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DATA ANALYSIS



1) Introduction to Data Analysis
2) Probability density functions and Monte Carlo methods
3) Parameter estimation 
4) Confidence intervals
5) Hypothesis testing and p-value

LECTURES OUTLINE 2



PROBABILITY DENSITY FUNCTIONS



๏ Let x be a possible outcome of an observation and can take any value from a 
continuous range

๏ We write f(x;θ)dx as the probability that the measurement’s outcome lies 
betwen x and x + dx

๏ The function f(x;θ)dx is called the probability density function (PDF)
๏ And may depend on one or more parameters θ

๏ If f(x;θ) can take only discrete values then f(x;θ) is itself a probability
๏ The p.d.f. is always normalised to a unit area (unit sum, if discrete)
๏ Both x and θ  may have multiple components and are then written as vectors

PROBABILITY DENSITY FUNCTION 4

P(x ∈ [x, x + dx] |θ) = f(x; θ)dx

∫
∞

−∞
f(x; θ)dx = 1



๏ Cumulative distribution function, CDF
๏ for every real number Y, the CDF of Y is equal to 

the probability that the random variable x takes a 
value less or equal to Y 

๏ If x restricted to xmin < x < xmax then F(xmin) = 0, 
F(xmax) = 1

๏ F(x) is a monotonic function of x

๏ Marginal density function
๏ is the projection of multidimensional density
๏ Example: if f(x,y) is two-dimensional PDF the 

marginal density g(x) is

CUMULATIVE AND MARGINAL DISTRIBUTIONS 5

F(Y) = P(x ≤ Y) = ∫
Y

xmin

f(x)dx

g(x) = ∫
ymax

ymin

f(x, y)dy



PROPERTIES OF THE PDF 6

๏ Probability density function (PDF) = f(x)dx 

๏ Expectation:
๏ Expectation of any random function g(x): 

๏ Expectation of x is the mean:

๏ Variance:

๏ E(x) is usually a measure of the location of the distribution
๏ V(x) is usually a measure of the spread of the distribution

E(g) = ∫ g(x)f(x)dx

μ = E(x) = ∫ xf(x)dx

V(x) = σ2 = E[(x − μ)2] = ∫ (x − μ)2 f(x)dx



๏ Probability for r successes is given by the Binomial distribution:

๏ P(r;N,p) is a probability of finding exactly r successes in N trials, when 
probability of success in each single trial is a constant, p

๏ Properties of the Binomial distribution:

๏ Mean:

๏ Variance:

BINOMIAL DISTRIBUTION 7

P(r; p, N) = (N
r ) pr(1 − p)N−r

< r > = E(r) = Np

V(r) = Np(1 − p)



๏ Usage example 1:
๏ Probability for a Z boson to decay to two electrons 

is 3%. What is the probability to find exactly 5 Z→ee 
events out of 80 Z decays?

๏ Usage example 2:
๏ If you flip a biased coin that has a 99% probability of 

landing on heads, what is the probability to get 
heads all 6 times from 6 throws?

BINOMIAL DISTRIBUTION: EXAMPLE 8

P(5; 0.03,80) = (80
5 ) 0.035(1 − 0.03)80−5 = 6 %

P(6; 0.99,6) = (6
6) 0.996(1 − 0.99)6−6 = 94.15 %



๏ λ events expected to occur in average during some time interval
๏ split interval in n very small divisions: chance of getting two events in one 

section can be discounted
๏ probability that a given section contains an event: λ/n
๏ use Binomial formula to calculate the probability to see r events: 

๏ For n→∞:

FROM BINOMIAL TO POISSON 9

P(r; λ/n, n) = (n
r) λr

nr
(1 −

λ
n

)n−r =
n!

r!(n − r)!
λr

nr
(1 −

λ
n

)n−r

(1 −
λ
n

)n−r → (1 −
λ
n

)n → e−λ

n!
r!(n − r)!

=
n(n − 1)⋯(n − r + 1) ⋅ (n − r)!

r!(n − r)!
→

nr

r!



