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Understanding, and Debugging a Complex 
Multithreaded Application

Lecture III
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Outline of This Lecture

Before running the application:

1) Elements of static code analysis: Clang

If something goes wrong:

2) Understanding and debugging a multithreaded application with GDB

Now that it works, how fast is it?

3) Elements of high-level profiling: igprof* basic principles

The Goals:

• Understand the relation between performance and correctness

• Master the strategies to be able to analyse, debug and profile* 

a complex parallel application 

Three logical steps

* covered by the Benchmarking and 

Profiling lecture
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Performance and Correctness

▪ Correctness comes first: if your program is buggy, unreliable, unpredictable, 

no performance consideration makes sense (at all)

▪ Performance is then crucial*: algorithms translate to real machine code, 

running on real hardware with its own features (CPUs, memory hierarchy, 

accelerators)

A high-quality test 

suite must be part of 

every software tool

“Make it work, make it right, make it fast ”

*For many areas of scientific computing at least
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Performance and Correctness

▪ Correctness and performance: tightly correlated

▪ Correctness checked quickly and extensively → runtime/memory improvements 

validated more easily

▪ Be in condition to label “changes” in the final results as “acceptable”, 

“expected” or “in the wrong direction” 

▪ Pandora’s box: what is the “right” result? The one we had before? The 

new one? The “reference” one? Not trivial at all!

▪ Use a grain of salt, be in control of what happens!
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Features of A Good Testsuite
▪ It’s easy to run

▪ One single command runs all tests

▪ Tests can be selected, e.g. with regular expressions

▪ It’s automatically ran

▪ N times per day, or

▪ Continuously check new code committed by developers

▪ Results are easy to interpret

▪ E.g. Published on the web

▪ Easy to track down problem, e.g. “test # 1206 failed with this output”
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Testing and parallel execution

▪ Test: minimal program aiming to stress a particular feature of the code

▪ Parallel code: no predictable order of operations possible

▪ The “same” test, execution pattern can be “different”

▪ Solution: properly designed tests

▪ E.g. Maximising contention to “challenge” stability of the software
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Reproducibility

▪ E.g. two subsequent runs of the program produce the same histograms, 
identical bin by bin

▪ Simple for small setups

▪ Can be tricky with 5M lines, ~100 shared libraries

▪ Performance optimisations can lead to variations in final result (e.g. migration of 
entries to neighbouring bins)

▪ Fundamental to remove all sorts of “noise”

▪ Non reproducibility in the sequential case: absence of control on the system

▪ E.g. uninitialised variables, sloppy seeding of random generations, bogus 
memory access
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Attitude Towards Testing

▪ Aim to test-driven development: write tests before code

▪ Test features individually one by one

▪ Use often asserts as watchdogs in complex code, to catch problems early

▪ For each bug reported/found: create a reproducing test, add it to the suite, fix it.

▪ If it’s not reproduced the bug does not exist!

▪ Don’t live with broken windows: follow up each failure

▪ Assume it always points to a serious problem

▪ Time invested in writing tests is strategic

▪ It always rewards

If a software tool or one of its functionalities is not tested always 

assume it does not work
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Elements of Static Code 
Analysis
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Static Code Analysis

▪ Idea: embed static analysis in testing suites

▪ The procedure of analysing the source code before compiling and running to automatically 

find bugs

▪ Rise (yet other) fences to protect against mistakes and bugs

▪ Easily pluggable in big projects’ build infrastructures

▪ E.g. code blocks never executed because of faulty logic in if statements, thread unsafe 

constructs, etc.

▪ Several tools available, commercial and open source

▪ Reference on the market: Coverity

▪ Open source: Clang Static Analyzer
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LLVM and Clang

LLVM

▪  Free and open source

▪  A compiler infrastructure

▪  Frontend [C++,C,...] → Optimizer → Backend [x86, CUDA, ...]

