
1

Data Technologies – CERN School of Computing 2024

Data Technologies

Alberto Pace

alberto.pace@cern.ch

Head of IT education

2

Data Technologies – CERN School of Computing 2024

Agenda
◆ Introduction to data management

◆ Data Workflows in scientific computing

◆ Storage Models

◆ Data management components

◆ Name Servers and databases

◆ Data Access protocols

◆ Reliability
◆ Availability

◆ Access Control and Security
◆ Cryptography

◆ Authentication, Authorization, Accounting

◆ Scalability
◆ Cloud storage

◆ Block storage

◆ Analytics

◆ Data Replication

◆ Data Caching

◆ Monitoring, Alarms

◆ Quota

◆ Summary

1st lecture

2nd lecture

3rd lecture

4th lecture

3

Data Technologies – CERN School of Computing 2024

Introduction to data management

4

Data Technologies – CERN School of Computing 2024

?

Detecting particles

(experiments)

Accelerating particle

beams

Large-scale

computing (Analysis)

Discovery

We are here

The mission of CERN

6

Data Technologies – CERN School of Computing 2024

The need for storage in computing

◆ Scientific computing for large experiments is
typically based on a distributed infrastructure

◆ Storage is one of the main pillars

◆ Storage requires Data Management…

D
A

T
A

C
P

U

N
E

T

Scientific Computing

7

Data Technologies – CERN School of Computing 2024

“Why” data management ?

◆ Data Management solves the following problems

◆ Data reliability

◆ Access control

◆ Data distribution

◆ Data archives, history, long term preservation

◆ In general:
◆ Empower the implementation of a workflow for data processing

8

Data Technologies – CERN School of Computing 2024

Can we make it simple ?

◆ A simple storage model: all data into the same container
◆ Uniform, simple, easy to manage, no need to move data

◆ Can provide sufficient level of performance and reliability

“Cloud” Storage

For large repositories,

 it is too simplistic !

9

Data Technologies – CERN School of Computing 2024

Why multiple pools and quality ?

◆ Derived data used for analysis and accessed by thousands
of nodes
◆ Need high performance, Low cost, minimal reliability (derived

data can be recalculated)

◆ Raw data that need to be analyze
◆ Need high performance, High reliability, can be expensive (small

sizes)

◆ Raw data that has been analyzed and archived
◆ Must be low cost (huge volumes), High reliability (must be

preserved), performance not necessary

10

Data Technologies – CERN School of Computing 2024

So, … what is data management ?

◆ Examples from LHC experiment data models

◆ Two building blocks to empower data processing

◆ Data pools with different quality of services

◆ Tools for data transfer between pools

11

Data Technologies – CERN School of Computing 2024

Data pools

◆ Different quality of services

◆ Three parameters: (Performance, Reliability, Cost)

◆ You can have two but not three

Slow

Expensive

Unreliable

Tapes Disks

Flash, Solid State Disks

Mirrored disks

12

Data Technologies – CERN School of Computing 2024

But the balance is not as simple

◆ Many ways to split (performance, reliability, cost)

◆ Performance has many sub-parameters

◆ Cost has many sub-parameters

◆ Reliability has many sub-parameters

Latency /

Throughput

Scalability Electrical consumption

HW cost
Ops Cost

(manpower)Consistency

Reliability

Performance

Cost

13

Data Technologies – CERN School of Computing 2024

And reality is complicated

◆ Key requirements: Simple, Scalable, Consistent, Reliable, Available,
Manageable, Flexible, Performing, Cheap, Secure.

◆ Aiming for “à la carte” services (storage pools) with on-demand
“quality of service”

◆ And where is scalability ?

0
10
20
30
40
50
60
70
80

Read throughput

Write throughput

Read Latency

Write Latency

Scalability

Consistency

Metadata Read
throughput

Metadata Write
throughput

Metadata Read
Latency

Metadata Write
Latency

Pool1

Pool2

14

Data Technologies – CERN School of Computing 2024

Where are we heading ?

◆ Software solutions + Cheap hardware

Slow

Expensive

Unreliable

Tapes

Disks

Flash, Solid State Disks

Mirrored disks

Slow

Expensive

Unreliable

Software defined service

+

cheap hardware

16

Data Technologies – CERN School of Computing 2024

Data Management Components

31

Data Technologies – CERN School of Computing 2024

Agenda
◆ Introduction to data management

◆ Data Workflows in scientific computing

◆ Storage Models

◆ Data management components

◆ Name Servers and databases

◆ Data Access protocols

◆ Reliability
◆ Availability

◆ Access Control and Security
◆ Cryptography

◆ Authentication, Authorization, Accounting

◆ Scalability
◆ Cloud storage

◆ Block storage

◆ Analytics

◆ Data Replication

◆ Data Caching

◆ Monitoring, Alarms

◆ Quota

◆ Summary

32

Data Technologies – CERN School of Computing 2024

Storage Reliability

◆ Reliability is related to the probability to lose data

◆ Def: “the probability that a storage device will perform an arbitrarily
large number of I/O operations without data loss during a specified
period of time”

◆ Reliability of the “service” depends on the environment (energy, cooling,
people, ...)

◆ Will not discuss this further

◆ Reliability starts from the reliability of the underlying hardware

◆ Example of data saved in servers with simple disks: reliability of service =
reliability of disks

◆ But data management solutions can increase the reliability of the hardware
at the expenses of performance and/or additional hardware / software

◆ Disk Mirroring

◆ Redundant Array of Inexpensive Disks (RAID)

33

Data Technologies – CERN School of Computing 2024

Hardware reliability
◆ Do we need tapes ?

◆ Tapes have a bad reputation in some use cases
◆ Slow in random access mode

◆ high latency in mounting process and when seeking data (F-FWD, REW)

◆ Inefficient for small files (in some cases)

◆ Comparable cost per (peta)byte as hard disks

◆ Tapes have also some advantages
◆ Fast in sequential access mode

◆ > 2x faster than disk, with physical read after write verification

◆ Several orders of magnitude more reliable than disks
◆ Few hundreds GB loss per year on 80 PB tape repository

◆ Few hundreds TB loss per year on 50 PB disk repository

◆ No power required to preserve the data

◆ Less physical volume required per (peta)byte

◆ Inefficiency for small files issue resolved by recent developments

◆ Nobody can delete hundreds of PB in minutes

◆ Bottom line: if not used for random access, tapes have a clear role in
the architecture

34

Data Technologies – CERN School of Computing 2024

Reminder: types of RAID

◆ RAID0

◆ Disk striping

◆ RAID1

◆ Disk mirroring

◆ RAID5

◆ Parity information is distributed across all disks

◆ RAID6

◆ Uses Reed–Solomon error correction, allowing the loss
of 2 disks in the array without data loss

http://en.wikipedia.org/wiki/RAID

http://en.wikipedia.org/wiki/RAID

35

Data Technologies – CERN School of Computing 2024

Reminder: types of RAID

◆ RAID0

◆ Disk striping

◆ RAID1

◆ Disk mirroring

◆ RAID5

◆ Parity information is distributed across all disks

◆ RAID6

◆ Uses Reed–Solomon error correction, allowing the loss
of 2 disks in the array without data loss

http://en.wikipedia.org/wiki/RAID

http://en.wikipedia.org/wiki/RAID

36

Data Technologies – CERN School of Computing 2024

Reminder: types of RAID

◆ RAID0

◆ Disk striping

◆ RAID1

◆ Disk mirroring

◆ RAID5

◆ Parity information is distributed across all disks

◆ RAID6

◆ Uses Reed–Solomon error correction, allowing the loss
of 2 disks in the array without data loss

http://en.wikipedia.org/wiki/RAID

http://en.wikipedia.org/wiki/RAID

37

Data Technologies – CERN School of Computing 2024

Reminder: types of RAID

◆ RAID0

◆ Disk striping

◆ RAID1

◆ Disk mirroring

◆ RAID5

◆ Parity information is distributed across all disks

◆ RAID6

◆ Uses Reed–Solomon error correction, allowing the loss
of 2 disks in the array without data loss

http://en.wikipedia.org/wiki/RAID

http://en.wikipedia.org/wiki/RAID

38

Data Technologies – CERN School of Computing 2024

Reminder: types of RAID

◆ RAID0

◆ Disk striping

◆ RAID1

◆ Disk mirroring

◆ RAID5

◆ Parity information is distributed across all disks

◆ RAID6

◆ Uses Reed–Solomon error correction, allowing the loss
of 2 disks in the array without data loss

http://en.wikipedia.org/wiki/RAID

http://en.wikipedia.org/wiki/RAID

39

Data Technologies – CERN School of Computing 2024

Understanding error correction

◆ A line is defined by 2 numbers: a, b

◆ (a, b) is the information

◆ y = ax + b

◆ Instead of transmitting a and b, transmit some
points on the line at known abscissa. 2 points
define a line. If I transmit more points, these
should be aligned.

2 points 3 points 4 points

40

Data Technologies – CERN School of Computing 2024

2 or 3 points instead of 42 points instead of 31 point instead of 2

information lost

If we lose some information …

◆ If we transmit more than 2 points, we can lose
any point, provided the total number of point left
is >= 2

?

41

Data Technologies – CERN School of Computing 2024

If we have an error …

◆ If there is an error, I can detect it if I have
transmitted more than 2 points, and correct it if
have transmitted more than 3 points

Information lost

(and you do not notice)
Error detection

Information is lost

(and you notice)

Error correction

Information is recovered

?

42

Data Technologies – CERN School of Computing 2024

If you have checksumming on data …

◆ You can detect errors by verifying the consistency
of the data with the respective checksums. So you
can detect errors independently.

◆ … and use all redundancy for error correction

Information lost

(and you notice)
Error correction

Information is recovered

2 Error corrections possible

Information is recovered

?

43

Data Technologies – CERN School of Computing 2024

Reed–Solomon error correction …

◆ .. is an error-correcting code that works by oversampling (by n points)
a polynomial constructed from the data

◆ Any m distinct points uniquely determine a polynomial of degree, at
most, m − 1

◆ The sender determines the polynomial (of degree m − 1), that
represents the m data points. The polynomial is "encoded" by its
evaluation at n+m points. If during transmission, the number of
corrupted values is < n the receiver can recover the original
polynomial.

◆ Implementation examples:

◆ n = 0 no redundancy

◆ n = 1 is Raid 5 (parity)

◆ n = 2 is Raid 6 (Reed Solomon, double / diagonal parity)

◆ n = 3 is … (Triple parity)

http://en.wikipedia.org/wiki/Reed-Solomon

http://en.wikipedia.org/wiki/Reed-Solomon

44

Data Technologies – CERN School of Computing 2024

Reed–Solomon (simplified) Example

◆ 4 Numbers to encode: { 1, -6, 4, 9 } (m=4)

◆ polynomial of degree 3 (m − 1):

◆ We encode the polynomial with n + m = 7 points
 { -2, 9, 8, 1, -6, -7, 4 }

y = x3 - 6x2 + 4x + 9

45

Data Technologies – CERN School of Computing 2024

Reed–Solomon (simplified) Example

◆ To reconstruct the polynomial, any 4 points are enough: we can lose
any 3 points.

◆ We can have an error on any 2 points that can be corrected: We need
to identify the 5 points “aligned” on the only one polynomial of
degree 3 possible

http://kernel.org/pub/linux/kernel/people/hpa/raid6.pdf

http://kernel.org/pub/linux/kernel/people/hpa/raid6.pdf

46

Data Technologies – CERN School of Computing 2024

Error detection vs error correction

◆ With Reed-Solomon:

◆ If the number of corrupted values is = n we can only
detect the error

◆ If the number of corrupted values is < n we can correct
the error

◆ However, by adding a checksum or hash on each
point, we can individually identify the corrupted
values

◆ If checksum has been added, Reed-Solomon can
correct corrupted values ≤ n

47

Data Technologies – CERN School of Computing 2024

Reliability calculations

◆ With RAID, the final reliability depends on several
parameters

◆ The reliability of the hardware

◆ The type of RAID

◆ The number of disks in the set

◆ Already this gives lot of flexibility in implementing
arbitrary reliability

48

Data Technologies – CERN School of Computing 2024

Raid 5 reliability

◆ Disk are regrouped in sets of equal size. If c is the capacity of the
disk and n is the number of disks, the sets will have a capacity of

 c (n-1)
 example: 6 disks of 1TB can be aggregated to a “reliable” set of 5TB

◆ The set is immune to the loss of 1 disk in the set. The loss of 2
disks implies the loss of the entire set content.