๏ Probability of a number of events occurring in a fixed period of time if these 
events occur with a known average rate λ and independently of the time since 
the last event:

๏ Compared to Binomial distribution still has particular (discrete) outcomes, but 
number of trials is unknown

๏ Properties of the Poisson distribution:

๏ Mean:

๏ Variance:

POISSON DISTRIBUTION 10

P(r, λ) =
e−λλr

r!

< r > = E(r) = λ

V(r) = λ



Estimate the probability for a pilot to die in an airplane crash during their career.

BONUS PROBLEM - 2 11

Some rules to follow:
1. In every lecture there will be one bonus problem presented
2. If you have good knowledge in stats and everything I am presenting is known to you feel free 

to start working on the problem now!
3. Otherwise, work on the problem after the lectures.
4. Solutions won’t be provided, you have to come and talk to me to check if your answer is 

correct or if you need hints!
5. Google/AI assistance is not allowed. These are problems that I want you to think about on your 

own



๏ Usage example 1:
๏ FIFA reports that the average number of goals in a 

World Cup soccer match is approximately 2.5. What 
is the probability to have 5 goals in a match?

๏ Usage example 2:
๏ If expect to detect one extremely high energy 

gamma ray every year, what is the probability not to 
detect any in a year?

POISSON DISTRIBUTION: EXAMPLE 12

P(5,2.5) =
e−2.52.55

5!
= 6.7 %

P(0,1) =
e−110

0!
= 36.8 % r

P(r, λ)



๏ A student is trying to hitch a lift. Cars pass at random intervals at an average 
rate of 1 per minute. The probability of a car giving a lift is 1%.What is the 
probability that the student will still be waiting: 
(1) after 60 cars have passed? 
(2) after 1 hour?

(1)  

(2)

POISSON OR BINOMIAL? 13

P(60; 0.99,60) = (60
60) 0.9960(1 − 0.99)60−60 = 54.71 %

P(0,0.6) =
e−0.60.60

0!
= 54.88 %



๏ For a large λ Poisson distribution converges towards a Gaussian distribution 

FROM POISSON TO NORMAL DISTRIBUTION 14

P(r, λ) =
e−λλr

r!
large λ Gauss(r; μ ≡ λ)

µ=0.1

r

P(r, λ)

µ=1

µ=3
µ=5

µ=10
Gauss(10;10)



๏ The most important distribution in statistics because of the Central Limit 
Theorem:

๏ N(0,1) is called standard Normal density

๏ Properties of the Gaussian distribution:

๏ Mean:

๏ Variance:

NORMAL OR GAUSSIAN DISTRIBUTION 15

N(x; μ, σ) =
1

σ 2π
e− (x − μ)2

2σ2

< r > = E(r) = μ

V(r) = σ2



NORMAL DISTRIBUTION PROPERTIES 16

n area ± nσ
1  0.682689
2 0.954499
3 0.997300
4 0.999936
5 0.999999



2D GAUSSIAN 17

x(1)

x(2)

σ(1)

2σ(1)

σ(2)

2σ(2)

φ

n P1D P2D

1σ  0.6827 0.3934
2σ 0.9545 0.8647
3σ 0.9973 0.9889

1.515σ  0.6827
2.486σ 0.9545
3.439σ 0.9973



๏ Central limit theorem:
๏ If we have a set of N independent variables xi, each from a distribution with mean μi and 

variance σi2, then the distribution of the sum X = Σ xi 
๏ has a mean <X> = Σ μi,
๏ has a variance V(X) = Σ σi2,
๏ becomes Gaussian as N→∞.