▪  http://llvm.org

Clang

▪  LLVM frontend for C,C++ and Objective-C

▪  A possible alternative to GCC in some respects

▪  A lot of users - e.g. Apple, Intel (OpenCL)

▪  http://clang.llvm.org

Very powerful technology: e.g. C++ interpreter built on LLVM & Clang, Cling

http://root.cern.ch/drupal/content/cling

http://llvm.org
http://clang.llvm.org
http://root.cern.ch/drupal/content/cling
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Clang Static Analyser

The static analyser is part of the clang frontend

It offers the possibility to examine the program code on two levels:

▪ Analysis of the Abstract Syntax Tree ( AST )

▪ Symbolic Execution:

▪ Every possible path through the program is explored  and validated 

▪ A battery of checks already included: uninitialized access, dead stores, dereferencing null, 
invalid malloc calls, ...

▪ User-defined can be added

▪ HTML report created automatically, detailed annotations of the source 

▪ scanbuild tool: automatically replace the calls to the compiler in a makefile

To fire static analysis: scan-build make

http://clang-analyzer.llvm.org/
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An AST
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Analysis for Thread Unsafety

Clang Static Analyzer: Custom checks can be added in form of a plugin written in C++

Checks for thread unsafety were developed by the LHC experiments

▪ Used in production for Q/A of experiments software

▪ Useful in general!

Some examples:

▪ Non const global/local statics

▪ Use of mutable keyword

▪ Use of const_cast to remove constness

▪ Other removals of constness (e.g. explicit cast)

▪…

Note the importance

of const correctness
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Web Reports: an Example

FastJet tool taken as guinea pig: used 

to cluster jets by several experiments’ 
software - http://fastjet.fr/

Example coming from an old version of fastjet!

http://fastjet.fr/
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Understanding and 
Debugging - GDB
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Debugging

Suppose something is wrong with your application: 

▪ It nicely terminates but yields wrong results (worst case scenario!)

▪ It crashes

▪ It runs forever occupying several CPUs

▪ It hangs forever with no CPU usage (e.g. a deadlock)

Effective debugging strategies and tools are the solution

The same techniques are also handy not only in case of problems

▪ Suppose that the overall behavior of a very complex application (~MLOC) is to be understood

▪ E.g. CMS/Atlas/LHCb/Alice reconstruction



CERN School of Computing 2024

SW Design in the Many-Cores Era

19

Debugging Strategies
Write and use programs without bugs?

▪  There is no such thing, except in totally trivial cases

▪  All programs have and will have bugs

If possible, try not to introduce bugs in the first place!

Debug printouts as ‘poor man’s solution’:

       Immediate to everybody: sometimes it’s enough!

       Hard (impossible) to add printouts in 3rd party libraries

       Distract the user from focussing on the debugging itself

       Hard to use in a parallel program, encourage Heisenbugs influencing timing behaviour

 Or better: Use a debugger like GDB
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GDB: The GNU Project Debugger

▪ Free and open source, available on every Linux box

▪ GDB is an interactive command line tool which can “see”:

▪ Within a program during its execution

▪ A posteriori, what a program was doing when it crashed

▪ Works with applications written in C and C++ (among other languages)

▪ No recompilation needed (although debugging symbols can be handy)

▪ Stop the execution at some specified point

▪ Execute line by line, stepping into functions if needed

▪ Examine what is happening: e.g. print variable content

▪ Thread aware: e.g. Stop threads, switch among them …

http://www.gnu.org/software/gdb/
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Reminder: A Program in Memory

▪ Text Segment: code to be executed.

▪ Initialized Data Segment: global 
variables initialized by the programmer.

▪ Uninitialized Data Segment: This 
segment contains uninitialized global 
variables. 

▪ The stack: The stack is a collection of 
stack frames. It grows whenever a new 
function is called. “Thread private”.

▪ The heap: Dynamic memory (e.g. 
requested with “new”). 