49

Data Technologies – CERN School of Computing 2024

Some calculations for Raid 5
◆ Disks MTBF is between 3 x 105 and 1.2 x 106 hours

◆ Replacement time of a failed disk is < 4 hours

◆ Probability of 1 disk to fail within the next 4 hours

5

5
103.1

103

4 −
= =

=

MTBF

Hours
Pf

50

Data Technologies – CERN School of Computing 2024

Some calculations for Raid 5
◆ Disks MTBF is between 3 x 105 and 1.2 x 106 hours

◆ Replacement time of a failed disk is < 4 hours

◆ Probability of 1 disk to fail within the next 4 hours

◆ Probability to have a failing disk in the next 4 hours in a 15 PB computer centre (15’000
disks)

5

5
103.1

103

4 −
= =

=

MTBF

Hours
Pf

18.0)1(1 15000

15000 =−−= ff PP

51

Data Technologies – CERN School of Computing 2024

Some calculations for Raid 5
◆ Disks MTBF is between 3 x 105 and 1.2 x 106 hours

◆ Replacement time of a failed disk is < 4 hours

◆ Probability of 1 disk to fail within the next 4 hours

◆ Probability to have a failing disk in the next 4 hours in a 15 PB computer centre (15’000
disks)

◆ Imagine a Raid set of 10 disks. Probability to have one of the remaining disk failing
within 4 hours

5

5
103.1

103

4 −
= =

=

MTBF

Hours
Pf

18.0)1(1 15000

15000 =−−= ff PP

49

9 102.1)1(1 −=−−= ff PP

p(A and B) = p(A) * p(B/A)

if A,B independent : p(A) * p(B)

52

Data Technologies – CERN School of Computing 2024

Some calculations for Raid 5
◆ Disks MTBF is between 3 x 105 and 1.2 x 106 hours

◆ Replacement time of a failed disk is < 4 hours

◆ Probability of 1 disk to fail within the next 4 hours

◆ Probability to have a failing disk in the next 4 hours in a 15 PB computer centre (15’000
disks)

◆ Imagine a Raid set of 10 disks. Probability to have one of the remaining disk failing
within 4 hours

◆ However the second failure may not be independent from the first one. There is no
way to calculate this probability ! We can arbitrarily increase it by two orders of
magnitude to account the dependencies (over temperature, high noise, EMP, high
voltage, faulty common controller,)

5

5
103.1

103

4 −
= =

=

MTBF

Hours
Pf

18.0)1(1 15000

15000 =−−= ff PP

49

9 102.1)1(1 −=−−= ff PP

0119.0)1(1 900

9 =−−= fcorrectedf PP

p(A and B) = p(A) * p(B/A)

if A,B independent : p(A) * p(B)

53

Data Technologies – CERN School of Computing 2024

Some calculations for Raid 5
◆ Disks MTBF is between 3 x 105 and 1.2 x 106 hours

◆ Replacement time of a failed disk is < 4 hours

◆ Probability of 1 disk to fail within the next 4 hours

◆ Probability to have a failing disk in the next 4 hours in a 15 PB computer centre (15’000
disks)

◆ Imagine a Raid set of 10 disks. Probability to have one of the remaining disk failing
within 4 hours

◆ However the second failure may not be independent from the first one. There is no
way to calculate this probability ! We can arbitrarily increase it by two orders of
magnitude to account the dependencies (over temperature, high noise, EMP, high
voltage, faulty common controller,)

◆ Probability to lose computer centre data in the next 4 hours

◆ Probability to lose data in the next 10 years

5

5
103.1

103

4 −
= =

=

MTBF

Hours
Pf

18.0)1(1 15000

15000 =−−= ff PP

49

9 102.1)1(1 −=−−= ff PP

4

915000 1016.6 −== correctedffloss PPP

110-1)1(1 -21636510

10 =−−=

lossyrsloss PP

0119.0)1(1 900

9 =−−= fcorrectedf PP

p(A and B) = p(A) * p(B/A)

if A,B independent : p(A) * p(B)

54

Data Technologies – CERN School of Computing 2024

Raid 6 reliability

◆ Disk are regrouped in sets of arbitrary size. If c is the capacity of
the disk and n is the number of disks, the sets will have a capacity
of

 c (n-2)
 example: 12 disks of 1TB can be aggregated to a “reliable” set of 10TB

◆ The set is immune to the loss of 2 disks in the set. The loss of 3
disks implies the loss of the entire set content.

55

Data Technologies – CERN School of Computing 2024

Same calculations for Raid 6

◆ Probability of 1 disk to fail within the next 4 hours

◆ Imagine a raid set of 10 disks. Probability to have one of the remaining 9 disks
failing within 4 hours (increased by two orders of magnitudes)

◆ Probability to have another of the remaining 8 disks failing within 4 hours
(also increased by two orders of magnitudes)

◆ Probability to lose data in the next 4 hours

◆ Probability to lose data in the next 10 years

5

5
103.1

103

4 −
= =

=

MTBF

Hours
Pf

2900

9 1019.1)1(1 −=−−= ff PP

5

989915000 1029.2 −== fffloss PPPP

394.0)1(1 636510

10 =−−=

lossyrsloss PP

2800

8 1006.1)1(1 −=−−= ff PP

56

Data Technologies – CERN School of Computing 2024

s

Arbitrary reliability

◆ RAID is “disks” based. This lacks of granularity

◆ For increased flexibility, an alternative would be to
use files ... but files do not have constant size

◆ File “chunks” (or “blocks”) is the solution
◆ Split files in chunks of size “s”

◆ Group them in sets of “m” chunks

◆ For each group of “m” chunks, generate “n” additional
chunks so that
◆ For any set of “m” chunks chosen among the “m+n” you can

reconstruct the missing “n” chunks

◆ Scatter the “m+n” chunks on independent storage

n

s

m

57

Data Technologies – CERN School of Computing 2024

Arbitrary reliability with the “chunk”
based solution

◆ The reliability is independent form the size “s” which is arbitrary.

◆ Note: both large and small “s” impact performance

◆ Whatever the reliability of the hardware is, the system is immune to
the loss of “n” simultaneous failures from pools of “m+n” storage
chunks

◆ Both “m” and “n” are arbitrary. Therefore arbitrary reliability can
be achieved

◆ The fraction of raw storage space loss is n / (n + m)

◆ Note that space loss can also be reduced arbitrarily by increasing m

◆ At the cost of increasing the amount of data loss if this would ever
happen

58

Data Technologies – CERN School of Computing 2024

Analogy with the gambling world
◆ We just demonstrated that you can achieve “arbitrary reliability” at the

cost of an “arbitrary low” amount of disk space. This is possible because
you increase the amount of data you accept loosing when this rare event
happens.

◆ In the gambling world there are several playing schemes that allows you
to win an arbitrary amount of money with an arbitrary probability.

◆ Example: you can easily win 100 Euros at > 99 % probability ...
◆ By playing up to 7 times on the “Red” of a French Roulette and doubling the bet until

you win.

◆ The probability of not having a “Red” for 7 times is (19/37)7 = 0.0094)

◆ You just need to take the risk of loosing 12’700 euros with a 0.94 % probability

Amount Win Lost

Bet Cumulated Probability Amount Probability Amount

100 100 48.65% 100 51.35% 100

200 300 73.63% 100 26.37% 300

400 700 86.46% 100 13.54% 700

800 1500 93.05% 100 6.95% 1500

1600 3100 96.43% 100 3.57% 3100

3200 6300 98.17% 100 1.83% 6300

6400 12700 99.06% 100 0.94% 12700

59

Data Technologies – CERN School of Computing 2024

Practical comments

◆ n can be …

◆ 1 = Parity

◆ 2 = Parity + Reed-Solomon, double parity

◆ 3 = Reed Solomon, ZFS triple parity

◆ m chunks of any (m + n) sets are enough to obtain the information. Must be saved on
independent media

◆ Performance can depend on m (and thus on s, the size of the chunks): The larger m is,
the more the reading can be parallelized

◆ Until the client bandwidth is reached

◆ For n > 2 Reed Solomon has a computational impact affecting performances

◆ Alternate encoding algorithms are available requiring z chunks to reconstruct the
data, being m < z < m+n (see example later on with LDPC).

◆ These guarantees high performance at the expenses of additional storage. When m=z
we fall back in the “optimal” storage scenario

n=4

m=6

http://blogs.sun.com/ahl/entry/triple_parity_raid_z

z=7

http://blogs.sun.com/ahl/entry/triple_parity_raid_z

61

Data Technologies – CERN School of Computing 2024

Chunk transfers

◆ Among many protocols, Bittorrent is the most popular

◆ An SHA1 hash (160 bit digest) is created for each chunk

◆ All digests are assembled in a “torrent file” with all relevant metadata
information

◆ Torrent files are published and registered with a tracker which
maintains lists of the clients currently sharing the torrent’s chunks

◆ In particular, torrent files have:

◆ an "announce" section, which specifies the URL of the tracker

◆ an "info" section, containing (suggested) names for the files, their
lengths, the list of SHA-1 digests

◆ Reminder: it is the client’s duty to reassemble the initial file and
therefore it is the client that always verifies the integrity of the data
received

http://en.wikipedia.org/wiki/BitTorrent_(protocol)

http://en.wikipedia.org/wiki/BitTorrent_(protocol)

62

Data Technologies – CERN School of Computing 2024

Reassembling the chunks

Data reassembled

directly on the client

(bittorrent client)

Reassembly done by

the data management

infrastructure

Middleware

63

Data Technologies – CERN School of Computing 2024

Ensure integrity, identify corruptions

◆ You must be able to identify broken files

◆ A hash is required for every file.

◆ You must be able to identify broken chunks

◆ A hash for every chunk (example SHA1 160 bit digest) guarantees chunks
integrity.

◆ It tells you the corrupted chunks and allows you to correct n errors (instead
of n-1 if you would not know which chunks are corrupted)

n

s

m

hash or checksum

File hash

64

Data Technologies – CERN School of Computing 2024

Chunk size and physical blocks

◆ The storage overhead of the checksum is typically of few hundred bytes and
can be easily neglected compared to the chunk size that is of few megabytes.

◆ To guarantee a high efficiency in transferring the chunks is essential that the
sum of the chunk size with its checksum is an exact multiple or divisor of the
physical block size of the storage

◆ Avoid at all cost is to choose a chunk size equal to the physical disk block size
leaving no space to save the checksum in the same physical block.

s

Correct chunk size (fits with checksum in phys.block)

Physical block size incorrect chunk size (requires 2 phys.block)

65

Data Technologies – CERN School of Computing 2024

Types of arbitrary reliability (summary)

◆ Plain (reliability of the service = reliability of the hardware)

66

Data Technologies – CERN School of Computing 2024

Types of arbitrary reliability (summary)

◆ Plain (reliability of the service = reliability of the hardware)

◆ Replication

◆ Reliable, maximum performance, but heavy storage overhead

◆ Example: 3 copies, 200% overhead

checksum

100%

300%{
Any of the 3 copies is

enough to reconstruct

the data

67

Data Technologies – CERN School of Computing 2024

Types of arbitrary reliability (summary)

◆ Double parity / Diagonal parity

◆ Example 4+2, can lose any 2, remaining 4 are enough to reconstruct, only 50 %
storage overhead

checksum

Data 100%

Storage 150%

Any 4 of the 6 chunks

can reconstruct the data

68

Data Technologies – CERN School of Computing 2024

Types of arbitrary reliability (summary)

◆ Plain (reliability of the service = reliability of the hardware)

◆ Replication

◆ Reliable, maximum performance, but heavy storage overhead

◆ Example: 3 copies, 200% overhead

◆ Reed-Solomon, double, triple parity, NetRaid5, NetRaid6

◆ Maximum reliability, minimum storage overhead

◆ Example 10+3, can lose any 3, remaining 10 are enough to reconstruct, only 30 %
storage overhead

checksum

100% 130%

Any 10 of the 13 chunks

are enough to

reconstruct the data

69

Data Technologies – CERN School of Computing 2024

Types of arbitrary reliability (summary)

◆ Plain (reliability of the service = reliability of the hardware)

◆ Replication

◆ Reliable, maximum performance, but heavy storage overhead

◆ Example: 3 copies, 200% overhead

◆ Reed-Solomon, double, triple parity, NetRaid5, NetRaid6

◆ Maximum reliability, minimum storage overhead

◆ Example 10+3, can lose any 3, remaining 10 are enough to reconstruct, only 30 %
storage overhead

◆ Low Density Parity Check (LDPC) / Fountain Codes / Raptor Codes

◆ Excellent performance, more storage overhead

◆ Example: 8+6, can lose any 3, remaining 11 are enough to reconstruct, 75 %
storage overhead (See next slide)

70

Data Technologies – CERN School of Computing 2024

Example: 8+6 LDPC

checksum

100%

(original

data size)
175%

(total size

on disk)

Any 11 of the 14 chunks

are enough to

reconstruct the data

using only XOR

operations (very fast)

0 .. 7: original data

8 .. 13: data xor-ed following the arrows in the graph

138%

(min size required

to reconstruct)

You are allowed to

lose any 3 chunks (21 %)

71

Data Technologies – CERN School of Computing 2024

Types of arbitrary reliability (summary)

◆ Plain (reliability of the service = reliability of the hardware)

◆ Replication

◆ Reliable, maximum performance, but heavy storage overhead

◆ Example: 3 copies, 200% overhead

◆ Reed-Solomon, double, triple parity, NetRaid5, NetRaid6

◆ Maximum reliability, minimum storage overhead

◆ Example 4+2, can lose any 2, remaining 4 are enough to reconstruct, 50 % storage
overhead

◆ Example 10+3, can lose any 3, remaining 10 are enough to reconstruct, 30 % storage
overhead

◆ Low Density Parity Check (LDPC) / Fountain Codes

◆ Excellent performance, more storage overhead

◆ Example: 8+6, can lose any 3, remaining 11 are enough to reconstruct, 75 % storage
overhead

◆ In addition to

◆ File checksums (available today)

◆ Block-level checksums (available today)

72

Data Technologies – CERN School of Computing 2024

Availability versus Reliability

◆ Reliability relates to the probability to loose data

◆ However, you can have service interruptions and temporary unavailability of data
without data loss

◆ Example of a real incident:

◆ “The file system corruption of lxfsrc2206 castorcms/default affected users in
several ways. At first tape recalls were attracted to the broken filesystem.
Afterwards, once the machine was put in draining mode, replications from the
machine were timing out. We have put machine in maintenance while it is
repaired so things look OK but for 3 CANBEMIGR files in the broken filesystem that
are still unavailable”

◆ Consequences

◆ High data reliability does not imply high service availability

◆ When hardware fails, the data on it becomes unavailable. It is a service failure

◆ When experiencing service failure, an intervention must happen as fast as
possible.