๏ Therefore, no matter what the distributions of original variables may have 
been, their sum will be Gaussian in a large N limit

๏ Example:
๏ measurements errors
๏ human heights are well described by a Gaussian distribution, as many other anatomical 

measurements, as these are due to the combined effects of many genetic and environmental 
factors

๏ student test scores

CENTRAL LIMIT THEOREM 18



2.12 Central Limit Theorem 39
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Fig. 2.12 Same as Fig. 2.11, using a PDF that is uniformly distributed in two disjoint intervals,
Œ! 3

2
;! 1

2
Œ and Œ 1

2
; 3
2
Œ, in order to have average value ! D 0 and standard deviation " D 1. The

sum of 1, 2, 3, 4, 6 and 10 independent random extractions of such a variable, divided by
p
n,

n D 1; 2; 3; 4; 6; 10 respectively, are shown with a Gaussian distribution having ! D and " D 1
superimposed
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๏ If xi are N independent, normally distributed random variables with mean 0 and 
variance, then the random variable Q = Σxi2  is distributed according to the chi-
square distribution with N degrees of freedom

๏ Properties of the Chi-Square distribution:

๏ Mean:

๏ Variance:

CHI-SQUARE DISTRIBUTION 20

f(x; N) =
1
2 ( X

2 ) N
2 −1e− x

2

Γ( N
2 )

< x > = E(x) = N

V(x) = 2N

N = 1

N = 2

N = 3

N = 5
N = 10

x

N(10,20)

f(x)



๏ Exponential probability density of the continuous variable x > 0:

๏ Example: decay time of an unstable particle measured in its rest frame
๏ λ = 1/τ(particle) 

๏ Properties of the Exponential distribution:

๏ Mean:

๏ Variance:

EXPONENTIAL DISTRIBUTION 21

N(x; λ) = λe−λx

< x > = E(x) =
1
λ

V(r) =
1
λ2



๏ Uniform distribution
๏ Basic distribution for pseudo-random number generators 

๏ Gamma distribution
๏ Probability model for waiting time

๏ Cauchy or Lorentz or Breit-Wigner distribution
๏ A solution to the differential equation describing a resonance
๏ Energy distribution of a resonance 

๏ Crystal Ball distribution
๏ Adds an asymmetric power-law tail to a Gaussian PDF 

๏ Landau distribution
๏ Used to model the fluctuations in the energy loss of particles in thin layers 

๏ Log-Normal distribution
๏ Used when including systematic errors in the analysis
๏ If x is Log-Normally distributed, than log(x) is Normally distributed

SOME OTHER DISTRIBUTION 22

Breit-Wigner

Log-Normal



ALL ROADS LEAD TO ROME 23

N → ∞ µ → ∞

p → 0 Np = µ

i = 2

N → ∞ N → ∞



GENERAL PICTURE REMINDER 24

1

Physical  
phenomena 

Described by a theory

EXPERIMENT

Sampling reality
2

3
Data sample 
x = (x1,x2,…,xN) 

x is a multivariate random 
variable

5 Results 
๏ parameter estimates 
๏ confidence limits 
๏ hypothesis tests

4

ANALYSIS

DATA

Described by PDFs, 
depending on unknown parameters  

with true values 
θtrue=(mHtrue,ΓHtrue,…,σtrue) 



MOTE CARLO METHODS



WHAT ARE MONTE CARLO METHODS? 26

๏ a broad class of computational algorithms that rely on repeated random 
sampling to obtain numerical results

๏ the underlying concept is to use randomness to solve problems that might be 
deterministic in principle

๏ mainly used in three problem classes:
๏ optimisation
๏ numerical integration
๏ generating draws from a PDF

๏ invented in the late 1940s by physicists while he was working on nuclear 
weapons projects Los Alamos National Laboratory

๏ the name Monte Carlo, which refers to the Monte Carlo Casino in Monaco



IMPORTANCE OF MC IN SCIENCE 27

EXPERIMENT THEORY
AGREEMENT?

10. Results 15
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Figure 6: Distribution of the reconstructed four-lepton invariant mass m4` up to 500 GeV (left)
and the low-mass range (right), with 2018 data. Points with error bars represent the data and
stacked histograms represent expected distributions of the signal and background processes.
The SM Higgs boson signal with mH = 125 GeV, denoted as H(125), and the ZZ backgrounds
are normalized to the SM expectation, the Z+X background to the estimation from data. The
order in perturbation theory used for the normalization of the irreducible backgrounds is de-
scribed in Section 7.1.
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Figure 7: Distribution of the reconstructed four-lepton invariant mass m4` up to 500 GeV (left)
and the low-mass range (right), with full Run 2 data. Points with error bars represent the
data and stacked histograms represent expected distributions of the signal and background
processes. The SM Higgs boson signal with mH = 125 GeV, denoted as H(125), and the ZZ
backgrounds are normalized to the SM expectation, the Z+X background to the estimation
from data. The order in perturbation theory used for the normalization of the irreducible back-
grounds is described in Section 7.1.

