
CERN School of Computing 2024

SW Design in the Many-Cores Era

1

CERN School of Computing 2024

Software Design in the Many-Cores era

A. Gheata, S. Hageböck

CERN, EP-SFT

CERN School of Computing 2024

SW Design in the Many-Cores Era

2

Understanding, and Debugging a Complex
Multithreaded Application

Lecture III

CERN School of Computing 2024

SW Design in the Many-Cores Era

3

Outline of This Lecture

Before running the application:

1) Elements of static code analysis: Clang

If something goes wrong:

2) Understanding and debugging a multithreaded application with GDB

Now that it works, how fast is it?

3) Elements of high-level profiling: igprof* basic principles

The Goals:

• Understand the relation between performance and correctness

• Master the strategies to be able to analyse, debug and profile*

a complex parallel application

Three logical steps

* covered by the Benchmarking and

Profiling lecture

CERN School of Computing 2024

SW Design in the Many-Cores Era

4

Performance and Correctness

▪ Correctness comes first: if your program is buggy, unreliable, unpredictable,

no performance consideration makes sense (at all)

▪ Performance is then crucial*: algorithms translate to real machine code,

running on real hardware with its own features (CPUs, memory hierarchy,

accelerators)

A high-quality test

suite must be part of

every software tool

“Make it work, make it right, make it fast ”

*For many areas of scientific computing at least

CERN School of Computing 2024

SW Design in the Many-Cores Era

5

Performance and Correctness

▪ Correctness and performance: tightly correlated

▪ Correctness checked quickly and extensively → runtime/memory improvements

validated more easily

▪ Be in condition to label “changes” in the final results as “acceptable”,

“expected” or “in the wrong direction”

▪ Pandora’s box: what is the “right” result? The one we had before? The

new one? The “reference” one? Not trivial at all!

▪ Use a grain of salt, be in control of what happens!

CERN School of Computing 2024

SW Design in the Many-Cores Era

6

Features of A Good Testsuite
▪ It’s easy to run

▪ One single command runs all tests

▪ Tests can be selected, e.g. with regular expressions

▪ It’s automatically ran

▪ N times per day, or

▪ Continuously check new code committed by developers

▪ Results are easy to interpret

▪ E.g. Published on the web

▪ Easy to track down problem, e.g. “test # 1206 failed with this output”

CERN School of Computing 2024

SW Design in the Many-Cores Era

7

Testing and parallel execution

▪ Test: minimal program aiming to stress a particular feature of the code

▪ Parallel code: no predictable order of operations possible

▪ The “same” test, execution pattern can be “different”

▪ Solution: properly designed tests

▪ E.g. Maximising contention to “challenge” stability of the software

CERN School of Computing 2024

SW Design in the Many-Cores Era

8

Reproducibility

▪ E.g. two subsequent runs of the program produce the same histograms,
identical bin by bin

▪ Simple for small setups

▪ Can be tricky with 5M lines, ~100 shared libraries

▪ Performance optimisations can lead to variations in final result (e.g. migration of
entries to neighbouring bins)

▪ Fundamental to remove all sorts of “noise”

▪ Non reproducibility in the sequential case: absence of control on the system

▪ E.g. uninitialised variables, sloppy seeding of random generations, bogus
memory access

CERN School of Computing 2024

SW Design in the Many-Cores Era

9

Attitude Towards Testing

▪ Aim to test-driven development: write tests before code

▪ Test features individually one by one

▪ Use often asserts as watchdogs in complex code, to catch problems early

▪ For each bug reported/found: create a reproducing test, add it to the suite, fix it.

▪ If it’s not reproduced the bug does not exist!

▪ Don’t live with broken windows: follow up each failure

▪ Assume it always points to a serious problem

▪ Time invested in writing tests is strategic

▪ It always rewards

If a software tool or one of its functionalities is not tested always

assume it does not work

CERN School of Computing 2024

SW Design in the Many-Cores Era

10

Elements of Static Code
Analysis

CERN School of Computing 2024

SW Design in the Many-Cores Era

11

Static Code Analysis

▪ Idea: embed static analysis in testing suites

▪ The procedure of analysing the source code before compiling and running to automatically

find bugs

▪ Rise (yet other) fences to protect against mistakes and bugs

▪ Easily pluggable in big projects’ build infrastructures

▪ E.g. code blocks never executed because of faulty logic in if statements, thread unsafe

constructs, etc.