◆ Requires a piquet with engineers on call

◆ Draining and restore operations take lot of time, affecting also availability

73

Data Technologies – CERN School of Computing 2024

Example: High Availability with replication

◆ We have “sets” of T independent storage

◆ This example has T=6

◆ The storage pool is configured to replicate files R times, with R < T

◆ This example: R=3 every file is written 3 times on 3
independent storage out of the 6 available

◆ When a client read a file, any copy can be used

◆ Load can be spread across the multiple servers to ensure high
throughput (better than mirrored disks, and much better than
Raid 5 or Raid 6)

74

Data Technologies – CERN School of Computing 2024

Example scenario: hardware failure

◆ The loss of a storage component is detected. The storage component is
disabled automatically

◆ File Read requests can continue if R>1 (at least 1 replica), at reduced
throughput

◆ The example has R=3

◆ File Creation / Write requests can continue

◆ New files will be written to the remaining T – 1 = 6 – 1 = 5 storage
components

◆ File Delete request can continue

◆ File Write / Update requests can continue

◆ Either by just modifying the remaining replicas or by creating on the fly
the missing replica on another storage component

◆ Service operation continues despite hardware failure. (remember:
independent storage)

75

Data Technologies – CERN School of Computing 2024

Example scenario: failure response

◆ The disabled faulty storage is not used anymore

◆ There is “Spare Storage” that can be used to replace faulty storage

◆ manually or automatically

◆ The lost replicas are regenerated from the existing replicas

◆ Manually or automatically

Spare Storage

76

Data Technologies – CERN School of Computing 2024

Example scenario: draining a server

◆ To drain a server, just power it off

◆ Will be seen as faulty and disabled (it will not used anymore)

◆ The available “Spare Storage” will be used to replace faulty storage

◆ manually or automatically

◆ The lost replicas are regenerated from the existing replicas

◆ Manually or automatically

Spare Storage

77

Data Technologies – CERN School of Computing 2024

Spare Storage

Do you really want to waste spare storage ?

◆ Why would you keep spare storage unused ?

◆ Act in advance to deal with an expected failure or replacement

◆ Proactive replication of blocks/files in the spare strorage

◆ The number of replica (R=3) becomes a minimum.

◆ Some files have R=3, others R>3

◆ When a server fails, some files have R=2, others will have already R≥3

◆ you need to replicate only the files that have R=2

Number of Replicas
5

5

5

4

4

4

4

3

3

4

2

3

3

3

3

4

3

3

79

Data Technologies – CERN School of Computing 2024

Reliability and availability calculations

◆ We have redundancy. Service failure, requires multiple failures

◆ Prob(Service fail) = Prob (Failure 1 AND Failure 2)

◆ Reminder

◆ P(A and B) = P(A) x P(B/A)
[P(B/A) is higher than P(B) and difficult to calculate in the case of storage]

◆ if A,B are independent events: P(A and B) = P(A) x P(B)

◆ We must reduce all sources of dependencies across storages: disk controller, server,
network, data centre, power grid, etc …

◆ With storage dispersed on different servers (or data centres), we can reach
independent storage (within the service responsibility) and a major reliability increase

◆ Prob(Service fail) = Prob (Failure 1) x Prob (Failure 2)

◆ And we have a parameter R (nb of replicas) that can be adjusted arbitrarily

◆ Prob(Service fail) = Prob (Storage Failure)R

◆ Example: Prob (Storage Failure) = 10-4

◆ Prob(Service fail)R=1 = 10-4

◆ Prob(Service fail)R=2 = 10-8

◆ Prob(Service fail)R=3 = 10-12

◆ Prob(Service fail)R=4 = 10-16

80

Data Technologies – CERN School of Computing 2024

Service operation eased …

◆ Production cluster, 15 Server with 9 spare

◆ Server Failure (servers)

◆ New HW delivery (6 servers)

◆ Out of warranty (6 servers)

◆ End of life

Spare Storage

Production Storage

Failed Storage

End of life Storage

81

Data Technologies – CERN School of Computing 2024

Service operations

◆ Ensure that there is enough spare storage to cope with:

◆ Hardware failures

◆ Planned replacement

◆ No need to intervene timely when Hw fails

◆ Asynchronous interventions only

◆ No engineers on call or stand-by (piquet) needed

◆ Create and configure data pools

◆ Arbitrary level of services: Monitor reliability, availability and
performance and adapt the various parameters (storage size, T, R, …)
to optimize the operational experience and meet the service level
agreement

◆ Identify what responses can be automated and what needs to be
handled manually

82

Data Technologies – CERN School of Computing 2024

Agenda
◆ Introduction to data management

◆ Data Workflows in scientific computing

◆ Storage Models

◆ Data management components

◆ Name Servers and databases

◆ Data Access protocols

◆ Reliability
◆ Availability

◆ Access Control and Security
◆ Cryptography

◆ Authentication, Authorization, Accounting

◆ Scalability
◆ Cloud storage

◆ Block storage

◆ Analytics

◆ Data Replication

◆ Data Caching

◆ Monitoring, Alarms

◆ Quota

◆ Summary

83

Data Technologies – CERN School of Computing 2024

A quick introduction to Cryptography

Understanding cryptography is essential for data management

It is essential to understand concepts like “Hash”, “Digital signature”,

“Digitally signed data”, “Encrypted data”, “Certificate”, “Kerberos

Ticket”, “Ticket Granting Ticket”, …

84

Data Technologies – CERN School of Computing 2024

What does Cryptography solve?

◆ Confidentiality
◆ Ensure that nobody can get knowledge of what you transfer even

if listening the whole conversation
◆ Integrity

◆ Ensure that message has not been modified during the
transmission

◆ Authenticity, Identity, Non-repudiation
◆ You can verify that you are talking to the entity you think you are

talking to
◆ You can verify who is the specific individual behind that entity
◆ The individual behind that asset cannot deny being associated

with it

85

Data Technologies – CERN School of Computing 2024

Symmetric Encryption

“An intro to

PKI and few

deploy hints”

“AxCvGsmWe#4^,s

dgfMwir3:dkJeTsY8

R\s@!q3%”

“An intro to

PKI and few

deploy hints”

Clear-text input Clear-text outputCipher-text

Same key
(shared secret)

Encryption Decryption

DES, 3DES, AES DES, 3DES, AES

86

Data Technologies – CERN School of Computing 2024

1 1 0 1 1 1 0 0 1 0 0 0 1 0 1 1 0 0 0 1

Example: XOR function
XOR 0 1

0 0 1

1 1 0

Message

Key

Cipher 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1

0 1 1 1 0 0 1 1 1 0 0 1 1 1 00 1 1 1 0

1 1 0 1 1 1 0 0 1 0 0 0 1 0 1 1 0 0 0 1

Secure if Key length = Message Length

cipher

Key

Message

1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1

0 1 1 1 0 0 1 1 1 0 0 1 1 1 00 1 1 1 0

Encryption

Decryption

87

Data Technologies – CERN School of Computing 2024

Asymmetric Encryption

“An intro to

PKI and few

deploy hints”

“Py75c%bn&*)9|f

De^bDzjF@g5=&

nmdFgegMs”

“An intro to

PKI and few

deploy hints”

Clear-text Input Clear-text OutputCipher-text

Different keys

Encryption Decryption

RSARSA

88

Data Technologies – CERN School of Computing 2024

Asymmetric Encryption

◆ Things to remember

◆ The relation between the two keys is unknown and from one key
you cannot gain knowledge of the other, even if you have access
to clear-text and cipher-text

◆ The two keys are interchangeable. All algorithms make no
difference between public and private key. When a key pair is
generated, any of the two can be public or private (in theory but
not in practice)

g$5knvMd’rk

vegMs”

Clear

text

?
Encryption

I like

apples

4DfghTy7%8

9HfrcF%7g

Ms3dr%gSD

TF6Huy&”

3fR6tg^bn,>o

7y3EdsQ

duJn64Dvn<.

:kh%dw@

The dog

is white

We came

today

Don’t

Smoke

?

89

Data Technologies – CERN School of Computing 2024

What “Cracking” means ...

◆ Cracking Asymmetric encryption is like solving a (difficult) mathematical
problem that is entirely defined
◆ Find x, y so that

x * y = 5549139029240772017554613865259030307060771696148489

◆ (there is only one answer, see next slides)

◆ Cracking Symmetric encryption requires a way to verify that your
“supposed” decryption is correct
◆ Guessing the message may rely on supposed redundancy

◆ Compression is important because it removes redundancy

marafiki zangu,

mimi ni njaa na kiu
ciphertext

Decryption

?

90

Data Technologies – CERN School of Computing 2024

Cracking symmetric encryptions

Uncompressed message
(redundancy may appear in the ciphertext)

Compressed message – no redundancy
(in the original ciphertext)

Hmmm … could be this one

Ms3dr%g6Huy&”Er sttove ypfsu ?

4DfghTy9H%7gEr sttove ypfsu ?

We arrive todayEr sttobe ypfsu ?

duJ64.:k%dw@Er sttove ypfsu ?

j54DfghTy7%4Tf*6#dfG ? 453df65gdfD43id

DdMs3dr%gS4Tf*6#dfG ? eDt5&53@gdfR%

8eAHfrF%7g4Tf*6#dfG ? eDtd5$^87rb((hg

4Dvn<.:kh%4Tf*6#dfG ? #35@135^4Dddg

Only brute force attacksDictionary attacks possible

91

Data Technologies – CERN School of Computing 2024

Cracking asymmetric encryption …

◆ Cracking asymmetric encryption is like solving a (difficult)
mathematical problem that is entirely defined

◆ Example: Find x, y so that
◆ x * y = 5549139029240772017554613865259030307060771696148489

◆ (Answer: 2833419889721787128217599, 195845982777569926302400511)

◆ Asymmetric encryption security relies on the fact that some easy
calculations are computationally difficult to reverse

◆ unless you have a hint (that you find in the private key)

◆ RSA: Easy to multiply, difficult to factorize

◆ Diffie-Hellman (DH), Elliptic Curve Cryptography (ECC):
exponentiation is easy, logarithm calculation is difficult in some
groups

Discrete logarithm problem

𝑦 = 𝑔𝑥 mod 𝑝

92

Data Technologies – CERN School of Computing 2024

Increasing key Length

Computing effort

to solve the problem

(i.e. computing effort

to crack the encryption)
Forward algorithm:

Difficulty increases linearly

Backward algorithm:

Difficulty increases exponentially

To keep the problem non-reversible,

computing power need to be invested

in the forward process

◆ To ensure that reversing the algorithm is difficult, the more calculation you
spend in the in the forward algorithm, the more you make it difficult to
reverse
◆ This explains why asymmetric encryption is always slow compared to the symmetric

one.

◆ A race between guns and armors ...
In

c
re

a
s
in

g
 e

ff
o

rt

93

Data Technologies – CERN School of Computing 2024

Want to take the challenge ?

