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DATA ANALYSIS



1) Introduction to Data Analysis
2) Probability density functions and Monte Carlo methods
3) Parameter estimation 
4) Confidence intervals
5) Hypothesis testing and p-value

LECTURES OUTLINE 2



CONFIDENCE INTERVALS



GENERAL PICTURE REMINDER 4

1

Physical  
phenomena 

Described by a theory

EXPERIMENT

Sampling reality
2

3
Data sample 
x = (x1,x2,…,xN) 

x is a multivariate random 
variable

5 Results 
๏ parameter estimates 
๏ confidence limits 
๏ hypothesis tests

4

ANALYSIS

DATA

Described by PDFs, 
depending on unknown parameters  

with true values 
θtrue=(mHtrue,ΓHtrue,…,σtrue) 



DO YOU SEE ANY PROBLEMS HERE? 5



๏ Never ever (really, don’t ever do it!) quote measurements without confidence 
intervals

๏ In addition to a “point estimate” of a parameter we should report an interval 
reflecting its statistical uncertainty. 

๏ Desirable properties of such an interval:
๏ communicate objectively the result of the experiment 
๏ have a given probability of containing the true parameter 
๏ provide information needed to draw conclusions about the parameter 
๏ communicate incorporated prior beliefs and relevant assumptions

๏ Often use ± the estimated standard deviation (σ) of the estimator 
๏ In some cases, however, this is not adequate: 

๏ estimate near a physical boundary
๏ if the PDF is not Gaussian
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๏ Let some measured quantity be 
distributed according to some PDF 

, we can determine the probability 
that x lies within some interval, with 
some confidence C:

๏ We say that x lies in the interval [x-,x+] 
with confidence C

f(x; θ)

P(x− < x < x+) =

x+

∫
x−

f(x; θ)dx = C
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๏ If  is a Gaussian distribution with mean μ and variance σ2:
๏
๏
๏
๏

f(x; θ)
x± = μ ± 1 ⋅ σ C = 68 %
x± = μ ± 2 ⋅ σ C = 95.4 %
x± = μ ± 1.64 ⋅ σ C = 90 %
x± = μ ± 1.96 ⋅ σ C = 95 %
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๏ There are 3 conventional ways to choose an interval around the centre:

1) Symmetric interval: x- and x+ equidistant from the mean
2) Shortest interval: minimizes (x+ - x-)

3) Central interval: 

๏ For the Gaussian, and any symmetric distributions, 3 definitions are equivalent 

P(x− < x < x+) =

x+

∫
x−

f(x; θ)dx = C

x−

∫
−∞

f(x; θ)dx =
+∞

∫
x+

f(x; θ)dx =
1 − C

2
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๏ So far we have considered only two-tailed intervals, but sometimes one-tailed 
limits are also useful
๏ for example in the case of measuring a parameter near a physical boundary

๏ Upper limit: x lies below x+ at confidence level C:

๏ Lower limit: x lies above x- at confidence level C:

x+

∫
−∞

f(x; θ)dx = C

+∞

∫
x−

f(x; θ)dx = C
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๏ In a measurement two things involved:
๏ True physical parameters: 

๏ Measurement of the physical parameter (parameter estimation): 

๏ Given the measurement  what can we say about  ?

๏ Can we say that  lies within  with 68% probability?
๏ NO!!! 

๏  is not a random variable! It lies in the measured interval or it does not!

๏ We can say that if we repeat the experiment many times with the same sample 
size, construct the interval according to the same prescription each time, in 
68% of the experiments  interval will cover .

θtrue

̂θ
̂θ ± σθ θtrue

θtrue ̂θ ± σθ

θtrue

̂θ ± σθ θtrue
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Determine the 90% confidence interval for your b-tagging efficiency if you tag as 
such 4 b-jets out of 8.
Do even better and draw the Neyman confidence belt for any possible outcome 
when trying to tag 8 b-jets.

BONUS PROBLEM - 4 12

Some rules to follow:
1. In every lecture there will be one bonus problem presented
2. If you have good knowledge in stats and everything I am presenting is known to you feel free 

to start working on the problem now!
3. Otherwise, work on the problem after the lectures.
4. Solutions won’t be provided, you have to come and talk to me to check if your answer is 

correct or if you need hints!
5. Google/AI assistance is not allowed. These are problems that I want you to think about on your 

own



๏ There are two ways to obtain confidence intervals for the parameter estimated 
by the Maximum Likelihood method

๏ Analytical way:
๏ If we assume the Gaussian approximation we can estimate the confidence interval by matrix 

inversion:

๏ If the likelihood function is non-Gaussian and in the limit of small number of events this 
approximation will give symmetrical interval while that might not be the case

๏ Possible to solve by hand only for very simple PDF cases, otherwise numerical solution needed
๏ Matrix inversion done with HESSE/MINUIT algorithm in ROOT

๏ From the Log-Likelihood curve

cov−1(θi, θj) =
∂2 ln L
∂θi∂θj θ= ̂θ
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๏ Extract  from log-likelihood scan using:

                          