▪ Several tools available, commercial and open source

▪ Reference on the market: Coverity

▪ Open source: Clang Static Analyzer

CERN School of Computing 2024

SW Design in the Many-Cores Era

12

LLVM and Clang

LLVM

▪ Free and open source

▪ A compiler infrastructure

▪ Frontend [C++,C,...] → Optimizer → Backend [x86, CUDA, ...]

▪ http://llvm.org

Clang

▪ LLVM frontend for C,C++ and Objective-C

▪ A possible alternative to GCC in some respects

▪ A lot of users - e.g. Apple, Intel (OpenCL)

▪ http://clang.llvm.org

Very powerful technology: e.g. C++ interpreter built on LLVM & Clang, Cling

http://root.cern.ch/drupal/content/cling

http://llvm.org
http://clang.llvm.org
http://root.cern.ch/drupal/content/cling

CERN School of Computing 2024

SW Design in the Many-Cores Era

13

Clang Static Analyser

The static analyser is part of the clang frontend

It offers the possibility to examine the program code on two levels:

▪ Analysis of the Abstract Syntax Tree (AST)

▪ Symbolic Execution:

▪ Every possible path through the program is explored and validated

▪ A battery of checks already included: uninitialized access, dead stores, dereferencing null,
invalid malloc calls, ...

▪ User-defined can be added

▪ HTML report created automatically, detailed annotations of the source

▪ scanbuild tool: automatically replace the calls to the compiler in a makefile

To fire static analysis: scan-build make

http://clang-analyzer.llvm.org/

CERN School of Computing 2024

SW Design in the Many-Cores Era

14

An AST

CERN School of Computing 2024

SW Design in the Many-Cores Era

15

Analysis for Thread Unsafety

Clang Static Analyzer: Custom checks can be added in form of a plugin written in C++

Checks for thread unsafety were developed by the LHC experiments

▪ Used in production for Q/A of experiments software

▪ Useful in general!

Some examples:

▪ Non const global/local statics

▪ Use of mutable keyword

▪ Use of const_cast to remove constness

▪ Other removals of constness (e.g. explicit cast)

▪…

Note the importance

of const correctness

CERN School of Computing 2024

SW Design in the Many-Cores Era

16

Web Reports: an Example

FastJet tool taken as guinea pig: used

to cluster jets by several experiments’
software - http://fastjet.fr/

Example coming from an old version of fastjet!

http://fastjet.fr/

CERN School of Computing 2024

SW Design in the Many-Cores Era

17

Understanding and
Debugging - GDB

CERN School of Computing 2024

SW Design in the Many-Cores Era

18

Debugging

Suppose something is wrong with your application:

▪ It nicely terminates but yields wrong results (worst case scenario!)

▪ It crashes

▪ It runs forever occupying several CPUs

▪ It hangs forever with no CPU usage (e.g. a deadlock)

Effective debugging strategies and tools are the solution

The same techniques are also handy not only in case of problems

▪ Suppose that the overall behavior of a very complex application (~MLOC) is to be understood

▪ E.g. CMS/Atlas/LHCb/Alice reconstruction

CERN School of Computing 2024

SW Design in the Many-Cores Era

19

Debugging Strategies
Write and use programs without bugs?

▪ There is no such thing, except in totally trivial cases

▪ All programs have and will have bugs

If possible, try not to introduce bugs in the first place!

Debug printouts as ‘poor man’s solution’:

 Immediate to everybody: sometimes it’s enough!