◆ Find any x and y so that
x * y = 25195908475657893494027183240048398571429282126204032027
777137836043662020707595556264018525880784406918290641249515082
189298559149176184502808489120072844992687392807287776735971418
347270261896375014971824691165077613379859095700097330459748808
428401797429100642458691817195118746121515172654632282216869987
549182422433637259085141865462043576798423387184774447920739934
236584823824281198163815010674810451660377306056201619676256133
844143603833904414952634432190114657544454178424020924616515723
350778707749817125772467962926386356373289912154831438167899885
040445364023527381951378636564391212010397122822120720357

This is the RSA 2048 bit challenge, it has 617 digits 𝑙𝑜𝑔10(22048) + 1

◆ If you find the solution you will be rewarded 200’000 USD (RSA-2048
challenge)

https://en.wikipedia.org/wiki/RSA_Factoring_Challenge

https://en.wikipedia.org/wiki/RSA_Factoring_Challenge

94

Data Technologies – CERN School of Computing 2024

Example: Confidentiality

Different keys

Recipient’s

public key

Recipient’s

private key

privpub

Encryption Decryption

“An intro to

PKI and few

deploy hints”

“Py75c%bn&*)9|f

De^bDzjF@g5=&

nmdFgegMs”

“An intro to

PKI and few

deploy hints”

Clear-text Input Clear-text OutputCipher-text

95

Data Technologies – CERN School of Computing 2024

Example: Authenticity

Different keys

Sender’s

private key

Sender’s

public key

privpub

Encryption Decryption

“An intro to

PKI and few

deploy hints”

“Py75c%bn&*)9|f

De^bDzjF@g5=&

nmdFgegMs”

“An intro to

PKI and few

deploy hints”

Clear-text Input Clear-text OutputCipher-text

96

Data Technologies – CERN School of Computing 2024

Data Integrity

◆ A problem we have been facing at CERN since the use of
computers: avoid data corruption or data changes.

◆ Ensure that reference, immutable data is unchanged over
its entire lifetime and that eventual multiple copies are
kept consistent
◆ Multiple causes can trigger loss of data integrity: media failure,

data movements, software errors, malicious intent, human errors,
...

◆ The traditional solution to verify data integrity is the use
of ‘checksums’

97

Data Technologies – CERN School of Computing 2024

Checksums

◆ A checksum is a fixed-sized value derived from a block of
data for the purpose of detecting errors

◆ Example:

◆ Summing the values of the bytes and storing the modulo
of the results in a single byte (8-bit) is an example of a
particular weak checksum
◆ Not immune to many common errors, example: byte swapping,

byte shifting, …

◆ In general, with a 8-bit checksum (0-255) there is a 1/256
probability that an error would pass undetected

Data 1 5 8 4 9 2 4 4 7 8 6 7 4 2 5 7 8 3 1 0 (check)sum 95

Data 1 5 8 4 9 2 4 4 8 7 6 7 4 2 5 7 8 3 1 0 (check)sum 95

Data 1 5 8 4 9 2 4 4 7 8 6 7 4 2 5 7 8 3 1 (check)sum 950

98

Data Technologies – CERN School of Computing 2024

Better definition for Checksums
◆ Any (small) modification in the data generates a (large) modification in the

resulting checksum. The computed result should be evenly distributed across
the possible values, especially for inputs that are similar

◆ Adler-32, CRC-32, CRC-64, …

◆ Within this scenario, the probability of data corruption being undetected can
be reduced by increasing the checksum size:

◆ With 32 bit checksums: 1/232 = 1/4294967296 = 2.32 x 10-10

◆ With 64 bit checksums: 1/264 = 1/1.84467E+19 = 5.42 x 10-20

◆ However …

◆ checksums can be forged easily and are unsafe for protecting against intentional
modification

Data 1 5 8 4 9 2 4 4 7 8 6 7 4 2 5 7 8 3 1 0 (check)sum 95

Data 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 5 (check)sum

Original data

Tampered data

Arbitrary data

Forged last byte to match checksum

95

99

Data Technologies – CERN School of Computing 2024

Are checksums enough to ensure integrity ?

◆ Yes, if the storage architecture prevents intentional
data tampering …

◆ With the advantage that checksums are very fast to compute

◆ However, it may be better to calculate a cryptographic
hash, which has more stringent requirements:

◆ It is computationally unfeasible to construct an input that
produces a given hash. Hashes cannot be reversed.

Data 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 ? Hash 2E4B

Arbitrary data

Computationally impossible to find data to match the given the hash
Even more difficult forge a subset of the data to match the given hash

100

Data Technologies – CERN School of Computing 2024

Def: Cryptographic Hash Functions

◆ Same properties as checksums: An efficiently computable transformation
that returns a fixed-size string, which is a short representation of the data
from which it was computed
◆ Any (small) modification in the data generates a modification in the result

◆ The computed result should be evenly distributed across the possible values, especially for inputs
that are similar

◆ With one additional requirement: it must be:
◆ Impossible to find a data that matches a given hash

◆ Impossible to find “collisions”, where two different data have the same hash

Data or message or file

Hash

hash

function

SHA, MD5

This is the

document

content
A249F45B

SHA1 has 160 bits, more than 1048 values
SHA-256 has > 1077 values
SHA-512 has > 10154 values

101

Data Technologies – CERN School of Computing 2024

However the problem is not solved

◆ Hashes are still unsafe for protecting against intentional
modifications
◆ If a person can modify the data, he can also recalculate and

modify the hash

◆ So the hash must contain a proof of the identity that
calculated it. This is achieved by encrypting it. The entity
that decrypts it will be able to verify this identity.
◆ This is called a digital signature

Data 1 5 8 4 9 2 4 4 7 8 6 7 4 2 5 7 8 3 1 0 hash 23ABD38C

Data 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 5

Original data

Tampered data

Arbitrary data

Forged data and hash recalculated to match data

hash B3452D67

102

Data Technologies – CERN School of Computing 2024

What is a Digital Signature ?

◆ We need a way to guarantee the integrity of our
data if the attacker is able to modify both data
and the hash.

◆ A digital signature solves this problem

Data 1 5 8 4 9 2 4 4 7 8 6 7 4 2 5 7 8 3 1 0 hash 23ABD3

Original data

Data 1 5 8 4 9 2 4 4 7 8 6 7 4 2 5 7 8 3 1 0 Signature 454FD6

Digitally signed document data

Asymmetric

Encryption

private

103

Data Technologies – CERN School of Computing 2024

Creating a Digital Signature

3kJfgf*£$&Py75c%bn

This is the

document

created by

Alice

Message or File Digital SignatureMessage Digest

Calculate a short message

digest from even a long input

using a one-way message

digest function (hash)

private key

of person

signing

priv

Generate

Hash

SHA, MD5

Asymmetric

Encryption

RSA

This is the

document

created by

Alice
3kJfgf*£$&

Signed

Document

104

Data Technologies – CERN School of Computing 2024

Verifying a Digital Signature

This is the

document

created by

Alice

3kJfgf*£$&

Signed

Document

Py75c%bn

Message Digest

Generate

Hash

Alice's public key

(from certificate)

Asymmetric

Decryption

pub

Digital

Signature

Py75c%bn

? Compare ?

105

Data Technologies – CERN School of Computing 2024

23ABD3

Why digital signatures ?

◆ The digital signature solves the initial integrity
problem and prevents all tampering attempts

◆ Because the attacker needs knowledge of the
signatory private key to regenerate a digital signature

Data 1 5 8 4 9 2 4 4 7 8 6 7 4 2 5 7 8 3 1 0 signature 23ABD3

Data 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 5

Original data

Tampered data

signature

Data 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 5 signature B34527

Hash mismatch

Public key decryption fails

106

Data Technologies – CERN School of Computing 2024

Example: SSL (simplified)

Priv

pub Priv

pub

Clear text

Encrypt

Cipher 1

Encrypt

Cipher 2

Transmission over the public network

Cipher 2

Cipher 1

Decrypt

Clear text

Decrypt

pub

◆ Ensures confidentiality

◆ And integrity if digitally

signed

◆ depending on how public key

are exchanged

◆ Authenticity, Identity, Non-

repudiation

pub

◆ In practice, the real SSL protocol uses in hybrid encryption

◆ Why ?

107

Data Technologies – CERN School of Computing 2024

Real World: Hybrid Encryption
(typical for encrypted data storage)

Clear-text
message

Randomly-Generated

symmetric “session” key

Symmetrically

Encrypted

message

Symmetric

Encryption

Digital

Envelope

Recipient’s

public key

Asymmetric

Encryption

of session key

Repeat as necessary Digital

Envelope
Public key of

other recipient

or recovery agent

Asymmetric

Encryption

of session key

ENCRYPTED

DOCUMENT

108

Data Technologies – CERN School of Computing 2024

Real World: Hybrid Decryption

Symmetrically

Encrypted

message

Clear-text
message

Symmetric

Decryption

Digital

Envelope

ENCRYPTED

DOCUMENT

Digital

Envelope

Digital

Envelope

Asymmetric

decryption

of session key

Private key of

the recipient

Take the appropriate digital

envelope containing the

“session” key encrypted

using recipient’s public key

“session” key is

decrypted using the

recipient private key

UNENCRYPTED

DOCUMENT

109

Data Technologies – CERN School of Computing 2024

Cryptography Security

◆ Kerckhoff’s Principle

◆ The security of the encryption scheme must depend only on the
secrecy of the key and not on the secrecy of the algorithms

◆ The algorithms should be known and published

◆ They should have resisted to hacking for quite some time

◆ They are all based on the fact that some calculations are difficult
to reverse (probabilistic impossible)

◆ But design and key length matter (brute force attacks)

◆ This means that DES, 3DES, AES , RSA, ECC, MD5, SHA are not
immune to attacks

◆ They all have a certain strength you should be aware of

110

Data Technologies – CERN School of Computing 2024

Things to remember ...

◆ Digital signed documents are NOT encrypted.

◆ Anyone who has access to the document can read it

◆ No knowledge of any key is necessary to read the document

◆ Anyone can verify the integrity and the authenticity of the
document

◆ The knowledge of the public key of the signatory is necessary
for the verification

◆ If the document is modified, it needs to be signed again

◆ Knowledge of the private key required

◆ Q: how do you get the public key of the signatory ?

◆ See later: Using its certificate which is also a signed document

This is the

document

content

Signed

Document

G5^gj&J8

Signed

Document

The

public key

of CERN

is

eE3$%dt

w3Eg^&4

CERN Certificate

(Signed by an authority that you trust)

111

Data Technologies – CERN School of Computing 2024

Agenda
◆ Introduction to data management

◆ Data Workflows in scientific computing

◆ Storage Models

◆ Data management components

◆ Name Servers and databases

◆ Data Access protocols

◆ Reliability
◆ Availability

◆ Access Control and Security
◆ Cryptography

◆ Authentication, Authorization, Accounting

◆ Scalability
◆ Cloud storage

◆ Block storage

◆ Analytics

◆ Data Replication

◆ Data Caching

◆ Monitoring, Alarms

◆ Quota

◆ Summary

113

Data Technologies – CERN School of Computing 2024

Is cryptography enough ?
◆ We just showed that cryptography solves the problem of confidentiality,

Integrity, (Authenticity, Identity, Non-repudiation)
◆ How do we share secrets (symmetric encryption) and public keys (asymmetric encryption) safely

on the internet ?

◆ People need to met in a private place and exchange keys, or they need help from a third
party who can guarantee the other's key validity.

◆ PKI is one technology to share and distribute public keys (asymmetric encryption)

◆ Kerberos another technology to share and distribute shared secrets (symmetric
encryption)

115

Data Technologies – CERN School of Computing 2024

PKI = Public Key Infrastructure

◆ “A technology to implement and manage E-Security” A. Nash, “PKI”,
RSA Press

◆ My definition of PKI

◆ “Public Key Infrastructure provides the technologies to enable
practical distribution of public keys”

◆ Using CERTIFICATES

◆ PKI is a group of solutions for :

◆ Key generation

◆ key distribution, certificate generation

◆ Key revocation, validation

◆ Managing trust

116

Data Technologies – CERN School of Computing 2024

◆ The simplest certificate just contains:

◆ A public key

◆ Information about the entity that is being
certified to own that public key

◆ … and the whole is

◆ Digitally signed by someone trusted (like
your friend or a CA)

◆ Somebody for which you ALREADY have the
public key

2wsR46%frd

EWWrswe(*^

$G*^%#%#

%DvtrsdFDfd

3%.6,7

What is a Certificate ?

pub

3kJfgf*£$&4d

ser4@358g6

*gd7dT

Certificate

This public

key belongs

to Alice

Digital

SignatureCan be a person, a computer, a

device, a file, some code,

anything …

117

Data Technologies – CERN School of Computing 2024

Verifying a Certificate

Signer (CA)

public key

pub

Asymmetric

Decryption
Py75c%bn

? Compare ?