m4` < 130 GeV, with their correlation. The distribution of the discriminants used for event
categorization along with the corresponding working point values are shown in Fig. 10. The
correlation of the kinematic discriminants Dkin

bkg, DVBF+dec
bkg and D

VH+dec
bkg with the four-lepton

OBSERVABLES PREDICTSMEASURED BY



EXAMPLE 28

⃗F AB = − G
MAMB

| ⃗rBA |2
̂rBA

EXPERIMENT THEORY
AGREEMENT?

OBSERVABLES PREDICTSMEASURED BY



MONTE CARLO WORKFLOW 29

DEFINE A DOMAIN OF POSSIBLE INPUTS

GENERATE INPUTS RANDOMLY FROM THE DOMAIN

PERFORM A DETERMINISTIC COMPUTATION USING THE INPUTS

AGGREGATE THE RESULTS OF THE INDIVIDUAL COMPUTATIONS INTO THE FINAL RESULT



ESTIMATING 𝜋 30

DRAW A SQUARE ON THE GROUND, THEN INSCRIBE A CIRCLE WITHIN IT

UNIFORMLY SCATTER N OBJECTS OF UNIFORM SIZE THROUGHOUT THE 
SQUARE. 

COUNT NUMBER OF OBJECTS IN THE CIRCLE = NIN

ESTIMATE FINAL RESULT Π ~ 4 × NIN / NTOT

P1

P2

421 π=PP

19.31531224 =×≈π

NIN = 122 

NTOT = 153 



SOLVING INTEGRALS 31

ANALYTICAL SOLUTION

∫ xdx =
1
2

x2

A =
1
2

(b2 − a2)

Δx =
b − a

n
A ≈ ∑ f(a + iΔx)Δx

DETERMINISTIC ALGORITHM

gets more precise with 
more steps (n)

MONTE CARL0

A ≈ B
NIN

NTOT

gets more precise with 
more random number

pairs pi(xi,yi)



๏ Physical methods:
๏ “true” random numbers from “unpredictable” process
๏ Example: dice, coin flipping, roulette

๏ True random numbers from random atomic or subatomic physical phenomena:
๏ Example: radioactive decay, amplitude of noise in radio

๏ Computational methods:
๏ Pseudo-random number generators create long runs (for example, millions of numbers long) 

with good random properties but eventually the sequence repeats
๏ Example: Linear congruential generator 

RANDOM NUMBER GENERATION 32



MC SIMULATION VS REAL LIFE 33

DETECTOR SIMULATION 
TOOLS: MC SIMULATORS (GEANT) 

OUTPUT: SIMULATED DETECTOR RESPONSE 

EVENT RECONSTRUCTION 
TOOLS: DETECTOR SOFTWARE PACKAGES (CUSTOM MADE; MC USED IN ALGORITHMS) 

OUTPUT: RECONSTRUCTED PHYSICAL OBJECTS (ELECTRONS, MUONS, JETS …) 

DATA ANALYSIS 
TOOLS: STATISTICS (ROOT, ...; MC USED IN ALGORITHMS; F.G. TOY MC) 

OUTPUT: NEW KNOWLEDGE (PARAMETER/INTERVAL ESTIMATES, COST/PERFORMANCE ESTIMATE, HYPOTHESIS TESTS, ARTICLE, TALKS ...) 

DATA ACQUISITION 
TOOLS: DETECTORS (CMS, ATLAS,...) 

OUTPUT: DETECTOR RESPONSE 

EVENT GENERATION 
TOOLS: MC GENERATORS  (PYTHIA, …) 

OUTPUT: FINAL STATE PARTICLES 

COLLISIONS 
TOOLS: ACCELERAORS 

OUTPUT: FINAL STATE PARTICLES 