 Hard (impossible) to add printouts in 3rd party libraries

 Distract the user from focussing on the debugging itself

 Hard to use in a parallel program, encourage Heisenbugs influencing timing behaviour

 Or better: Use a debugger like GDB

CERN School of Computing 2024

SW Design in the Many-Cores Era

20

GDB: The GNU Project Debugger

▪ Free and open source, available on every Linux box

▪ GDB is an interactive command line tool which can “see”:

▪ Within a program during its execution

▪ A posteriori, what a program was doing when it crashed

▪ Works with applications written in C and C++ (among other languages)

▪ No recompilation needed (although debugging symbols can be handy)

▪ Stop the execution at some specified point

▪ Execute line by line, stepping into functions if needed

▪ Examine what is happening: e.g. print variable content

▪ Thread aware: e.g. Stop threads, switch among them …

http://www.gnu.org/software/gdb/

CERN School of Computing 2024

SW Design in the Many-Cores Era

21

Reminder: A Program in Memory

▪ Text Segment: code to be executed.

▪ Initialized Data Segment: global
variables initialized by the programmer.

▪ Uninitialized Data Segment: This
segment contains uninitialized global
variables.

▪ The stack: The stack is a collection of
stack frames. It grows whenever a new
function is called. “Thread private”.

▪ The heap: Dynamic memory (e.g.
requested with “new”).

HEP: depth

of ~50 not
seldom
reached

CERN School of Computing 2024

SW Design in the Many-Cores Era

22

An Example

#include <iostream>

void display(int x, int *xp) {

 std::cout << "In display():\n"

 << " o value of x is " << x

 << ", address of x is " << &x <<std::endl

 << " o xp points to " << xp

 << " which holds " << *xp <<std::endl; }

int main() {

 int a = 42;

 int *ap = &a;

 std::cout << "In main():\n"

 << " o value of a is "<< a

 << ", address of a is " << &a << std::endl

 << " o ap points to " << ap

 << " which holds " << *ap << std::endl;

 display(a, ap);

 return 0; }

g++ –o myExample

myExample.cpp –g

To fire gdb: gdb myexecutable

CERN School of Computing 2024

SW Design in the Many-Cores Era

23

An Example

#include <iostream>

void display(int x, int *xp) {

 std::cout << "In display():\n"

 << " o value of x is " << x

 << ", address of x is " << &x <<std::endl

 << " o xp points to " << xp

 << " which holds " << *xp <<std::endl; }

int main() {

 int a = 42;

 int *ap = &a;

 std::cout << "In main():\n"

 << " o value of a is "<< a

 << ", address of a is " << &a << std::endl

 << " o ap points to " << ap

 << " which holds " << *ap << std::endl;

 display(a, ap);

 return 0; }

g++ –o myExample

myExample.cpp –g

To fire gdb: gdb myexecutable

$ gdb myExample

[… Some output …]

(gdb) run

Starting program: /Users/<whoever>/gdb/myExample

Reading symbols for shared libraries

+++............................. done

In main():

 o value of a is 5, address of a is 0x7fff5fbff744

 o ap points to 0x7fff5fbff744 which holds 5

In display():

 o value of x is 5, address of x is 0x7fff5fbff71c

 o xp points to 0x7fff5fbff744 which holds 5

Program exited normally.

CERN School of Computing 2024

SW Design in the Many-Cores Era

24

Break Points

▪ So far so good – you could have done this already without GDB!

▪ But, GDB allows you to stop the execution of the application at a certain line or function with break
points:

(gdb) break 12

Breakpoint 1 at 0x100000c60: file myExample.cpp, line 12.

(gdb) run

Starting program: /Users/<whoever>/gdb/myExample

Breakpoint 1, main () at myExample: 12

12 int *ap = &a;

(gdb)

The break could have been introduced when a certain function is invoked:

→break <function name>

(“break display” in our case)

CERN School of Computing 2024

SW Design in the Many-Cores Era

25

And Now?
You can dump the stack with where:

(gdb) where

#0 display (x=42, xp=0x7fff5fbff7c4) at myExample:6

#1 0x0000000100000d2c in main () at myExample.cpp:14

See some of the surrounding code with list:

(gdb) list

#include <iostream>

1 void display(int x, int *xp) {

2 std::cout << "In display():\n"

 << " o value of x is " << x

 << ", address of x is " << &x <<std::endl

 << " o xp points to " << xp

 << " which holds " << *xp <<std::endl; }

3 int main() {

4 int a = 42;

5 int *ap = &a;

CERN School of Computing 2024

SW Design in the Many-Cores Era

26

Interlude: Debugging Symbols

The compiler does not automatically bring the names of the symbols in the executables and

libraries, the machine does not need them!