2wsR46%frd

EWWrswe(*^

$G*^%#%#

%DvtrsdFDfd

3%.6,7

pub

3kJfgf*£$&4d

ser4@358g6

*gd7dT

Certificate

This public

key belongs

to Alice

Digital

Signature

Message Digest

Py75c%bn
Generate

Hash

118

Data Technologies – CERN School of Computing 2024

X.509 Certificate (simplified)

Who is the owner, CN=Alice,O=CERN,C=CH

The public key or info about it

Who has signed, O=CERN,C=CH

Serial Number

X.500 Subject

Extensions

X.500 issuer

Expiration date

Public Key

CA Digital Signature

Certificate

Info

See later why expiration date is important

Additional arbitrary information

… of the issuer, of course

119

Data Technologies – CERN School of Computing 2024

Certificate Validation

◆ When checking the digital signature you may have to “walk the path”
of all subordinate authorities until

◆ you reach the root ... or ... you reach an explicitly trusted
subordinate CA

Check DS of

Foobar

“In Foobar We Trust”

(installed root CA certificate)

Public key

Certificate

This public

key belongs

to Alice

CERN Digital

Signature

Issued by:

CERN

Public key

Certificate

This public

key belongs

to CERN

Foobar Digital

Signature

Issued by:

Foobar

Public key

Certificate

This public

key belongs

to Foobar

Foobar Digital

Signature

Issued by:

Foobar

Check DS of

CERN

120

Data Technologies – CERN School of Computing 2024

Authentication with Certificates

◆ Owning a Certificate of Alice does not mean that you are
Alice

◆ Owning a Certificate does not imply you are
authenticated

◆ How would you verify that the person who comes to you
pretending to be Alice and showing you a certificate of
Alice is really Alice ?

◆ You have to challenge her !

◆ Only the real Alice has the private key that goes in pair
with the public key in the certificate.

121

Data Technologies – CERN School of Computing 2024

Authentication with Certificates

◆ Bob gets Alice’s certificate

◆ He verifies its digital signature
◆ He can trust that the public key really belongs to Alice

◆ But is it Alice standing if front of him, or is that Michel ?

◆ Bob challenges Alice to encrypt for him a random phrase he
generated (“I like green tables with flowers”)

◆ Alice has (if she is the real Alice) the private key that matches the
certificate, so she responds (“deRf35D^&#dvYr8^*$@dff”)

◆ Bob decrypts this with the public key he has in the certificate (which
he trusts) and if it matches the phrase he just generated for the
challenge then it must really be Alice herself !

122

Data Technologies – CERN School of Computing 2024

Alice Bob

Certificate

(digitally signed)

Challenge

Response

pub Alice

Random phrase

(nonce)

nonce

pub

Encrypted with

123

Data Technologies – CERN School of Computing 2024

Traditional Human authentication
versus

Certificate authentication

◆ High Security Entrance

◆ Immigration

◆ Authentication for payments

124

Data Technologies – CERN School of Computing 2024

A comparison with real life

Exp 01-09
3243 7685 4667

cn=Bob,o=CERN

I trust you
I trust you

Exp 01-09
3243 7685 4667

Is the card valid ?I trust your card Is the cert valid ?I trust your cert

cn=Bob,o=CERN

Exp 01-09
3243 7685 4667

Is the card valid ?I trust your cardPIN code, please1234 You are the card owner ! Is the cert valid ?I trust your certEncrypt RND, pleaseE^dF#45 You are the cert owner !

Motorway Toll (2.10 €)

Shirt (20 €)

Notebook (1000 €)

It is all about managing risks !

cn=Bob,o=CERN

125

Data Technologies – CERN School of Computing 2024

Certificate Key Hierarchy
◆ Every time the private key is used to encrypt something, it is

somehow indirectly exposed.

◆ To limit the exposure, and to limit the impact and the cost of an
eventual compromise, key hierarchies and proxy certificates are used

Pub key

EDC4563E5456

Certificate

This public key

belongs to

Alice

CERN Signing CA

Digital Signature

Issued by:

CERN Signing CA

Pub key

65493E53A5326

Certificate

This public key

belongs to

CERN Signing CA

CERN Root CA

Digital Signature

Issued by:

CERN Root CA

Pub key

2E43FA4564C09

Certificate

This public key

belongs to

Alice (Proxy)

Alice

Digital Signature

Issued by:

Alice

Issued by Issued by

Pub key

B564A32687BC

Certificate

This public key

belongs to

CERN Root CA

CERN Root CA

Digital Signature

Issued by:

CERN RootCA

Issued by

LIFETIME

EXPOSURE

126

Data Technologies – CERN School of Computing 2024

Where should certificates be stored

◆ Certificates can be stored anywhere
◆ Store them in a file or a “dumb” memory-only smartcard

◆ You can publish them in your LDAP directory

◆ No need to protect Certificates
◆ ... from being tampered as they are digitally signed

◆ ... them from being read as they contain only public information

◆ Private keys that match the public key are confidential
◆ Loosing the private key = Loosing the identity

◆ Private keys should be stored in (at least) ...
◆ computers files, protected by pass phrases

◆ OS protected storage

◆ smartcards

127

Data Technologies – CERN School of Computing 2024

Certificates on Smartcards

◆ A “bad” smartcard is only a dumb memory chip
◆ Containing the Certificate and the private key

◆ Both readable: You must trust the machine reading your smartcard

◆ Better than saving everything to a file

◆ A “good” smartcard is more than a memory chip
◆ Contains the Certificate, readable

◆ Contains the private key but not readable from outside. However it
exposes a mechanism to challenge the knowledge of the private key by
allowing the encryption of random strings using the private key

◆ A “very good” smartcard
◆ May request the user to know a PIN code to execute any encryption

request

◆ (of course, now you have to protect the PIN code)

◆ May support biometric recognition instead of the pin code

In
c
re

a
s
e
d
 c

o
s
t

128

Data Technologies – CERN School of Computing 2024

Certificate Revocation

◆ (Private) keys get compromised, as a fact of life
◆ You or your CA issue a certificate revocation certificate

◆ Must be signed by the CA, of course
◆ And you do everything you can to let the world know that

you issued it. This is not easy
◆ Certificate Revocation Lists (CRL) are used
◆ They require that the process of cert validation actively

checks the CRL and keep it up-to-date
◆ It is a non scalable process
◆ Many people disable this function

◆ This explains why
◆ Every certificate has an expiration date
◆ Short expiration policies are important

129

Data Technologies – CERN School of Computing 2024

Certificate Renewal
◆ When the certificate is expired, the Certificate authority has two options when issuing a

new certificate:

◆ create a new certificate with a new expiration date using the same public key (so
that the user can continue to use the same private key he was using in the past)

◆ OR, force the new certificate to have a different public key

◆ The choice between the two options may depends on the “intended purpose” of the
certificate (which is written in the certificate)

◆ Example: Authentication, Signing or Encrypting

Public key

2E43FA4564C09

Certificate

This public key

belongs to Alice

Valid: Aug 2014

CERN Digital

Signature

Issued by: CERN

Public key

2E43FA4564C09

Certificate

This public key

belongs to Alice

Valid: Aug 2024

CERN Digital

Signature

Issued by: CERN

Public key

34D571A56C5FF

Certificate

This public key

belongs to Alice

Valid: Aug 2024

CERN Digital

Signature

Issued by: CERN

Expired

DIFFERENT keySAME key

OR

132

Data Technologies – CERN School of Computing 2024

Kerberos: An alternative to PKI

◆ Identical goals of PKI

◆ Advantages:

◆ Simpler to manage, keys managed automatically, Users
understand it better

◆ Forwardable authentication easier to implement

◆ Disadvantages

◆ Cross Domain Authentication and Domain Trusts more
difficult to implement

◆ Offline authentication difficult to implement

133

Data Technologies – CERN School of Computing 2024

Kerberos Basics

◆ Kerberos is an authentication protocol based on
conventional cryptography

◆ it relies on symmetrical cryptographic algorithms
that use the same key for encryption as for
decryption

◆ Different from PKI !

“An intro to PKI

and few deploy

hints”

“AxCvGsmWe#4^,sdgfM

wir3:dkJeTsY8R\s@!q3

%”

“An intro to PKI

and few deploy

hints”

Clear-text input Clear-text outputCipher-text

Same key
(shared secret)

Encryption Decryption

DES DES

134

Data Technologies – CERN School of Computing 2024

Basic principles
◆ There is an authority known as the Key Distribution Center (KDC). Every user shares a

secret key with the KDC, which allow him to communicate securely with the KDC

◆ Everybody trusts the KDC

◆ The secret master key is different for each user
◆ Two users have no direct way of verifying each other's identity

◆ The job of the KDC is to distribute a unique session key to each pair of users (security
principals) that want to establish a secure channel.
◆ Using symmetric encryption

KDC

trust trust

Ma

Mb
Ma

Mb

135

Data Technologies – CERN School of Computing 2024

A (simplified) Kerberos session

◆ Alice wants to communicate with Bob

◆ bob could be a server or a service

◆ Alice can communicate securely with the KDC, using symmetric
encryption and the shared secret (Master Key)

◆ Alice tells the KDC that she wants to communicate with Bob (known
to the KDC)

KDC

Alice

Bob
I want to talk to Bob

Ma

Mb

Ma

Mb

136

Data Technologies – CERN School of Computing 2024

(simplified) Kerberos session 2
◆ The KDC generates a unique random key for Alice and Bob (Kab)

◆ Two copies of Kab are sent back to Alice.

◆The first copy is sent encrypted using Alice's master key

◆The second copy of Kab is sent with Alice's name encrypted with Bob's master key. This
is known as the “kerberos ticket"

KDCAlice

Bob

Kab

Kab
Alice

Encrypted using

Encrypted using

Kab

I want to talk to Bob
Unique Key for Alice/Bob

communication

Ma

Mb

Ma

Mb

Mb

Ma

137

Data Technologies – CERN School of Computing 2024

What is the ticket ?

◆ The ticket is a message to Bob that only Bob can
decrypt

◆ "This is your KDC. Alice wants to talk to you, and here's
a session key that I've created for you and Alice to use.
Only you, me and Alice know the value of Kab, since I've
encrypted it with your respective master keys. If your
peer can prove knowledge of this key, then you can
safely assume it is Alice."

Kab
Alice Encrypted using

Mb

138

Data Technologies – CERN School of Computing 2024

How authentication could be done

◆ Alice sends the ticket to Bob. Bob takes the ticket and decrypts Kab

◆ Bob generates a “random phrase” (the challenge) that is sent back to Alice
◆ Alice encrypts the “random phrase” using Kab and send the results to Bob

◆ She proves that she knows Kab
◆ Bob has authenticated Alice
◆ The whole could be repeated to have Alice authenticating Bob (are you sure ?

Security !)
◆ But Kerberos doesn’t work that way ! It is smarter and anticipates the

challenge by encrypting the “current time”

Alice

Bob

Ticket

Kab

Ma

Mb

Challenge

Response

Challenge

Response

139

Data Technologies – CERN School of Computing 2024

How authentication could be done

◆ Alice sends the ticket to Bob. Bob takes the ticket and decrypts Kab

◆ Bob generates a “random phrase” (the challenge) that is sent back to Alice
◆ Alice encrypts the “random phrase” using Kab and send the results to Bob

◆ She proves that she knows Kab
◆ Bob has authenticated Alice
◆ The whole could be repeated to have Alice authenticating Bob (are you sure ?

Security !)
◆ But Kerberos doesn’t work that way ! It is smarter and anticipates the

challenge by encrypting the “current time”

Alice

Bob

Ticket

Kab

Ma

Mb

Challenge

Same Challenge sent back

Response

Same Response sent back

140

Data Technologies – CERN School of Computing 2024

Reflection vulnerability
◆ Consider a normal session between a client and server:

1. Client connects to Server.

2. Server sends a challenge to Client.

3. Client computes the response to the challenge and sends it to Server.

4. Server performs the same calculation as the Client using the credentials it has stored.

5. Server compares the response to its own calculated value. If the two match, the connection is
a success.

◆ During a Reflection attack, the session proceeds as follows:

1. The client (victim) initiates a connection to the server (attacker).

2. Here, the attacker's instead of sending a challenge to the victim it initiates a new connection
to the victim.

3. The victim generates a challenge for the inbound connection from the attacker.

4. The attacker takes the challenge received in Step 3 and sends it to the victim as the challenge
for the connection the victim initiated in Step 2.

5. The victim computes the response to the challenge and sends it to the attacker.

6. The attacker takes the response received in Step 5 and returns it to the victim as the
response to the connection initiated to the victim in Step 2.