HEP: depth 

of ~50 not 
seldom 
reached
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An Example

#include <iostream>

void display(int x, int *xp) {

  std::cout << "In display():\n"

            << " o value of x is " << x 

            << ", address of x is " << &x <<std::endl

            << " o xp points to " << xp 

            << " which holds " << *xp <<std::endl; }

int main() {

  int a = 42;

  int *ap = &a;

  std::cout << "In main():\n"

            << " o value of a is "<< a 

            << ", address of a is " << &a << std::endl

            << " o ap points to " << ap 

            << " which holds " << *ap << std::endl;

  display(a, ap);

  return 0; }

g++ –o myExample 

myExample.cpp –g

To fire gdb: gdb myexecutable
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An Example

#include <iostream>

void display(int x, int *xp) {

  std::cout << "In display():\n"

            << " o value of x is " << x 

            << ", address of x is " << &x <<std::endl

            << " o xp points to " << xp 

            << " which holds " << *xp <<std::endl; }

int main() {

  int a = 42;

  int *ap = &a;

  std::cout << "In main():\n"

            << " o value of a is "<< a 

            << ", address of a is " << &a << std::endl

            << " o ap points to " << ap 

            << " which holds " << *ap << std::endl;

  display(a, ap);

  return 0; }

g++ –o myExample 

myExample.cpp –g

To fire gdb: gdb myexecutable

$ gdb myExample

[ … Some output … ]

(gdb) run

Starting program: /Users/<whoever>/gdb/myExample 

Reading symbols for shared libraries 

+++............................. done

In main():

 o value of a is 5, address of a is 0x7fff5fbff744

 o ap points to 0x7fff5fbff744 which holds 5

In display():

 o value of x is 5, address of x is 0x7fff5fbff71c

 o xp points to 0x7fff5fbff744 which holds 5

Program exited normally.
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Break Points

▪ So far so good – you could have done this already without GDB!

▪ But, GDB allows you to stop the execution of the application at a certain line or function with break 
points:

(gdb) break 12

Breakpoint 1 at 0x100000c60: file myExample.cpp, line 12.

(gdb) run

Starting program: /Users/<whoever>/gdb/myExample 

Breakpoint 1, main () at myExample: 12

12 int *ap = &a;

(gdb) 

The break could have been introduced when a certain function is invoked:

→break <function name>

(“break display” in our case)
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And Now?
You can dump the stack with where:

(gdb) where

#0  display (x=42, xp=0x7fff5fbff7c4) at myExample:6

#1  0x0000000100000d2c in main () at myExample.cpp:14

See some of the surrounding code with list:

(gdb) list

#include <iostream>

1 void display(int x, int *xp) {

2   std::cout << "In display():\n"

              << " o value of x is " << x 

              << ", address of x is " << &x <<std::endl

              << " o xp points to " << xp 

              << " which holds " << *xp <<std::endl; }

3 int main() {

4 int a = 42;

5 int *ap = &a;
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Interlude: Debugging Symbols

The compiler does not automatically bring the names of the symbols in the executables and 

libraries, the machine does not need them!

Humans do: include debugging symbols in the compiled binaries.

▪  Names of variables, functions, classes, namespaces, …

Debugging symbols, 3 facts to remember:

▪  Do not slow down the program!

▪  Do not increase its memory footprint!

▪  Do make binaries bigger (more disk space needed)!
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Navigating Program Execution

To “navigate” the program execution you can use:

▪  step: continue running until control reaches new line. “Step into” functions

▪  next: like step but functions are executed without stopping

▪  finish: continue until end of current stack frame

▪  return <expression>: prematurely exit the stack returning expression. 

▪  break: show break points list

• disable <n>: disable break point n

• enable <n>: enable break point n

• delete <n>: delete break point n

▪ info threads: show threads

▪ thread <n>: step into thread n
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The Print Statement

1 #include "time.h"

2 #include <iostream>

3 int main() {

4   int t = clock();

5   std::cout << t << std::endl;

6   return 0;

7 }

print allows you to inspect the 

value of a variable.

