 
analyses

 Reducing from 40 MHz collision rate to recording rate of a 
few hundred Herz

 Multi-level triggering system
 Looking for signatures of potentially interesting physics in 

detectors
 First level purely hardware-based with pipelined data
 Higher level(s) software-based, massively parallelized on 

filter farms
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Offline Processing

 Calibration
 Convert raw data to physical quantities

 Alignment
 Find out precise detector positions

 Event reconstruction
 Reconstruct particle tracks and vertices (interaction points)
 Identify particle types and decays
 Impose physics constraints (energy and momentum 

conservation)
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Offline Processing (ctd)

 Simulation
 Generate artificial events resembling real data as closely 

as possible
 Needed for background studies, corrections, error 

estimation, …

Monte Carlo 
Method
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Offline Processing (ctd)

 Physics analysis
 Extract physics signals from

background
 Compute masses, 

cross-sections, 
branching ratios, 
discovery limits, …

 Requires sophisticated multivariate techniques
 Series of lectures and exercises on data analysis methods 

later in this theme
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Calibration: From bits to GeV and cm

 Raw data are mostly ADC or TDC counts

 They have to be converted to physical quantities such 
as energy or position

 Very detector dependent

 Every detector needs calibration

 Calibration constants need to be updated and stored in a 
database
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Silicon Tracker calibration

 Incoming particle creates electric charge in strips or 
pixels
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Silicon Tracker calibration (ctd)

 Charge distribution depends on location of crossing 
point and crossing angle

 Solve inverse problem: reconstruct crossing point from 
charge distribution and crossing angle

 Test beam, real data
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Drift tube calibration
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Drift tube calibration (ctd)

 Incoming particle ionizes gas in tube

 Electrons/ions drift to anode/cathode

 Drift time is measured

 Must be converted to drift distance

 Time/distance relation must be determined (not always 
linear)

 Test beam, real data
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Alignment: Where are the detectors?

 Tracking detectors are very precise instruments

 Silicon strip detector: ~ 50 μm

 Pixel detector: ~ 10 μm

 Drift tube: ~ 100 μm

 Positions of detector elements need to be known to a 
similar or better precision
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Example: CMS tracker
Wow, I will have
to realign this…
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Alignment

 Mechanical alignment

 Measurements taken before assembly

 Switching on the magnetic field

 Laser alignment

 Alignment with charged tracks from collisions, beam 
halo and cosmic rays



Arnulf Quadt – Georg-August-Universität Göttingen

Physics Computing - Introduction to Physics Computing

104

Alignment (ctd)

 Difficult because of huge number of parameters to be 
estimated (~ 100000)

 Continuous process

 Alignment constants need to be updated and stored in a 
database
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Event reconstruction

 Find out which particles have been created where and 
with which momentum

 Many can be observed directly

 Some are short-lived and have to be reconstructed from 
their decay products

 Some (neutrinos) escape without leaving any trace
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Event reconstruction (ctd)

 Reconstruct charged particles

 Reconstruct neutral particles

 Identify type of particles

 Reconstruct vertices (interaction points)

 Reconstruct kinematics of the interaction

 Not trivial, very time-consuming …
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Event reconstruction (ctd)

CMS: Higgs decay into two jets
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What CMS subdetectors measure
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Charged particles

 Charged particles are detected by tracker and 
calorimeters

 Muons also reach the muon system

 Very high number of low-momentum charged particles

 Select by threshold on transverse momentum
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Charged particles (ctd)
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Neutral particles

 Neutral particles are detected mainly by calorimeters 
(e.g. photons, neutrons)

 They should deposit their entire energy

 Some of them decay into charged particles which are 
detected by the tracker (e.g. K0 )

 Neutrinos escape without leaving a trace (missing 
energy)



Arnulf Quadt – Georg-August-Universität Göttingen

Physics Computing - Introduction to Physics Computing

112

Neutral particles (ctd)
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Reconstruction of charged particles

 Trajectory is curved because of the magnetic field

 Position is measured in a number of places –“hits”

 Determine track parameters (location, direction, 
momentum) plus their estimated uncertainties from the 
position measurements

 Data compression
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The difficulties

 Assignment of hits to particles is unknown

 Huge background from low-momentum tracks

 Additional background from other interactions in the 
same beam crossing, from adjacent beam crossings and 
from noise in the electronics
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More difficulties

 Charged particles interact with all the material, not only 
the sensitive parts
 Multiple Coulomb scattering
 Changes direction, but not momentum

 Energy loss by ionization
 All charged particles, changes momentum

 Energy loss by bremsstrahlung
 Electrons and positrons, changes momentum
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Tracks only
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Tracks with hits
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Hits only