141

Data Technologies – CERN School of Computing 2024

Kerberos authentication

◆ Alice sends the ticket to Bob

◆ Alice must also proof that she knows Kab

◆ She also sends her name and the current time, all encrypted with the session key Kab (this is called the
authenticator)

◆ Bob takes the ticket, decrypts it, and pulls Kab out. Then decrypts the authenticator
using Kab, and compares the name in the authenticator with the name in the ticket
◆ If the time is correct, this provides evidence that the authenticator was indeed encrypted with Kab

◆ Bob can also detect replays from attackers listening on the network where Alice, Bob, and the KDC are
conversing

◆ By rejecting authenticators with time already used

◆ By rejecting authenticators with the wrong time (question for the students: Why ?)

Alice

Bob

Kab

Kab
Alice

Encrypted using

Encrypted using

Alice, 22:34

Authenticator

Ticket

Kab

Mb

Ma

Mb

142

Data Technologies – CERN School of Computing 2024

Kerberos authentication

◆ Why encrypting the current time ?
◆ As the goal is to prove the knowledge of the shared secret (Kab), you can see

this action as a “challenge” on the knowledge of the shared secret (Kab):
◆ “prove that you know Kab by encrypting the current time for me”

◆ Why does time need to be synchronized ?
◆ To defeat replaying an earlier attempt, Bob needs to remember all past

times that have been previously used. As this approach does not scale, Bob
remembers only all times used in the past within a certain time interval
(example: "within five minutes") around his own time.

◆ If the time encrypted using the shared secret (Kab) is within his time interval,
Bob can be sure that this time has never been used before by comparing it
with all the recorded past times

◆ If the time encrypted using the shared secret (Kab) is outside his time
interval, Bob cannot be sure that this time has never been used before and
therefore he rejects the request … with a hint of what his time is (Bob’s time
isn't a secret)

143

Data Technologies – CERN School of Computing 2024

Mutual authentication

◆ Alice has proved her identity to Bob

◆ Now Alice wants Bob to prove his identity as well
◆ she indicates this in her request via a flag.

◆ After Bob has authenticated Alice, he takes the timestamp she sent, encrypts
it with Kab, and sends it back to Alice.

◆ Alice decrypts this and verifies that it's the timestamp she originally sent to
Bob
◆ She has authenticated Bob because only Bob could have decrypted the Authenticator she sent

◆ Bob sends just a piece of the information in order to demonstrate that he was able to decrypt
the authenticator and manipulate the information inside. He chooses the time because that is
the one piece of information that is sure to be unique in Alice's message to him

Alice

Bob Kab

Encrypted using22:34

Kab

Kab

Ma

Mb

144

Data Technologies – CERN School of Computing 2024

Kerberos Secure Communication

◆ Alice and Bob share now a unique secret Kab that
they use to communicate

Alice

Bob Kab

Encrypted using
Secure communication

channel between

Alice and Bob

Kab

Kab

145

Data Technologies – CERN School of Computing 2024

But real life is more complicated

◆ Real Kerberos includes an extra step for additional security
◆ When Alice first logs in, she actually asks the KDC for what is called a

"ticket granting ticket", or TGT.
◆ The TGT contains the session key (Kak) to be used by Alice in her

communications with the KDC throughout the day.
◆ This explains why when the TGT expires you have to renew it

◆ So when Alice requests a ticket for Bob, she actually sends to the KDC
her TGT plus an authenticator with her request.

◆ The KDC then sends back the Alice/Bob session key Kab encrypted
with Kak
◆ as opposed to using Alice's master key as described earlier
◆ Alice doesn't even need to remember her master key once she

receives the TGT (unless she wants automatic TGT renewal).

146

Data Technologies – CERN School of Computing 2024

Kerberos Key Hierarchy
◆ The session key (or short-term key). A session key is a secret key shared between two

entities for authentication purposes. The session key is generated by the KDC. Since it is a
critical part of the Kerberos authentication protocol, it is never sent in the clear over a
communication channel: It is encrypted using the Ticket Granting Services key

◆ The Ticket Granting Services key (medium-term key). A secret key shared between each
entities and the KDC to obtain session keys. It is never sent in the clear over a
communication channel: It is encrypted using the master key.

◆ The master key (or long-term key). The master key is a secret key shared between each
entity and the KDC. It must be known to both the entity and the KDC before the actual
Kerberos protocol communication can take place. The master key is generated as part of
the domain enrollment process and is derived from the creator’s (user, machine, or
service) password. The transport of the master key over a communication channel is
secured using a secure channel.

◆ The secure channel. The secure channel is provided by the master key shared between
the workstation you’re working on and the KDC. In this case the master key is derived
from the workstation’s machine account password.

Secure channel

Master Key

Ticket Granting Service

Session Key (Ticket)

Lifetime Exposure

147

Data Technologies – CERN School of Computing 2024

Kerberos ticket in real life
Field name Description

tkt-vno Version number of the ticket format. In Kerberos v.5 it is 5.

Realm Name of the realm (domain) that issued the ticket. A KDC can issue tickets

only for servers in its own realm, so this is also the name of the server's realm

Sname Name of the server.

Flags Ticket options

Key Session Key

Crealm Name of the client's realm (domain)

Cname Client’s name

Transited Lists the Kerberos realms that took part in authenticating the client to whom

the ticket was issued.

Starttime Time after which the ticket is valid.

Endtime Ticket's expiration time.

renew-till (Optional) Maximum endtime that may be set in a ticket with a RENEWABLE

flag.

Caddr (Optional) One or more addresses from which the ticket can be used. If

omitted, the ticket can be used from any address.

Authorization-data (Optional) Privilege attributes for the client. Kerberos does not interpret the

contents of this field. Interpretation is left up to the service.

: Fields encrypted using the session key of the recipient’s TGT

148

Data Technologies – CERN School of Computing 2024

Auth: Various scenarios possible

◆ Authentication is “delegated” to the operating system

◆ A local account exist for every potential user connecting to the
service

◆ local accounts could be “created on the fly” when missing
(example: Grid applications)

◆ The daemon process impersonates the user account when
executing the requests on behalf of the user

◆ The Authorization can be delegated to the operating system

◆ The Authentication is managed by the application

◆ The user is authenticated and the identity of the user is attached
as an attribute to the request

◆ The daemon process runs under full privileges and has to verify
the permissions on every request (Authorization)

◆ Both approaches are valid

149

Data Technologies – CERN School of Computing 2024

150

Data Technologies – CERN School of Computing 2024

Agenda
◆ Introduction to data management

◆ Data Workflows in scientific computing

◆ Storage Models

◆ Data management components

◆ Name Servers and databases

◆ Data Access protocols

◆ Reliability
◆ Availability

◆ Access Control and Security
◆ Cryptography

◆ Authentication, Authorization, Accounting

◆ Scalability
◆ Cloud storage

◆ Block storage

◆ Analytics

◆ Data Replication

◆ Data Caching

◆ Monitoring, Alarms

◆ Quota

◆ Summary

151

Data Technologies – CERN School of Computing 2024

Authorization

◆ Implements the access control

◆ The information describing what end-user can do on
computing resources. It is the association of a right
(use, read, modify, delete, open, execute, …), a subject
(person, account, computer, group, …) and a resource
(file, computer, printer, room, information system, …)

◆ The association can be time-dependent

◆ Authorization process

◆ Verification that the connected user has the
permission to access a given resource

152

Data Technologies – CERN School of Computing 2024

Authorization in practice

◆ Every resource has, among its metadata, a linked
list called ACL (Access Control List)

◆ The ACL is made of ACEs: Access Control Entries

◆ ACE contains the “subject” (person, account,
computer, group, …) and the “right” (use, read, modify,
delete, open, execute, …) that the subject has on the
“resource”. Eventually also the “time” when the ACE is
valid

File
alice

read

bob

write

michel

read

ACE ACE ACE

ACL

154

Data Technologies – CERN School of Computing 2024

Authz: How to identify users

◆ Two approaches

◆ Users can be identified by “login name” of by the “subject” found in the
certificate

◆ Easier to understand, but changing login name or changing the “subject”
in the certificate means changing the identity

◆ Users can be identified by a unique GUID or Virtual ID. The login name or the
certificate “subject” become only an account attribute

◆ Extremely more flexible, no performance penalty

◆ All serious security implementations should follow this way ...

◆ But GUID or Virtual ID are specific to an instance. Authorization
information need to be recalculated if the data is moved from one site to
another

File
342E4A

read

A3598B

write

6C453F

read

ACE ACE ACE

ACL

342E4A : alice

A3598B : bob

6C453F: michel

155

Data Technologies – CERN School of Computing 2024

Authz: Implementation choices

◆ Where ACL should be stored ?

◆ Usual dilemma: database or with the resource ?

◆ It is an additional DB lookup “in the line of fire”

◆ How ACL should be verified ?
◆ Authorization is “delegated” to the operating system: The ACL are

set on the file system and the process accessing the file
impersonates the credential of the user

◆ The Authentication is managed by the application: The
permissions of the request owner must be verified by the Data
Management software on every request.

156

Data Technologies – CERN School of Computing 2024

Authz: Some complications

◆ Inheritance

◆ ACL must be supported on every node (folders) of the file
structure. Inheritance flags must be foreseen

◆ Another dilemma:
◆ Calculate the “resultant permissions” in real time when the file is accessed

◆ Possible but require low level code optimization, otherwise heavy
performance hit

◆ Very efficient when permissions need to be changed

◆ Compile the “resultant permissions” (File permissions + the Inherited
permissions) with the file.

◆ Very efficient when resolving permissions (one DB lookup)

◆ Very inefficient when changing permission

◆ Choice between optimize read or write speed

◆ In real life ... A mix of the two is implemented

◆ And many file systems do this

157

Data Technologies – CERN School of Computing 2024

Authz: more complications

◆ Support for “groups” of users and “roles”

◆ Allows ACLs can be granted to aggregate groups of users

◆ Another dilemma: When should be “group” resolution be done ?

◆ At runtime, when the resource is accessed ? Possible but
inefficient (another DB lookup)

◆ At “Authentication” time. The Authentication token contains the
login name and all groups the user belongs to. The ACL is then
compared against the users and all groups he belongs to. Much
better but changes in group membership require re-
authentication to be effective.

◆ What is the scope of the “group” ?

◆ Local to the Storage Element ?

◆ Local to the Site ?

◆ Global as the grid users ?

friends

read

bob

write

ACE ACE

ACL

159

Data Technologies – CERN School of Computing 2024

OpenID Connect, Oauth-2
◆ In all scenarios so far, the server that authorizes accesses is also the server that authenticates. What

if …

◆ The authorization/application server wants to delegate the authentication to another
(trusted) server

◆ The authentication server wants to allow (untrusted) servers to use its authentication
credentials

◆ Alice wants to access a resource without giving all her metadata (name, birthdate, phone
number, address, ….) to the application/authorization or resource server …

◆ Example: Authorization using a Google account, Facebook, Ms Live, …

1 - Authenticate

Authentication server

Resource server

3 - Resource access

How can the application server verify

that ALICE has been authenticated by

the Authentication server ?

https://oauth.net/

token

myauth.com

mydata.com

ALICE

Application server

(can be alice's desktop, mobile phone, or a web site)

myapp.com

2 - Authorization

https://oauth.net/

160

Data Technologies – CERN School of Computing 2024

The wrong way …

1 - Authenticate

Authentication server

Resource server

2 - Authorization

3 - Resource access
ALICE

ALICE:read

Why bad ?

The application server has stolen ALICE

credentials.

The application will be able to impersonate

ALICE on any other service using the same

authentication

https://oauth.net/

1 - Authenticate

Application server

Resource

access

https://oauth.net/

161

Data Technologies – CERN School of Computing 2024

OpenID Connect, Oauth

◆ To generalize Oauth, lets consider 3 actors

◆ The application, the authentication and the resource servers

◆ The application server wants to access the resource on behalf of Alice

◆ Alice needs to be authenticated by the authentication server

Authentication server

resource server

ALICE

ALICE:read

token

myauth.com

mydata.com

application server

(can be alice's desktop, mobile phone, or a web site)

myapp.com

access

https://www.youtube.com/watch?v=GyCL8AJUhww

https://www.youtube.com/watch?v=CPbvxxslDTU

https://www.youtube.com/watch?v=996OiexHze0&t=1468s

https://www.youtube.com/watch?v=GyCL8AJUhww
https://www.youtube.com/watch?v=CPbvxxslDTU
https://www.youtube.com/watch?v=996OiexHze0&t=1468s

162

Data Technologies – CERN School of Computing 2024

Authentication with OpenID Connect

◆ This is the simplest case, there is no resource server

◆ All resources are owned by the application server which also
handle the authorization. The application only needs the identity
of the person connecting to it.