Humans do: include debugging symbols in the compiled binaries.

▪ Names of variables, functions, classes, namespaces, …

Debugging symbols, 3 facts to remember:

▪ Do not slow down the program!

▪ Do not increase its memory footprint!

▪ Do make binaries bigger (more disk space needed)!

CERN School of Computing 2024

SW Design in the Many-Cores Era

27

Navigating Program Execution

To “navigate” the program execution you can use:

▪ step: continue running until control reaches new line. “Step into” functions

▪ next: like step but functions are executed without stopping

▪ finish: continue until end of current stack frame

▪ return <expression>: prematurely exit the stack returning expression.

▪ break: show break points list

• disable <n>: disable break point n

• enable <n>: enable break point n

• delete <n>: delete break point n

▪ info threads: show threads

▪ thread <n>: step into thread n

CERN School of Computing 2024

SW Design in the Many-Cores Era

28

The Print Statement

1 #include "time.h"

2 #include <iostream>

3 int main() {

4 int t = clock();

5 std::cout << t << std::endl;

6 return 0;

7 }

print allows you to inspect the

value of a variable.

(gdb) break 5

Breakpoint 1 at 0x100000d50: file ex12_2.cpp, line 5.

(gdb) run

Starting program: /Users/danilopiparo/gdb/ex12_2

Reading symbols for shared libraries

++............................. done

Breakpoint 1, main () at ex12_2.cpp:5

5 std::cout << t << std::endl;

(gdb) print t

$1 = 6637

(gdb) next

6637

6 return 0;

CERN School of Computing 2024

SW Design in the Many-Cores Era

29

Interlude 3: Machine Code with GDB

double myFloor(double x) {

 const int xi = int(x);

 return x < 0 ? xi -1 : xi;

}

int main() {

 myFloor(-3.14);

}

• Looking at the assembly is the only way to

understand what the compiler actually did
• GDB allows to do that easily with disass

• More targeted than Unix objdump

Food
For

Thought

CERN School of Computing 2024

SW Design in the Many-Cores Era

30

Interlude 3: Machine Code with GDB

(gdb) disass /m myFloor

Dump of assembler code for function myFloor(double):

1 double myFloor(double x){

2 const int xi = int(x);

0x00000000004004e0 <+0>: cvttsd2si %xmm0,%eax

3 return x<0?xi-1:xi;

0x00000000004004e4 <+4>: cmpltsd 0x113(%rip),%xmm0 # 0x400600

0x00000000004004ed <+13>: lea -0x1(%rax),%edx

0x00000000004004f0 <+16>: cvtsi2sd %eax,%xmm2

0x00000000004004f4 <+20>: cvtsi2sd %edx,%xmm1

0x00000000004004f8 <+24>: andpd %xmm0,%xmm1

0x00000000004004fc <+28>: andnpd %xmm2,%xmm0

0x0000000000400500 <+32>: orpd %xmm1,%xmm0

4 }

0x0000000000400504 <+36>: retq

End of assembler dump.

Food
For

Thought

CERN School of Computing 2024

SW Design in the Many-Cores Era

31

#include <thread>

#include <vector>

#include <chrono>

void sleep() {

std::this_thread::sleep_for(std::chrono::seconds(100)); };

int main() {

std::vector<std::thread> myThreads;

for (int i=0; i<2; i++) myThreads.emplace_back(std::thread(sleep));

// Line 11

for (auto& t : myThreads) t.join();

}

GDB And Threads

▪ GDB allows to inspect the behaviour of the threads of a process
▪ info threads: display running threads

▪ thread <n>: step into a thread

CERN School of Computing 2024

SW Design in the Many-Cores Era

32

GDB And Threads
$ gdb ./threadsSleep

[… some output …]

Reading symbols from /home/dpiparo/CSC/Examples/threadsSleep...done.

