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DATA ANALYSIS



1) Introduction to Data Analysis
2) Probability density functions and Monte Carlo methods
3) Parameter estimation 
4) Confidence intervals
5) Hypothesis testing and p-value
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PARAMETER ESTIMATION
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ANALYSIS

DATA

Described by PDFs, 
depending on unknown parameters  

with true values 
θtrue=(mHtrue,ΓHtrue,…,σtrue) 



๏ The parameters of a PDF are constants that characterise its shape: 

๏ where x is measured data, and θ are parameters that we are trying to estimate (measure)

๏ Suppose we have a sample of observed values 
๏ Our goal is to find some function of the data to estimate the parameter(s) 

๏ we write the parameter estimator with a hat  

๏ we usually call the procedure of estimating parameter(s): parameter fitting

⃗x = (x1, x1, ⋯, xn)

̂θ( ⃗x)
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f(x; θ) =
1
θ

e− x
θ



๏ Task: find the average height of all students in a university on the basis of an 
(honestly selected) sample of N students 

๏ Some possible ways of getting the result:
1) Add up all the heights and divide by N
2) Add up the first 10 heights and divide by 10. Ignore the rest
3) Add up all the heights and divide by N-1
4) Throw away the data and give the answer as 1.8 m 
5) Multiply all the heights and take the N-th root
6) Choose the most popular height (the mode)
7) Add up the tallest and shortest height and divide by 2
8) Add up the second, fourth, etc. and divide by N/2 for N even or by (N-1)/2 for N odd 

EXAMPLE - PARAMETER ESTIMATION 6



๏ Consistent
๏ Estimate converges to the true  

value as amount of data increases

๏ Unbiased
๏ Bias is the difference between expected  

value of the estimator and the true value  
of the parameter

๏ Efficient
๏ Its variance is small

๏ Robust
๏ Insensitive to departures from  

assumptions in the PDF

PROPERTIES OF A GOOD ESTIMATOR 7

̂θ more data θtrue

b = E( ̂θ) − θtrue = 0



Quarks produced in high energy collisions will hadronize and form “jets” of particles. We 
call jets coming from the hadronization of b quarks “b-jets”. Algorithms to identify b-jets, 
referred to as b-tagging, will tag jets with a high probability to be b-jets. Their performance 
is characterized by two numbers:
1. The efficiency to tag real b-jets: εb = P(tag | b jet)
2. The mistag rate to tag light flavour jets: εmistag =P(tag | light flavour jet)
In an event with nb true b-jets and nlight true light jets what is the probability to find ntag 
tagged jets given εb and εmistag?
As example consider the process in which the Higgs boson is produced together with a 
top anti-top pairs, with the H decaying into a pair of b-jets, one of the top quarks decaying 
hadronically and the other semileptonically: ttH → blνl + bqq′ + bb (4b − jets + 2 light jets)
What is the probability to tag 2, 3, 4, 5 or 6 jets if εb = 68% and εmistag = 1%

BONUS PROBLEM - 3 8

Hint! Let binomial distribution and python help you solve this one! 



๏ In counting experiments we usually represent data in histograms
๏ In the following example we will study a particle mass histogram

EXAMPLE IN HEP - HISTOGRAM FITTING 9

measured 
values

bins



๏ Measured values have statistical uncertainties so it is better to represent them 
with points and error bars
๏ each bin has a Poisson uncertainty

EXAMPLE IN HEP - HISTOGRAM FITTING 10

y13=36
σ13=√36=6

bin x13∈[0.60,0.65]



๏ Therefore we have
๏ a set of precisely known values x = (x1,...,xN) - histograms bins
๏ At each xi 

๏ a measured value yi - number of events in a given bin
๏ a corresponding error on measured value σi

๏ We are missing a theoretical PDF  with true parameters  so we 
can calculate parameter estimator 

f(xi; θtrue) θtrue

̂θ

EXAMPLE IN HEP - HISTOGRAM FITTING 11

Breit–Wigner

Quadratic

BW+Q BW(x; D, Γ, M) ≈
DΓ

(x2 − M2)2 + 0.25Γ2

Q(x; A, B, C) = A + Bx + Cx2
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f(xi, θtrue) = f(xi; D, Γ, M, A, B, C) = BW(xi; D, Γ, M) + Q(xi; A, B, C)
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๏ Be careful: statistic is not statisticS! 
๏ Any new random variable (f.g. T), defined as a function of a measured sample 

x is called a statistic 

๏ For example, the sample mean   is a statistic!  