(gdb) break 5

Breakpoint 1 at 0x100000d50: file ex12_2.cpp, line 5.

(gdb) run

Starting program: /Users/danilopiparo/gdb/ex12_2 

Reading symbols for shared libraries 

++............................. done

Breakpoint 1, main () at ex12_2.cpp:5

5    std::cout << t << std::endl;

(gdb) print t

$1 = 6637

(gdb) next

6637

6    return 0;
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Interlude 3: Machine Code with GDB

double myFloor(double x) {

  const int xi = int(x);

  return x < 0 ? xi -1 : xi;

}

int main() {

  myFloor(-3.14);

}

• Looking at the assembly is the only way to 

understand what the compiler actually did
• GDB allows to do that easily with disass

• More targeted than Unix objdump

Food
For

Thought
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Interlude 3: Machine Code with GDB

(gdb) disass /m myFloor

Dump of assembler code for function myFloor(double):

1  double myFloor(double x){

2  const int xi = int(x);

0x00000000004004e0 <+0>:  cvttsd2si %xmm0,%eax

3  return x<0?xi-1:xi;

0x00000000004004e4 <+4>:  cmpltsd 0x113(%rip),%xmm0  # 0x400600

0x00000000004004ed <+13>:  lea  -0x1(%rax),%edx

0x00000000004004f0 <+16>:  cvtsi2sd %eax,%xmm2

0x00000000004004f4 <+20>:  cvtsi2sd %edx,%xmm1

0x00000000004004f8 <+24>:  andpd %xmm0,%xmm1

0x00000000004004fc <+28>:  andnpd %xmm2,%xmm0

0x0000000000400500 <+32>:  orpd %xmm1,%xmm0

4  }

0x0000000000400504 <+36>:  retq 

End of assembler dump.

Food
For

Thought
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#include <thread>

#include <vector>

#include <chrono>

void sleep() {

std::this_thread::sleep_for(std::chrono::seconds(100)); };

int main() {

std::vector<std::thread> myThreads;

for (int i=0; i<2; i++) myThreads.emplace_back(std::thread(sleep));

// Line 11

for (auto& t : myThreads) t.join();

}

GDB And Threads

▪ GDB allows to inspect the behaviour of the threads of a process
▪ info threads: display running threads

▪ thread <n>: step into a thread
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GDB And Threads
$ gdb ./threadsSleep

[ … some output … ]

Reading symbols from /home/dpiparo/CSC/Examples/threadsSleep...done.

(gdb) break 11

Set a break point at line 11
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GDB And Threads
$ gdb ./threadsSleep

[ … some output … ]

Reading symbols from /home/dpiparo/CSC/Examples/threadsSleep...done.

(gdb) break 11

Breakpoint 1 at 0x400a8f: file threadsSleep.cpp, line 11.

(gdb) run

Starting program: /home/dpiparo/CSC/Examples/threadsSleep

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".

[New Thread 0x7ffff6fe7700 (LWP 4440)]

[New Thread 0x7ffff67e6700 (LWP 4441)]

Breakpoint 1, main () at threadsSleep.cpp:12

12  for (auto& t : myThreads)

• GDB informs us it found the line at which it will break

• Run the application

• GDB informs us that 2 threads were spawned

• The breakpoint is reached
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GDB And Threads
$ gdb ./threadsSleep

[ … some output … ]

Reading symbols from /home/dpiparo/CSC/Examples/threadsSleep...done.

(gdb) b 11

Breakpoint 1 at 0x400a8f: file threadsSleep.cpp, line 11.

(gdb) run

Starting program: /home/dpiparo/CSC/Examples/threadsSleep

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".