(gdb) break 11

Set a break point at line 11

CERN School of Computing 2024

SW Design in the Many-Cores Era

33

GDB And Threads
$ gdb ./threadsSleep

[… some output …]

Reading symbols from /home/dpiparo/CSC/Examples/threadsSleep...done.

(gdb) break 11

Breakpoint 1 at 0x400a8f: file threadsSleep.cpp, line 11.

(gdb) run

Starting program: /home/dpiparo/CSC/Examples/threadsSleep

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".

[New Thread 0x7ffff6fe7700 (LWP 4440)]

[New Thread 0x7ffff67e6700 (LWP 4441)]

Breakpoint 1, main () at threadsSleep.cpp:12

12 for (auto& t : myThreads)

• GDB informs us it found the line at which it will break

• Run the application

• GDB informs us that 2 threads were spawned

• The breakpoint is reached

CERN School of Computing 2024

SW Design in the Many-Cores Era

34

GDB And Threads
$ gdb ./threadsSleep

[… some output …]

Reading symbols from /home/dpiparo/CSC/Examples/threadsSleep...done.

(gdb) b 11

Breakpoint 1 at 0x400a8f: file threadsSleep.cpp, line 11.

(gdb) run

Starting program: /home/dpiparo/CSC/Examples/threadsSleep

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".

[New Thread 0x7ffff6fe7700 (LWP 4440)]

[New Thread 0x7ffff67e6700 (LWP 4441)]

Breakpoint 1, main () at threadsSleep.cpp:12

14 for (auto& t : myThreads)

(gdb) info threads

Id Target Id Frame

3 Thread 0x7ffff67e6700 (LWP 4441) "threadsSleep" 0x00007ffff76b252d in nanosleep () at

../sysdeps/unix/syscall-template.S:82

2 Thread 0x7ffff6fe7700 (LWP 4440) "threadsSleep" 0x00007ffff76b252d in nanosleep () at

../sysdeps/unix/syscall-template.S:82

* 1 Thread 0x7ffff7fd4740 (LWP 4437) "threadsSleep" main () at threadsSleep.cpp:14

• Get info about threads

• GDB prints the threads ids and which function is being executed

• The * identifies the thread where the break point was successful

• By default GDB freezes all threads simultaneously at a breakpoint

• “Take a snapshot of the execution status”

CERN School of Computing 2024

SW Design in the Many-Cores Era

35

GDB And Threads
$ gdb ./threadsSleep

[… some output …]

Reading symbols from /home/dpiparo/CSC/Examples/threadsSleep...done.

(gdb) b 11

Breakpoint 1 at 0x400a8f: file threadsSleep.cpp, line 11.

(gdb) run

Starting program: /home/dpiparo/CSC/Examples/threadsSleep

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".

[New Thread 0x7ffff6fe7700 (LWP 4440)]

[New Thread 0x7ffff67e6700 (LWP 4441)]

Breakpoint 1, main () at threadsSleep.cpp:12

14 for (auto& t : myThreads)

(gdb) info threads

Id Target Id Frame

3 Thread 0x7ffff67e6700 (LWP 4441) "threadsSleep" 0x00007ffff76b252d in nanosleep () at

../sysdeps/unix/syscall-template.S:82

2 Thread 0x7ffff6fe7700 (LWP 4440) "threadsSleep" 0x00007ffff76b252d in nanosleep () at

../sysdeps/unix/syscall-template.S:82

•1 Thread 0x7ffff7fd4740 (LWP 4437) "threadsSleep" main () at threadsSleep.cpp:12

(gdb) thread 2

[Switching to thread 2 (Thread 0x7ffff6fe7700 (LWP 4440))]

#0 0x00007ffff76b252d in nanosleep () at ../sysdeps/unix/syscall-template.S:82

82 ../sysdeps/unix/syscall-template.S: No such file or directory.