?
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Decomposition of the problem

 Pattern Recognition or Track Finding
 Assign detector hits to track candidates (collection of hits 

all believed to be created by the same particle)

 Parameter estimation or Track Fit
 Determine track parameters + their estimated uncertainties 

(covariance matrix)

 Test of the track hypothesis
 Is the track candidate the trace of a real particle?
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Track finding

 Depends a lot on the properties of the detector:
 Geometry, configuration
 Magnetic field
 Precision
 Occupancy

 Many solutions available

 No general recipe
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A few track finding algorithms

 Track following ►

 Kalman filter

 Combinatorial

 Kalman filter

 Hough transform

 Artificial neural network
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Track Fit

 Determine (estimate) track parameters

 Determine uncertainties of estimated track parameters 
(covariance matrix)

 Test track hypothesis

 Reject outliers
 Distorted hits
 Extraneous hits
 Electronic noise hits
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Ingredients

 Magnetic field
 Constant or variable

 Track model
 Solution of the equation of motion
 Analytic (explicit) or numerical

 Error model
 Observation errors
 Process noise
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Estimation of track parameters

 Most estimators minimize a least-squares objective 
function
 Linear regression
 Kalman filter

 Robust estimation
 Adaptive filter
 Automatic suppression of outlying hits
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Reconstruction of neutral particles

 Neutral particles are only seen by the calorimeters

 Photons are absorbed in the electromagnetic 
calorimeter

 Neutral hadrons are absorbed in the hadronic 
calorimeter

 Neutrinos are not detected directly
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Shower finding

 An incident particle produces a shower in the 
calorimeter

 A shower is a cluster of cells with energy deposit above 
threshold
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Shower finding (ctd)

 Overlapping clusters must be separated

 Various clustering techniques are used to find showers

 The algorithms depend on various characteristics of the 
calorimeter
 Type (electromagnetic or hadronic)
 Technology (homogeneous or sampling)
 Cell geometry, granularity
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Particle identification

 Determining the type of a particle

 Dedicated detectors
 Calorimeter (electromagnetic or hadronic)
 Ring imaging Cherenkov (RICH) ►
 Transition radiation detector
 Ionization measurements
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Particle identification (ctd)

 Combining information from several detectors
 Shower in electromagnetic calorimeter + no matching track 

in tracker → photon
 Shower in electromagnetic calorimeter + matching track in 

tracker →  electron/positron
 Shower in hadronic calorimeter + matching track in tracker 

→  charged hadron
 Track in muon system + matching track in tracker →  muon
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Vertex reconstruction

 Primary vertex: interaction of the two beam particles – 
easy

 Secondary vertices: decay vertices of unstable particles 
– difficult

 Emphasis on short-lived unstable particles which decay 
before reaching the tracker

 Data compression
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Primary and secondary tracks

Primary tracks
Secondary 
tracks
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The difficulties

 Association of tracks to vertices is unknown

 Secondary tracks may pass very close to the primary 
vertex (and vice versa)
 Especially if decay length is small

 Track reconstruction may be less than perfect
 Outliers, distortions, incorrect errors
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Decomposition of the problem

 Pattern Recognition or Vertex Finding
 Assign tracks to vertex candidates

 Parameter estimation or Vertex Fit
 Determine vertex location + covariance matrix, update 

track parameters

 Test of the vertex hypothesis
 Is the vertex candidate a real vertex?
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Vertex finding

 Almost independent of the detector geometry

 Secondary vertex finding may depend on the physics 
channel under investigation

 Essentially a clustering problem

 Many solutions available
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A few vertex finding algorithms

 Hierarchical clustering
 Single linkage, complete linkage, …

 Machine learning
 k-means, competitive learning, deterministic annealing, …

 Estimation based
 robust location estimation, iterated vertex fit
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Vertex fitting

 Most estimators minimize a least-squares objective 
function
 Linear regression
 Kalman filter

 Robust estimation
 Adaptive filter
 Automatic suppression of outlying tracks
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Kinematical fitting

 Impose physical constraints
 Momentum conservation
 Energy conservation

 Test mass hypotheses
 See whether kinematics are compatible with the decay of a 

certain particle

 Reconstruct invisible particles
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Storage

 Event reconstruction produces physics objects
 Tracks
 Vertices
 Identified particles
 Jets
 Tags

 Need to be stored
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Storage (ctd)

 Preferred tool for event data: ROOT

 Physics objects depend on
 Alignment
 Calibration
 Version of the reconstruction program
 Algorithm parameters

 Must be stored as well (database)
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Summary, event reconstruction