[New Thread 0x7ffff6fe7700 (LWP 4440)]

[New Thread 0x7ffff67e6700 (LWP 4441)]

Breakpoint 1, main () at threadsSleep.cpp:12

14  for (auto& t : myThreads)

(gdb) info threads

Id Target Id  Frame

3  Thread 0x7ffff67e6700 (LWP 4441) "threadsSleep" 0x00007ffff76b252d in nanosleep () at 

../sysdeps/unix/syscall-template.S:82

2  Thread 0x7ffff6fe7700 (LWP 4440) "threadsSleep" 0x00007ffff76b252d in nanosleep () at 

../sysdeps/unix/syscall-template.S:82

* 1  Thread 0x7ffff7fd4740 (LWP 4437) "threadsSleep" main () at threadsSleep.cpp:14

• Get info about threads

• GDB prints the threads ids and which function is being executed

• The * identifies the thread where the break point was successful

• By default GDB freezes all threads simultaneously at a breakpoint

• “Take a snapshot of the execution status”
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GDB And Threads
$ gdb ./threadsSleep

[ … some output … ]

Reading symbols from /home/dpiparo/CSC/Examples/threadsSleep...done.

(gdb) b 11

Breakpoint 1 at 0x400a8f: file threadsSleep.cpp, line 11.

(gdb) run

Starting program: /home/dpiparo/CSC/Examples/threadsSleep

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".

[New Thread 0x7ffff6fe7700 (LWP 4440)]

[New Thread 0x7ffff67e6700 (LWP 4441)]

Breakpoint 1, main () at threadsSleep.cpp:12

14  for (auto& t : myThreads)

(gdb) info threads

Id Target Id  Frame

3  Thread 0x7ffff67e6700 (LWP 4441) "threadsSleep" 0x00007ffff76b252d in nanosleep () at 

../sysdeps/unix/syscall-template.S:82

2  Thread 0x7ffff6fe7700 (LWP 4440) "threadsSleep" 0x00007ffff76b252d in nanosleep () at 

../sysdeps/unix/syscall-template.S:82

•1  Thread 0x7ffff7fd4740 (LWP 4437) "threadsSleep" main () at threadsSleep.cpp:12

(gdb) thread 2

[Switching to thread 2 (Thread 0x7ffff6fe7700 (LWP 4440))]

#0 0x00007ffff76b252d in nanosleep () at ../sysdeps/unix/syscall-template.S:82

82  ../sysdeps/unix/syscall-template.S: No such file or directory.

• Suppose we are interested in thread 2, let’s switch to it

• GDB informs us we are now in thread 2

• The cryptic messages are due to the fact that we compiled our exe 

with debugging symbols, not all the components it depends on! 
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GDB And Threads
$ gdb ./threadsSleep

[ … some output … ]

Reading symbols from /home/dpiparo/CSC/Examples/threadsSleep...done.

(gdb) b 11

Breakpoint 1 at 0x400a8f: file threadsSleep.cpp, line 11.

(gdb) run

Starting program: /home/dpiparo/CSC/Examples/threadsSleep

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".

[New Thread 0x7ffff6fe7700 (LWP 4440)]

[New Thread 0x7ffff67e6700 (LWP 4441)]

Breakpoint 1, main () at threadsSleep.cpp:12

14  for (auto& t : myThreads)

(gdb) info threads

Id Target Id  Frame

3  Thread 0x7ffff67e6700 (LWP 4441) "threadsSleep" 0x00007ffff76b252d in nanosleep () at 

../sysdeps/unix/syscall-template.S:82

2  Thread 0x7ffff6fe7700 (LWP 4440) "threadsSleep" 0x00007ffff76b252d in nanosleep () at 

../sysdeps/unix/syscall-template.S:82

•1  Thread 0x7ffff7fd4740 (LWP 4437) "threadsSleep" main () at threadsSleep.cpp:12

(gdb) thread 2

[Switching to thread 2 (Thread 0x7ffff6fe7700 (LWP 4440))]

#0 0x00007ffff76b252d in nanosleep () at ../sysdeps/unix/syscall-template.S:82

82  ../sysdeps/unix/syscall-template.S: No such file or directory.