Authentication server

ALICE

myauth.com

myapp.com

application server

(can be alice's desktop, mobile phone, or a web site)

2 - Alice clicks on 'sign in' (or tries to

access page requiring authentication)

4 - Alice logs in to server myauth

1 - access application

3 - myapp.com redirects to authentication server

- Redirect URI: myapps.com/callback

- Scope: openid

5 - myauth redirects Alice back to myapps.com/callback

- ID token: 34de9f95b786ba2657f76…

6 - myapp can decode the ID token, which is a json data structure

163

Data Technologies – CERN School of Computing 2024

Authentication and Authorization with Oauth

◆ Alice needs to agree to have his data accessed by myapp.com

◆ The authentication server needs to ensure that tokens are only given to myapp.com

◆ therefore myapp.com needs to have an Oauth client account in myauth.com

◆ The resource server trusts the authentication server

◆ The account allows the application server to authenticate the application

◆ This will allow to create the access token only for mydata.com

Authentication server

resource server

I'd like to register myapp.com with myauth.com

please provide me valid credentials (an account)

Here is my callback: https://myapp.com/callback myauth.com

mydata.com

application server

myapp.com

Here you are, myapp.com

client-id: ed95bc953a9347854

client-secret: 345de534be321ab4

client-id: ed95bc953a9347854

client-secret: 345de534be321ab4

callback: https://myapp.com/callback

client-id: ed95bc953a9347854

client-secret: 345de534be321ab4

callback: https://myapp.com/callback

164

Data Technologies – CERN School of Computing 2024

Accessing resources with Oauth-2

◆ There are several scenario possible.

◆ Here is the most generic one, with both application and resource
servers

Authentication server

ALICE

myauth.com

myapp.com

application server

1 - Alice access myapps.com and tries to access the resource on myapp.com

3 - myapp.com redirects to authentication server

- Redirect URI: myapps.com/callback

- Scope: mydata-access

4 - Alice logs in to server myauth

resource server

mydata.com

5 - myauth asks Alice permission to allow myapp to access

mydata (scope mydata-access) on behalf of Alice

6 - If Alice agrees, myauth redirects Alice back to

myapps.com/callback

- authorization code: 335de674ade9f…

7 - myapps.com asks to myauth.com to exchange the

authorization code with an access token. myapps authenticates

with myauth using client-id and client-secret

- authorization code: 335de674ade9f…

- client-id: ed95bc953a9347854

- client-secret: 345de534be321ab4

8 - myauth returns the access token to myapps

9 - myapps access the resource from mydata.com using the token on behalf of Alice

165

Data Technologies – CERN School of Computing 2024

◆ How does the resource server validate the token ?

◆ Two possibilities:

◆ The token is a self contained
◆ Need to decode the token which contains all info in json format

◆ Important: need to verify the digital signature (integrity check)

◆ cannot be revoked

◆ The token is a reference
◆ Need to verify the token with the myauth server

◆ myauth server retains full control on its validity. Allows token revocation

Validating the token

Authentication server

myauth.com

myapp.com

application server

resource server

mydata.com

token
token

reference

token

metadata

If the token is valid, access is granted.

It contains both authentication and authorization information.

166

Data Technologies – CERN School of Computing 2024

Agenda
◆ Introduction to data management

◆ Data Workflows in scientific computing

◆ Storage Models

◆ Data management components

◆ Name Servers and databases

◆ Data Access protocols

◆ Reliability
◆ Availability

◆ Access Control and Security
◆ Cryptography

◆ Authentication, Authorization, Accounting

◆ Scalability
◆ Cloud storage

◆ Block storage

◆ Analytics

◆ Data Replication

◆ Data Caching

◆ Monitoring, Alarms

◆ Quota

◆ Summary

167

Data Technologies – CERN School of Computing 2024

Accounting, Transactions and Undo

◆ List of actions (who, when, what, where) that
enables traceability of all changes and
transactions rollback

◆ Multiple levels of accounting possible

◆ Simple logging: Allows you to know the history

◆ Logging + journal of all transaction: Allows you to know
the history and rollback in time

◆ A good accounting is a valid alternative to a strict
authorization scheme

◆ Users are “empowered” but held responsible of their
actions

168

Data Technologies – CERN School of Computing 2024

Agenda
◆ Introduction to data management

◆ Data Workflows in scientific computing

◆ Storage Models

◆ Data management components

◆ Name Servers and databases

◆ Data Access protocols

◆ Reliability
◆ Availability

◆ Access Control and Security
◆ Cryptography

◆ Authentication, Authorization, Accounting

◆ Scalability
◆ Cloud storage

◆ Block storage

◆ Analytics

◆ Data Replication

◆ Data Caching

◆ Monitoring, Alarms

◆ Quota

◆ Summary

169

Data Technologies – CERN School of Computing 2024

Cloud Storage

◆ Storage generally hosted by third parties on the Internet which offers
a model of virtual pools.

◆ Highly scalable

◆ Pay “a la carte” as you use / as you store

◆ Simple interfaces to access storage

◆ HTTP Put/Get

◆ Amazon S3 (Simple Storage Services) API

◆ Not posix compliant

◆ The lack of a posix interface allows the deployment of scalable
infrastructures

◆ Various Pro and Cons using cloud storage

◆ See next slide

http://en.wikipedia.org/wiki/Cloud_storage

http://en.wikipedia.org/wiki/Cloud_storage

170

Data Technologies – CERN School of Computing 2024

Why cloud storage ?

◆ It is simpler …

◆ Single pool where all data go. Reliable, Fast and
outsourced.

◆ Unique quality of service

◆ Economically interesting for small / medium data sizes
as only variable costs are exposed

◆ … but can be simplistic

◆ The single pool with unique quality of service is very
far from the requirements of scientific data analysis: it
can become expensive or inefficient

171

Data Technologies – CERN School of Computing 2024

Technologies used by Cloud storage

◆ Distributed Hash Table (DHT)

◆ Empowers scalability. Storage spans multiple clusters /
multiple data centers and is federated under a unique
name space

◆ Keywords and technology in DHTs

◆ Hash Tables

◆ Hash algorithm and collisions

◆ Distributed Hash Tables and their challenges

172

Data Technologies – CERN School of Computing 2024

Hash Table

◆ A hash table is a data structure that uses a hash function to map keys (ex: a
person's name) to their values (ex: the telephone number). A hash table
implements an associative memory.

◆ The hash function is used to transform the key into the index (the hash) of an
array element where the corresponding value is stored.

◆ In a hash table, the cost (number of instructions) for a lookup is independent
of the number of elements stored in the table: perfect scalability.

◆ Also insertions and deletions of key-value pairs can be done at constant cost
per operation

Alice

Bob

Charles

Michel

555-4546

555-7684

555-3043

555-0453

13

19

23

54

Hash

http://en.wikipedia.org/wiki/Hash_table

Keys Values

http://en.wikipedia.org/wiki/Hash_table

173

Data Technologies – CERN School of Computing 2024

Hash Algorithms and Collisions

◆ Note that the hash function defines the maximum number of entries in the hash table
(new entries are never added after the table is created):

◆ CRC16 – 216 entries (65536)

◆ SHA1 – 2160 entries (> 1048)

◆ All hash functions have collisions. These must be handled

Alice

Bob

Charles

Michel

555-4546

555-7684

555-3043

555-0453

13

19

23

54

Hash

http://en.wikipedia.org/wiki/Hash_table

Keys Values

63

http://en.wikipedia.org/wiki/Hash_table

174

Data Technologies – CERN School of Computing 2024

Hash Algorithms and Collisions

◆ Note that the hash function defines the maximum number of entries in the hash table
(new entries are never added after the table is created):

◆ CRC16 – 216 entries (65536)

◆ SHA1 – 2160 entries (> 1048)

◆ All hash functions have collisions. These must be handled

Alice

Bob

Charles

Michel 555-4546

555-7684

555-3043

555-0453

13

19

23

54

Hash

http://en.wikipedia.org/wiki/Hash_table

Keys Values

63

24

http://en.wikipedia.org/wiki/Hash_table

175

Data Technologies – CERN School of Computing 2024

Hash Algorithms and Collisions

◆ Note that the hash function defines the maximum number of entries in the hash table
(new entries are never added after the table is created):

◆ CRC16 – 216 entries (65536)

◆ SHA1 – 2160 entries (> 1048)

◆ All hash functions have collisions. These must be handled

◆ The Load factor (or Fill factor) is equal the ratio between the number of stored entries
(4) and the size (00 - 99) of the table's array.

◆ The probability of collisions and the cost of handling them increases with the load
factor that must be kept low.

◆ Note that as load factor approaches 0, the proportion of unused areas in the hash table
increases resulting in wasted memory.

Alice

Bob

Charles

Michel

555-4546

555-7684

555-3043

555-0453

13

19

23

54

Hash

http://en.wikipedia.org/wiki/Hash_table

Keys Values

63

http://en.wikipedia.org/wiki/Hash_table

176

Data Technologies – CERN School of Computing 2024

Resizing Hash Table

◆ When the load factor is close to 0 (waste of memory) or 1 (too many
collisions), you may need to resize the hash table

◆ This requires a full or incremental rehash of all keys.

◆ This breaks scalability …

◆ Workaround:

◆ Choose a hash function that preserve the key hashes when the
table is resized. This approach, called consistent hashing

◆ Essential in Distributed Hash Tables when load balancing between
servers.
◆ if a server is added or removed and every object is hashed to a new location,

this would require rewriting all stored data

http://en.wikipedia.org/wiki/Consistent_hashing

http://en.wikipedia.org/wiki/Consistent_hashing

177

Data Technologies – CERN School of Computing 2024

Distributed Hash Tables (1/2)

◆ A keyspace partitioning scheme distributes hash values among the multiple
servers. (See more on partitioning)

◆ An overlay network () connects the nodes, allowing any of them to route a
data request (put, get) to the server owning any key in the keyspace.

◆ Must be able to add / remove nodes: Consistent Hashing is essential (allows
removal or addition of one server by affecting only adjacent nodes). (See more
on partitioning)

Alice

Bob

Charles

Michel

555-4546

555-7684

555-3043

555-0453

13

1923

54

HashKeys

Servers containing values

63

81

http://en.wikipedia.org/wiki/Distributed_hash_table

http://en.wikipedia.org/wiki/Distributed_hash_table

178

Data Technologies – CERN School of Computing 2024

Distributed Hash Tables (2/2)

◆ Reliability and Fault Tolerance can be implemented by replicating values (or
error correction information) on n adjacent nodes.

◆ If nodes are distributed over wide area, reliability can be calculated (because
probabilities of failures are independent)

◆ Highly scalable, reading and writing data is independent of the size of the hash
table.

Alice

Bob

Charles

Michel

555-4546

555-7684

555-3043

555-0453

13

1923

54

HashKeys

Servers containing values

63

81

http://en.wikipedia.org/wiki/Distributed_hash_table

http://en.wikipedia.org/wiki/Distributed_hash_table

179

Data Technologies – CERN School of Computing 2024

Keyspace partitioning (1/2)

◆ We mentioned “Range” vs “Hash” partitioning

◆ Range partitioning requires a table that maps objects
into storage instances – Easy to add instances

◆ Hash partitioning requires all data to be moved when
adding a new instance, unless you use consistent
hashing
◆ If you do not use consistent hashing you can also start with a large

number of storage instances that you deploy on few servers. When
data grows, you move the self contained instances to another server
(Q: how do you know on which server is an instance ?)

https://redis.io/topics/partitioning

https://redis.io/topics/partitioning

180

Data Technologies – CERN School of Computing 2024

Keyspace partitioning (2/2)

◆ Where is the partitioning job done ?

◆ In the client
◆ The client knows or calculates which servers owns a key

◆ In a middle-layer server (proxy assisted partitioning)
◆ An intermediate database knows or calculates which servers owns a

key

◆ In the server instances
◆ Only the servers know or calculate who owns a key. The clients send

queries to a random server which ensures to either forward or
redirect the request to the appropriate server (cfr: overlay network).

http://oldblog.antirez.com/post/redis-presharding.html

http://oldblog.antirez.com/post/redis-presharding.html

181

Data Technologies – CERN School of Computing 2024

Cloud storage in practice
◆ The DHT implements storage elements called buckets

◆ The programming interfaces to (API) the bucket allows you read/write any portion of the bucket
storage.

◆ You can store a file system in a bucket

◆ You can store a database in a bucket

◆ You can store a disk image in a bucket

◆ In general, you store objects in a bucket

◆ Every functionality limiting scalability is dropped:

◆ Hierarchical storage in folders / directories

◆ Permission inheritance

◆ Authorization based on groups / Roles

◆ Example of Amazon S3 API:

DELETE Object

Delete Multiple Objects

GET Object

GET Object ACL

GET Object torrent

HEAD Object

POST Object

PUT Object

PUT Object acl

PUT Object - Copy

Initiate Multipart Upload

Upload Part

Upload Part - Copy

Complete Multipart Upload

Abort Multipart Upload

List Parts

182

Data Technologies – CERN School of Computing 2024

Hashes vs Checksums

◆ C (a + b) = C (a) + C (b)

◆ C(Diskpool) = C (Folder1) + C (Folder2)

◆ C(Folder1) = C (Folder3) = C (File1)

◆ Checksums just need to be different when the input is different (as far
as possible), but it's almost as important that they're fast to compute.