๏ A statistic used to estimate a parameter is called an estimator
๏ For instance, the sample mean is a statistic and an estimator for the population mean, which 

is an unknown parameter
๏ Estimator is a function of the data 
๏ Estimate, a value of estimator, is our “best” guess for the true value of parameter

๏ Some other example of statistics (plural of statistic!): sample median, variance, 
standard deviation, t-statistic, chi-square statistic, kurtosis, skewness, …

T = T(x1, x2, . . . , xN)

x̄ =
1
N ∑ xi

STATISTIC 14



๏ Gives consistent and asymptotically unbiased estimators
๏ Widely used in practice

HOW TO FIND A GOOD ESTIMATOR? 15

THE MAXIMUM LIKELIHOOD METHOD

THE LEAST SQUARES (CHI-SQUARE) METHOD

๏ Gives consistent estimator 
๏ Linear Chi-Square estimator is unbiased
๏ Frequently used in histogram fitting 



๏ Assume that observations (events) are independent 
๏ With the PDF depending on parameters θ: 

๏ The probability that all N events will happen is a product of all single events 
probabilities:
๏

๏ When the variable x is replaced by the observed data xOBS, then P is no 
longer a PDF

๏ It is usual to denote it by L and called L(xOBS;θ) the likelihood function 
๏ Which is now a function of θ only  

๏ Often in the literature, it’s convenient to keep X as a variable and continue to 
use notation L(X;θ) 

f(xi; θ)

P(x; θ) = P(x1; θ)P(x2; θ)⋯P(xN; θ) = ∏P(xi; θ)

L(θ) = P(xOBS; θ)

THE LIKELIHOOD FUNCTION 16



๏ The probability that all N independent events will happen is given by the 
likelihood function 

๏ The principle of maximum likelihood (ML) says: The maximum likelihood 
estimator  is the value of  for which the likelihood is a maximum!

๏ In words of R. J. Barlow: “You determine the value of  that makes the probability 
of the actual results obtained, {x1, ..., xN}, as large as it can possible be.”

๏ In practice it’s easier to maximize the log-likelihood function 

๏ For p parameters we get a set of p likelihood equations:   

๏ It is often more convenient the minimise -lnL or -2lnL

L(x; θ) = ∏ f(xi; θ)

̂θ θ
θ

ln L(x; θ) = ∑ ln f(xi; θ)
∂ ln L(x; θ)

∂θj
= 0

THE MAXIMUM LIKELIHOOD METHOD 17



๏ Consider the lifetime pdf  

๏ Suppose we have measured data t(t1,…,tN)

๏ Our likelihood function is defined as 

๏ The value of  for which  is maximum also gives the maximum value of its 

log-likelihood function  

๏ Solving one likelihood equation  gives 

๏ Try generating 100 Monte Carlo toys for  and estimating  using the ML 
method

f(t; τ) =
1
τ

e(− t
τ )

L(τ) = ∏ f(ti; τ)
τ L(τ)

ln L(τ) = ∑ ln f(ti; τ) = ∑ (ln
1
τ

−
ti
τ

)

∂ ln L(τ)
∂τ

= 0 ̂τ =
1
N ∑ ti

τ = 1 ̂τ

THE MAXIMUM LIKELIHOOD EXAMPLE 18



๏ ML estimator is consistent
๏ ML estimate is approximately unbiased and efficient for large samples

๏ Usually biased for small samples

๏ ML estimate is invariant
๏ A transformation of parameter won’t change the answer

๏ Keep in mind that invariance comes at the cost of a bias!

๏ Extra care to be taken when the best value of parameters are near imposed limits
๏ ML estimate is not the most likely value of parameter; it is the estimate that 

makes your data the most likely!
๏ ML method can be used in the Bayesian approach where both  and  are random 

variables

๏ We want to know the conditional PDF for  given the data : 

θ x

θ x p(θ |x) =
L(x |θ)π(θ)

∫ L(x |θ′ )π(θ′ )dθ′ 

PROPERTIES OF THE ML ESTIMATOR 19



๏ Suppose you have a set of precisely known (without error) values 
 with a corresponding set of measured values  with 

corresponding uncertainties 
๏ For example  histogram mass bins with  events with Poissonian uncertainty 

๏ Suppose you also know a function  which predicts the value of  for any 
. It depends on an unknown parameter , which you are trying to determine.