• Suppose we are interested in thread 2, let’s switch to it

• GDB informs us we are now in thread 2

• The cryptic messages are due to the fact that we compiled our exe

with debugging symbols, not all the components it depends on!

CERN School of Computing 2024

SW Design in the Many-Cores Era

36

GDB And Threads
$ gdb ./threadsSleep

[… some output …]

Reading symbols from /home/dpiparo/CSC/Examples/threadsSleep...done.

(gdb) b 11

Breakpoint 1 at 0x400a8f: file threadsSleep.cpp, line 11.

(gdb) run

Starting program: /home/dpiparo/CSC/Examples/threadsSleep

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".

[New Thread 0x7ffff6fe7700 (LWP 4440)]

[New Thread 0x7ffff67e6700 (LWP 4441)]

Breakpoint 1, main () at threadsSleep.cpp:12

14 for (auto& t : myThreads)

(gdb) info threads

Id Target Id Frame

3 Thread 0x7ffff67e6700 (LWP 4441) "threadsSleep" 0x00007ffff76b252d in nanosleep () at

../sysdeps/unix/syscall-template.S:82

2 Thread 0x7ffff6fe7700 (LWP 4440) "threadsSleep" 0x00007ffff76b252d in nanosleep () at

../sysdeps/unix/syscall-template.S:82

•1 Thread 0x7ffff7fd4740 (LWP 4437) "threadsSleep" main () at threadsSleep.cpp:12

(gdb) thread 2

[Switching to thread 2 (Thread 0x7ffff6fe7700 (LWP 4440))]

#0 0x00007ffff76b252d in nanosleep () at ../sysdeps/unix/syscall-template.S:82

82 ../sysdeps/unix/syscall-template.S: No such file or directory.

(gdb) where

#0 0x00007ffff76b252d in nanosleep () at ../sysdeps/unix/syscall-template.S:82

#1 0x0000000000400caf in sleep() () at /usr/include/c++/4.8/thread:279

#2 0x00007ffff7b87a10 in ?? () from /usr/lib/x86_64-linux-gnu/libstdc++.so.6

#3 0x00007ffff76aae9a in start_thread (arg=0x7ffff6fe7700) at pthread_create.c:308

#4 0x00007ffff73d7ccd in clone () at ../sysdeps/unix/sysv/linux/x86_64/clone.S:112

#5 0x0000000000000000 in ?? ()

(gdb)

• Now let’s print the stack of thread number 2!

CERN School of Computing 2024

SW Design in the Many-Cores Era

37

GDB And Threads

▪ By default GDB stops all threads simultaneously if a breakpoint is reached
(so called “stop mode”)

▪ It allows also to stop the thread where the breakpoint was reached and let the
others proceed (“non-stop mode”)

▪ De facto the user can bend the runtime behaviour of the application to her
needs!

Enable the async interface.

set target-async 1

Pagination breaks non-stop.

set pagination off

Finally, turn it on [off]!

set non-stop on [off]

Commands to switch between

stop and non-stop modes within

the gdb prompt

CERN School of Computing 2024

SW Design in the Many-Cores Era

38

More GDB (Black) Magic

Suppose your program behaves in a weird way now.

▪ You can “attach” gdb to a running process (e.g. 300% CPU since minutes…)

▪ gdb <PID>

Suppose your program crashed after hours of running, leaving you with no plots, but a core dump.

▪ You can resume it as it was at the moment of the crash

▪ gdb program core-file

To get your pid:
ps aux | grep <Program name>

CERN School of Computing 2024

SW Design in the Many-Cores Era

39

Helgrind and DRD

▪ Another pair of tools useful for debugging parallel programs

▪ Part of the Valgrind suite

▪ Allow to catch thread errors at runtime

▪ valgrind --tool=helgrind ./myProgram

▪ Detection of potential thread unsafe operations, lock ordering problems, …

▪ Difference between DRD and Helgrind: detection algorithms

▪ Downside: false positives

▪ Complementary tools: address and thread sanitiser offered by CLANG and GCC
compiler suites.