◆ Hash codes (for use in hashtables) have the same requirements, and
additionally they should be evenly distributed across the code space,
especially for inputs that are similar.

◆ Cryptographic hashes have the much more stringent requirement that
given a hash, you cannot construct an input that produces this hash.
Computation times comes second. Cannot be reversed.

Note: Does simple checksumming guarantee data integrity ?

183

Data Technologies – CERN School of Computing 2024

Checksumming and data integrity

◆ You want to hack digitally signed document that uses an
(inappropriate) hash/checksum that supports C (a + b) =
C (a) + C (b)

◆ The original document has a hash of HO

◆ Your tampered document has a hash of HH

◆ You only need to find an arbitrary small document D
whose hash HD satisfies the equation
◆ HO = HH + HD

◆ if you are using 32 bit checksums (like adler32), this can
be as simple as adding 4 bytes to the document to
manipulate its content while preserving the checksum !

184

Data Technologies – CERN School of Computing 2024

Agenda
◆ Introduction to data management

◆ Data Workflows in scientific computing

◆ Storage Models

◆ Data management components

◆ Name Servers and databases

◆ Data Access protocols

◆ Reliability
◆ Availability

◆ Access Control and Security
◆ Cryptography

◆ Authentication, Authorization, Accounting

◆ Scalability
◆ Cloud storage

◆ Block storage

◆ Analytics

◆ Data Replication

◆ Data Caching

◆ Monitoring, Alarms

◆ Quota

◆ Summary

185

Data Technologies – CERN School of Computing 2024

Block Storage

◆ Block storage is a level of abstraction for storage
organized in “blocks”, where a block is data having a
nominal (fixed) length (a block size).

◆ When the size exceeds one block, data is stored in
multiple blocks.

◆ Whenever data size is not an exact multiple of the block
size, the last block is only partially filled.

data

block size space lost

186

Data Technologies – CERN School of Computing 2024

Choosing the block size

◆ Block storage leads to space inefficiency due to internal fragmentation as file
lengths are rarely exact multiples of the block size

◆ Small block sizes reduces the amount of storage wasted, but increases
the number of blocks that must be read for a constant amount of data

◆ Large block sizes reduces the number of blocks that must be read for a
constant amount of data, but increases the amount of storage wasted

data

small block size little space lost

data

large block size more space lost

Large number of I/O

(9 blocks to read)

Small number of I/O

(5 blocks to read)

187

Data Technologies – CERN School of Computing 2024

Why block-based storage ?

◆ Variable-size storage becomes fixed-size storage

◆ More effective load balancing of storage

◆ Independent from file sizes

◆ Allows implementation of error correction algorithms

◆ Even across multiple servers

◆ Less wasted storage compared to data replication

◆ Performance is proportional to the resources deployed and less
dependent from access patterns

◆ Blocks of “hot files” are scattered on multiple servers

◆ Software abstraction identical to traditional hard disk

◆ Blocks = Disk sectors

188

Data Technologies – CERN School of Computing 2024

Usage block based storage

◆ Block based storage can be mounted and seen as
virtual hard disks

◆ Typical usage for virtual machines

◆ The data on the virtual hard disk is striped and
replicated across the various nodes of the storage
cluster

◆ Better than the physical hard disks:
◆ The underlying striping can provide significantly higher performance

than physical hard disks

◆ Disk images and partition can be easily resized, exported,
copied/renamed/duplicated.

◆ Virtual disk snapshot is possible, with journal and rollback

223

Data Technologies – CERN School of Computing 2024

Summary

◆ Several components, many of them independent

◆ Name Servers and databases

◆ Data Access protocols

◆ Reliability
◆ Availability

◆ Access Control and Security
◆ Cryptography

◆ Authentication, Authorization, Accounting

◆ Scalability
◆ Cloud storage

◆ Block storage

◆ Data Replication

◆ Data Caching

◆ Monitoring, Alarms

◆ Quota

◆ Allow to build an architecture to transform “storage” into “data management services”

224

Data Technologies – CERN School of Computing 2024

Conclusion

◆ Has something changed ?
◆ Progress in computing technology has been exponential from its

inception

◆ And it is not over yet ! We are only at the very beginning …

◆ The general population is not aware of these changes

Answer can be found by common

sense

225

Data Technologies – CERN School of Computing 2024

Survey: How many QR-codes are possible …

◆ … using the smallest 16x16 size ?

A. 256

B. One million

C. One for every human being on earth (~ 8 billions)

D. One for every atom on Earth (~ 1048)

E. One for every atom on the universe (~ 1077)

A 25x25 QR-code

226

Data Technologies – CERN School of Computing 2024

what about questions on computing ?

less than 1/5

Correct answers !

only 1

Correct answers !

20 orders of

magnitude error

most popular answer

has 3 orders of magnitude error

227

Data Technologies – CERN School of Computing 2024

Conclusion (2)

◆ Everything we learned in hard science during traditional
studies is still valid:
◆ Mathematics, Statistics, Physics laws still applies. Nothing changes.

◆ But … computers and networks can do more today than a
few years ago
◆ Solutions that where computationally unfeasible in the past become

possible today.

◆ Cannot fight progress
◆ Many of these approaches can bring significant improvements to

everyone's life
◆ plenty of new business opportunities, ethical consequences must be understood and

handled

◆ Education is of the utmost importance

228

Data Technologies – CERN School of Computing 2024

	Slide 1: Data Technologies
	Slide 2: Agenda
	Slide 3: Introduction to data management
	Slide 4: The mission of CERN
	Slide 6: The need for storage in computing
	Slide 7: “Why” data management ?
	Slide 8: Can we make it simple ?
	Slide 9: Why multiple pools and quality ?
	Slide 10: So, … what is data management ?
	Slide 11: Data pools
	Slide 12: But the balance is not as simple
	Slide 13: And reality is complicated
	Slide 14: Where are we heading ?
	Slide 16: Data Management Components
	Slide 31: Agenda
	Slide 32: Storage Reliability
	Slide 33: Hardware reliability
	Slide 34: Reminder: types of RAID
	Slide 35: Reminder: types of RAID
	Slide 36: Reminder: types of RAID
	Slide 37: Reminder: types of RAID
	Slide 38: Reminder: types of RAID
	Slide 39: Understanding error correction
	Slide 40: If we lose some information …
	Slide 41: If we have an error …
	Slide 42: If you have checksumming on data …
	Slide 43: Reed–Solomon error correction …
	Slide 44: Reed–Solomon (simplified) Example
	Slide 45: Reed–Solomon (simplified) Example
	Slide 46: Error detection vs error correction
	Slide 47: Reliability calculations
	Slide 48: Raid 5 reliability
	Slide 49: Some calculations for Raid 5
	Slide 50: Some calculations for Raid 5
	Slide 51: Some calculations for Raid 5
	Slide 52: Some calculations for Raid 5
	Slide 53: Some calculations for Raid 5
	Slide 54: Raid 6 reliability
	Slide 55: Same calculations for Raid 6
	Slide 56: Arbitrary reliability
	Slide 57: Arbitrary reliability with the “chunk” based solution
	Slide 58: Analogy with the gambling world
	Slide 59: Practical comments
	Slide 61: Chunk transfers
	Slide 62: Reassembling the chunks
	Slide 63: Ensure integrity, identify corruptions
	Slide 64: Chunk size and physical blocks
	Slide 65: Types of arbitrary reliability (summary)
	Slide 66: Types of arbitrary reliability (summary)
	Slide 67: Types of arbitrary reliability (summary)
	Slide 68: Types of arbitrary reliability (summary)
	Slide 69: Types of arbitrary reliability (summary)
	Slide 70: Example: 8+6 LDPC
	Slide 71: Types of arbitrary reliability (summary)
	Slide 72: Availability versus Reliability
	Slide 73: Example: High Availability with replication
	Slide 74: Example scenario: hardware failure
	Slide 75: Example scenario: failure response
	Slide 76: Example scenario: draining a server
	Slide 77: Do you really want to waste spare storage ?
	Slide 79: Reliability and availability calculations
	Slide 80: Service operation eased …
	Slide 81: Service operations
	Slide 82: Agenda
	Slide 83: A quick introduction to Cryptography
	Slide 84: What does Cryptography solve?
	Slide 85: Symmetric Encryption
	Slide 86: Example: XOR function
	Slide 87: Asymmetric Encryption
	Slide 88: Asymmetric Encryption
	Slide 89: What “Cracking” means ...
	Slide 90: Cracking symmetric encryptions
	Slide 91: Cracking asymmetric encryption …
	Slide 92
	Slide 93: Want to take the challenge ?
	Slide 94: Example: Confidentiality
	Slide 95: Example: Authenticity
	Slide 96: Data Integrity
	Slide 97: Checksums
	Slide 98: Better definition for Checksums
	Slide 99: Are checksums enough to ensure integrity ?
	Slide 100: Def: Cryptographic Hash Functions
	Slide 101: However the problem is not solved
	Slide 102: What is a Digital Signature ?
	Slide 103: Creating a Digital Signature
	Slide 104: Verifying a Digital Signature
	Slide 105: Why digital signatures ?
	Slide 106: Example: SSL (simplified)
	Slide 107: Real World: Hybrid Encryption (typical for encrypted data storage)
	Slide 108: Real World: Hybrid Decryption
	Slide 109: Cryptography Security
	Slide 110: Things to remember ...
	Slide 111: Agenda
	Slide 113: Is cryptography enough ?
	Slide 115: PKI = Public Key Infrastructure
	Slide 116: What is a Certificate ?
	Slide 117: Verifying a Certificate
	Slide 118: X.509 Certificate (simplified)
	Slide 119: Certificate Validation
	Slide 120: Authentication with Certificates
	Slide 121: Authentication with Certificates
	Slide 122
	Slide 123: Traditional Human authentication versus Certificate authentication
	Slide 124: A comparison with real life
	Slide 125: Certificate Key Hierarchy
	Slide 126: Where should certificates be stored
	Slide 127: Certificates on Smartcards
	Slide 128: Certificate Revocation
	Slide 129: Certificate Renewal
	Slide 132: Kerberos: An alternative to PKI
	Slide 133: Kerberos Basics
	Slide 134: Basic principles
	Slide 135: A (simplified) Kerberos session
	Slide 136: (simplified) Kerberos session 2
	Slide 137: What is the ticket ?
	Slide 138: How authentication could be done
	Slide 139: How authentication could be done
	Slide 140: Reflection vulnerability
	Slide 141: Kerberos authentication
	Slide 142: Kerberos authentication
	Slide 143: Mutual authentication
	Slide 144: Kerberos Secure Communication
	Slide 145: But real life is more complicated
	Slide 146: Kerberos Key Hierarchy
	Slide 147: Kerberos ticket in real life
	Slide 148: Auth: Various scenarios possible
	Slide 149
	Slide 150: Agenda
	Slide 151: Authorization
	Slide 152: Authorization in practice
	Slide 154: Authz: How to identify users
	Slide 155: Authz: Implementation choices
	Slide 156: Authz: Some complications
	Slide 157: Authz: more complications
	Slide 159: OpenID Connect, Oauth-2
	Slide 160: The wrong way …
	Slide 161: OpenID Connect, Oauth
	Slide 162: Authentication with OpenID Connect
	Slide 163: Authentication and Authorization with Oauth
	Slide 164: Accessing resources with Oauth-2
	Slide 165: Validating the token
	Slide 166: Agenda
	Slide 167: Accounting, Transactions and Undo
	Slide 168: Agenda
	Slide 169: Cloud Storage
	Slide 170: Why cloud storage ?
	Slide 171: Technologies used by Cloud storage
	Slide 172: Hash Table
	Slide 173: Hash Algorithms and Collisions
	Slide 174: Hash Algorithms and Collisions
	Slide 175: Hash Algorithms and Collisions
	Slide 176: Resizing Hash Table
	Slide 177: Distributed Hash Tables (1/2)
	Slide 178: Distributed Hash Tables (2/2)
	Slide 179: Keyspace partitioning (1/2)
	Slide 180: Keyspace partitioning (2/2)
	Slide 181: Cloud storage in practice
	Slide 182: Hashes vs Checksums
	Slide 183: Checksumming and data integrity
	Slide 184: Agenda
	Slide 185: Block Storage
	Slide 186: Choosing the block size
	Slide 187: Why block-based storage ?
	Slide 188: Usage block based storage
	Slide 223: Summary
	Slide 224: Conclusion
	Slide 225: Survey: How many QR-codes are possible …
	Slide 226: what about questions on computing ?
	Slide 227: Conclusion (2)
	Slide 228