 Track reconstruction
 Charged: determine track parameters from hits
 Neutral: find showers in calorimeters

 Particle identification

 Vertex reconstruction
 Determine number of production points and their positions 

from the set of reconstructed tracks

 Kinematic fitting
 Refine estimates by e. g. imposing physical constrain
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Simulation

 Why do we need simulation?
 Optimization of detector in design phase
 Testing, validation and optimization of trigger and 

reconstruction algorithms
 Computation of trigger and reconstruction efficiency
 Computation of geometrical acceptance corrections
 Background studies
 Systematic error studies
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Simulation steps

 Physics generation
 Generate particles according to physics of the collision
 General-purpose and specialized generators

 Event simulation
 Track particles through the detector, using detector 

geometry and magnetic field
 Simulate interaction of particles with matter
 Generate signals in sensitive volumes
 Simulate digitization process (ADC or TDC)
 Simulate trigger response
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Simulation steps (ctd)

 Reconstruction
 Treat simulated events exactly as real events
 Keep (some) truth information: association of hits to tracks, 

association of tracks to vertices, true track parameters, 
true vertex parameters, …

 Store everything
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Event simulation

 Was frequently (and still sometimes is) experiment-
specific

 Now there is a widely used standard:

 GEANT4
 Object oriented, C++
 Extremely general and versatile

 Needs detailed description of the apparatus (sensitive 
and insensitive parts)
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Detector description

 Geometry
 Partition the detector into a hierarchy of volumes
 Describe their shape and their position relative to a mother 

volume
 Use possible symmetries

 Material
 Chemical composition, density
 Physical properties: radiation length, interaction length, …
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An example detector model
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Physics analysis

 Event selection
 Multidimensional criteria
 Statistics, neural networks, genetic algorithms, …

 Signal extraction
 Study background
 Determine significance of signal

 Corrections
 Detector acceptance, reconstruction efficiency, …
 From simulated and from real data
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Physics analysis (ctd)

 Computation of physical quantities …
 Cross sections, branching ratios, masses, lifetimes, …

 … and of their errors
 Statistical errors: uncertainty because of limited number of 

observations
 Systematic errors: uncertainty because of limited 

knowledge of key assumptions (beam energy, calibration, 
alignment, magnetic field, theoretical values, background 
channels, …)
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Analysis tools

 Need versatile tools for
 Multidimensional selection, event display and interactive 

reprocessing
 Histogramming, plotting, fitting of curves and models
 Point estimation, confidence intervals, limits

 Main tool currently used: ROOT
 Data analysis and storage, but also detector description, 

simulation, data acquisition, …



Arnulf Quadt – Georg-August-Universität Göttingen

Physics Computing - Introduction to Physics Computing

150

And finally …
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Distributed analysis

 Physics analysis takes place in many labs all over the 
world

 Physicists need fast access to event data and 
corresponding calibration, alignment and bookkeeping 
data … and to simulated data

 We need the grid!



Arnulf Quadt – Georg-August-Universität Göttingen

Physics Computing - Introduction to Physics Computing

152

The LHC Computing Grid

 Global collaboration of more than 170 computing 
centers in 36 countries

 Four-tiered model

 Data storage and analysis infrastructure

 O(105) CPUs

 O(100) PByte disk storage (tiers 0 and 1)
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Data management

 Dataset bookkeeping
 Which data exist?

 Dataset locations service
 Where are the data?

 Data placement and transfer system
 Tier-0 → Tier-1 → Tier-2

 Data access and storage
 Long-term storage, direct access
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Data flow in ATLAS
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Additional resources

 CAF (CERN Analysis Facility)
 O(100) worker nodes, O(1000) cores (CMS)
 Ready access to calibration and express streams
 Fast turnaround
 Operation critical tasks

 trigger and detector diagnostics
 alignment and calibration
 monitoring and performance analysis

 Physics data quality monitoring
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Data flow in CMS-CAF
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Summary

 Physics computing involves:
 Event filtering with multi-level trigger
 Storage of raw data
 Calibration and alignment
 Storage of calibration and alignment data
 Event reconstruction
 Storage of reconstruction objects and metadata
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Summary (ctd)

 Physics computing involves:
 Simulation of many million events
 Storage of simulated raw data and truth information
 Reconstruction of simulated events
 Storage of reconstruction objects and truth information
 Distributed physics analysis and event viewing
 Storage of high-level physics objects
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Summary (ctd)

 Physics computing involves:
 Simulation of many million events
 Storage of simulated raw data and truth information
 Reconstruction of simulated events
 Storage of reconstruction objects and truth information
 Distributed physics analysis and event viewing
 Storage of high-level physics objects
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