(gdb) where

#0 0x00007ffff76b252d in nanosleep () at ../sysdeps/unix/syscall-template.S:82

#1 0x0000000000400caf in sleep() () at /usr/include/c++/4.8/thread:279

#2 0x00007ffff7b87a10 in ?? () from /usr/lib/x86_64-linux-gnu/libstdc++.so.6

#3 0x00007ffff76aae9a in start_thread (arg=0x7ffff6fe7700) at pthread_create.c:308

#4 0x00007ffff73d7ccd in clone () at ../sysdeps/unix/sysv/linux/x86_64/clone.S:112

#5 0x0000000000000000 in ?? ()

(gdb)

• Now let’s print the stack of thread number 2!
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GDB And Threads

▪ By default GDB stops all threads simultaneously if a breakpoint is reached 
(so called “stop mode”)

▪ It allows also to stop the thread where the breakpoint was reached and let the 
others proceed (“non-stop mode”)

▪ De facto the user can bend the runtime behaviour of the application to her 
needs!

# Enable the async interface.

set target-async 1

# Pagination breaks non-stop.

set pagination off

# Finally, turn it on [off]!

set non-stop on [off]

Commands to switch between 

stop and non-stop modes within 

the gdb prompt
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More GDB (Black) Magic

Suppose your program behaves in a weird way now.

▪  You can “attach” gdb to a running process (e.g. 300% CPU since minutes…)

▪ gdb <PID>

Suppose your program crashed after hours of running, leaving you with no plots, but a core dump.

▪  You can resume it as it was at the moment of the crash

▪ gdb program core-file 

To get your pid:
ps aux | grep <Program name>
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Helgrind and DRD

▪ Another pair of tools useful for debugging parallel programs

▪ Part of the Valgrind suite

▪ Allow to catch thread errors at runtime

▪ valgrind --tool=helgrind ./myProgram

▪ Detection of potential thread unsafe operations, lock ordering problems, …

▪ Difference between DRD and Helgrind: detection algorithms 

▪ Downside: false positives 

▪ Complementary tools: address and thread sanitiser offered by CLANG and GCC 
compiler suites.
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High Level Profiling
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A Simple Question

Q: Why should we strive for software performance, correctness, 
efficiency, ultimately throughput?
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For Money!

From “The Wolf of Wall Street”
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Code Optimisation

▪ When dealing with large software projects, performance measurement is daily business

▪ Especially for multithreaded applications: parallel Vs serial case, performance of 

different configurations of the parallel applications …

▪ The identification of the hotspots (and their removal) is worth an enormous amount of 

resources

▪ But don’t optimise before you know “what”!

▪ A plethora of tools available, covering all quantities related to performance

▪ open source: perf, valgrind, igprof … or not: Intel VTune, Apple Instruments, …

▪ Using several methods: stack sampling, HW performance counters, …

▪ Profilers can extract precious data allowing to do optimisations:

▪ What are the symbols that have the longest runtime?

▪ What are the symbols that allocate the most memory?
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The Golden Rule of Optimisation

Don’t develop theories, 

measure your program!

It is a capital mistake to theorize before one has data. 

Insensibly one begins to twist facts to suit theories, 

instead of theories to suit facts. Sherlock Holmes
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Take Away Messages

Dealing with a parallel application is complex:

Use procedures to rise fences to protect against mistakes, like static analysis to find bugs in an 
automatic way

▪ Embed such tools in the build infrastructure of your SW

Use tools to inspect, manipulate their behaviour at runtime, like GDB

▪ Become familiar with them, multithreaded programs are tough to debug

Use tools to measure performance, do not speculate

▪ Start from simple yet powerful tools like perf, igprof

▪ Choose more complex ones to dive into the details 
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