๏ In our example function  would be theoretical prediction for number of events at a given 
mass

๏ To find best estimate of  we minimise the suitably weighted sum of squared 
differences between measured and predicted values, the so called “least 
squares” or “chi-square”:

x(x1, . . . , xN) y(y1, . . . , yN)
σ(σ1, . . . , σN)

xi yi σi

f(x; θ) yi
xi θ

f(x; θ)

θ

χ2(θ) =
N

∑
i=1

(yi − f(xi; θ))2

σ2
i

THE LEAST SQUARES METHOD 20



๏ Estimator is found by finding the value which minimises  

๏ The quantity  gives information about the fit 

quality

๏ Since , easy way to estimate the fit quality is to check if

, N.D.O.F is calculated as (N - free parameters)

χ2 :
∂χ2

∂θ
= 0

χ2 =
N

∑
i=1

(ydata
i − yideal

i )2

(expected error)2

< χ2 > = N
χ2

N . D . O . F
≈ 1

THE LEAST SQUARES METHOD 21

small 𝜒2 large 𝜒2

good fit bad fit (bad model)

overestimated errors underestimated errors
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๏ LS has particularly desirable properties if  is a linear function of : 

 , where  are linearly independent functions of x

๏ estimators and their variances can be found analytically
๏ the estimators have zero bias and minimum variance

f(x; θ) θ

f(x; θ) =
m

∑
j=1

aj(x)θj aj(x)

LINEAR LEAST SQUARES FIT 23



๏ Assume we measure 5 values of a quantity , measured with errors  at 
different values of 

๏ For the fit function we try polynomial of order m:    

๏ 0-th order: the weighted average
๏ 1-st order: a very good description
๏ 4-th order: equal number of parameters as points

๏ For Gaussian distributed  LS = ML!

y σy
x

f(x; θ) =
m

∑
j=0

xjθj

y

POLYNOMIAL LEAST SQUARES FIT 24



๏ In the usual maximum likelihood method
๏ Parameter relevant to the shapes of distributions are determined
๏ Absolute normalization is equal to the observed number of events

๏ Sometimes in the experiment number of measurements N is not fixed but a 
random variable distributed according to the Poissonian with a mean 
๏  

๏ The extended likelihood function is 

๏ If theory gives  then the extended log-likelihood function is defined as

๏

ν
x = (x1, . . . , xN)

L(ν; θ) =
νNe−ν

N! ∏ f(xi; θ)

ν = ν(θ)

ln L(θ) = − ν(θ) +
N

∑
i=1

ln(ν(θ)f(xi; θ)) + C

EXTENDED MAXIMUM LIKELIHOOD METHOD 25



๏ From the vector of measurements  we want to estimate 
number of signal events (s), number of background events (b) and a vector of 
parameters 

๏ Extended likelihood function is 

๏ To obtain parameter estimates for s, b, and  we maximise 

x = (x1, . . . , xN)

θ = (θ1, . . , θp)

L(x; s, b, θ) =
(s + b)Ne−(s+b)

N!

N

∏
i=1

( s
s + b

fs(xi; θ) +
b

s + b
fb(xi; θ))

θ = (θ1, . . , θp)

ln L(x; s, b, θ) = − s − b +
N

∑
i=1

ln ( s
s + b

fs(xi; θ) +
b

s + b
fb(xi; θ)) − ln(N!)

EXTENDED ML - EXAMPLE 26



๏ Likelihood function ( ) is constructed by replacing the variable x by the 
observed data in a product of single events probabilities

๏ Maximising (minimising) the  (- ) function gives the parameter 
estimate 

๏  does not mean that the estimate is the “most likely” value of , it is the 
value that makes your data most likely 

๏ ML estimate is unbiased and efficient for large samples, be careful if you want 
to use it for small samples

๏ ML can be used to fit binned data
๏ ML can be extended to deal with the case where the number of expected 

events is not a fixed number but a random number

L

ln L 2 ln L
̂θML

̂θML θ

MAXIMUM LIKELIHOOD - SUMMARY 27