CERN School of Computing 2024

SW Design in the Many-Cores Era

40

High Level Profiling

CERN School of Computing 2024

SW Design in the Many-Cores Era

41

A Simple Question

Q: Why should we strive for software performance, correctness,
efficiency, ultimately throughput?

CERN School of Computing 2024

SW Design in the Many-Cores Era

42

For Money!

From “The Wolf of Wall Street”

CERN School of Computing 2024

SW Design in the Many-Cores Era

43

Code Optimisation

▪ When dealing with large software projects, performance measurement is daily business

▪ Especially for multithreaded applications: parallel Vs serial case, performance of

different configurations of the parallel applications …

▪ The identification of the hotspots (and their removal) is worth an enormous amount of

resources

▪ But don’t optimise before you know “what”!

▪ A plethora of tools available, covering all quantities related to performance

▪ open source: perf, valgrind, igprof … or not: Intel VTune, Apple Instruments, …

▪ Using several methods: stack sampling, HW performance counters, …

▪ Profilers can extract precious data allowing to do optimisations:

▪ What are the symbols that have the longest runtime?

▪ What are the symbols that allocate the most memory?

CERN School of Computing 2024

SW Design in the Many-Cores Era

44

The Golden Rule of Optimisation

Don’t develop theories,

measure your program!

It is a capital mistake to theorize before one has data.

Insensibly one begins to twist facts to suit theories,

instead of theories to suit facts. Sherlock Holmes

CERN School of Computing 2024

SW Design in the Many-Cores Era

45

Take Away Messages

Dealing with a parallel application is complex:

Use procedures to rise fences to protect against mistakes, like static analysis to find bugs in an
automatic way

▪ Embed such tools in the build infrastructure of your SW

Use tools to inspect, manipulate their behaviour at runtime, like GDB

▪ Become familiar with them, multithreaded programs are tough to debug

Use tools to measure performance, do not speculate

▪ Start from simple yet powerful tools like perf, igprof

▪ Choose more complex ones to dive into the details

	Slide 1: Software Design in the Many-Cores era
	Slide 2: Understanding, and Debugging a Complex Multithreaded Application
	Slide 3: Outline of This Lecture
	Slide 4: Performance and Correctness
	Slide 5: Performance and Correctness
	Slide 6: Features of A Good Testsuite
	Slide 7: Testing and parallel execution
	Slide 8: Reproducibility
	Slide 9: Attitude Towards Testing
	Slide 10: Elements of Static Code Analysis
	Slide 11: Static Code Analysis
	Slide 12: LLVM and Clang
	Slide 13: Clang Static Analyser
	Slide 14: An AST
	Slide 15: Analysis for Thread Unsafety
	Slide 16: Web Reports: an Example
	Slide 17: Understanding and Debugging - GDB
	Slide 18: Debugging
	Slide 19: Debugging Strategies
	Slide 20: GDB: The GNU Project Debugger
	Slide 21: Reminder: A Program in Memory
	Slide 22: An Example
	Slide 23: An Example
	Slide 24: Break Points
	Slide 25: And Now?
	Slide 26: Interlude: Debugging Symbols
	Slide 27: Navigating Program Execution
	Slide 28: The Print Statement
	Slide 29: Interlude 3: Machine Code with GDB
	Slide 30: Interlude 3: Machine Code with GDB
	Slide 31: GDB And Threads
	Slide 32: GDB And Threads
	Slide 33: GDB And Threads
	Slide 34: GDB And Threads
	Slide 35: GDB And Threads
	Slide 36: GDB And Threads
	Slide 37: GDB And Threads
	Slide 38: More GDB (Black) Magic
	Slide 39: Helgrind and DRD
	Slide 40: High Level Profiling
	Slide 41: A Simple Question
	Slide 42: For Money!
	Slide 43: Code Optimisation
	Slide 44: The Golden Rule of Optimisation
	Slide 45: Take Away Messages