๏ This is the same as looking for 

σ ̂θ

lnL( ̂θ ± N ⋅ σ ̂θ) = lnLmax −
N2

2
2lnLmax − N2
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2ln L
2(lnL)max - 1
2(lnL)max  

2(lnL)max - 4

2(lnL)max - 9

̂θ + 3σ̂θ + 2σ̂θ + 1σ̂θ̂θ − 1σ̂θ − 2σ̂θ − 3σ θ



๏ The Log-Likelihood function can be asymmetric
๏ for smaller samples, very non-Gaussian PDFs, non-linear problems,…

๏ The confidence interval is still extracted from the Log-Likelihood curve using 
the same prescription
๏ This leads to asymmetrical confidence interval that should be used when quoting the final result
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θ̂ Uθθ Δ+ˆLθθ Δ−ˆ

2ln L

2(lnL)max - ΔL

2(lnL)max  

θ

CL ΔL

68.27 1

95.45 4

99.73 9



๏ The confidence intervals for the Least Squares (Chi-Square) method are 
obtained in the identical way as for the Maximum likelihood method

๏ Analytical way of matrix inversion:
๏ Solving analytically (or numerically):

๏ From the Chi-Square curve

cov−1(θi, θj) =
1
2

∂2χ2

∂θi∂θj θ= ̂θ
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χ2min+ 1

θ

χ2

σθ +ˆσθ −ˆ

χ2min

θ̂

CL ΔL

68.27 1

95.45 4

99.73 9



๏ Using frequentist approach Neyman defines confidence interval of the 
unknown parameter :

                           

θ

P(x1 < x < x2; θ) =
x2

∫
x1

f(x; θ)dx = CL
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๏ x is the measurement and CL is predefined 
confidence level

๏ Union of [x1,x2] segments for all values of the 
parameter  is known as the confidence 
belt

๏ All of these steps are performed before 
measuring the data

θ



๏ Now we perform the measurement to obtain x0

๏ the points  where the belt intersects x0 are part of the confidence interval 
[ , ] for this measurement 

๏ For every point , if it were true, the data would fall in its acceptance region 
with probability CL, so the interval [ , ] covers the true value with probability 
CL  

θ
θ− θ+

θ
θ− θ+
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๏ Still a frequentist approach!



๏ For the binomial distribution Neyman confidence belt will be discrete 
๏ An example of the Neyman belt construction for binomial intervals, N=10 

trials ,CL=68.3% is shown
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๏ Assume a mass measurement with resolution 20 MeV 
๏ The true mass is 10 MeV
๏ We decide to use a 2σ (95.4%) C.I. to quote the result: x ± 40 MeV 
๏ Consider possible cases: 

๏ there is 2.3% probability that we measure x > 50 MeV: in that case, we would quote wrong 
limits. That’s part of the game and perfectly acceptable. 

๏ if our measurement is in the range 40-50 MeV: limits will be true
๏ If we get x = 0.2 ± 40 MeV: we can correct the lower limit to 0 and our result is good 

 MeV

๏ BUT what if we measure x = -50 ± 40 MeV: x < -10 MeV @ 95% C.L. ???
๏ It is strictly speaking correct but ridiculous! We know that 4.6% of such statements may be 

untrue. But in this case, since we know that the mass of a particle can not be negative, we 
know that this statement is one of them and will certainly not publish such a nonsense limit. 

๏ Mean of dealing with problems like this: Bayesian Confidence Intervals

x = 0.2+40
−0.2

CONFIDENCE INTERVAL AT A PHYSICAL BOUNDARY20



๏ In Bayesian statistics, all knowledge about parameter  is contained in the 
posteriori PDF :

                   

๏ which gives the degree of belief for  to have values in certain region given we 
observe the data x

๏  is the prior PDF for , reflecting experimenter’s subjective degree of 
belief about  before the measurement

๏  is the Likelihood function, i.e. the PDF for the data given a certain 
value of 

๏ The dominator simply normalises the posteriori PDF to unity

θ
p(θ |x)

p(θ |x) =
L(x |θ)π(θ)

∫ L(x |θ′ )π(θ′ )dθ′ 
(P(T |D) =

P(D |T)P(T)
P(D) )

θ

π(θ) θ
θ

L(x |θ)
θ
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๏ We can now use Bayesian statistics to express our degree of belief about  
before the measurement:

                                       

๏ assuming a Gaussian PDF we can calculate

θ

π(θ) = {0, m < 0
constant, m ≥ 0

p(θ |x) =
e− (x − θ)2

2σ2

∞
∫
0

e− (x − θ′ )2
2σ2 dθ′ 
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๏ For a Gaussian with mean -50 MeV and σ = 20 MeV we can easily calculate 
the integral in the denominator:
๏ It is simply the right tail of a Gaussian distribution with known parameters = 0.0062

๏ If we want to calculate an upper limit at 90% confidence level we ask that 

๏
This means that  which is a one 

sided integral of a 3.23 σ

๏ Bayesian upper limit: x < -50 + 3.23*20 MeV = x < 15 MeV @90% CL
๏ Frequentist upper limit: x < -50 + 1.65*20 MeV = x < -17 MeV @90% CL

∫
∞

θU

p(θ′ |x)dθ′ = 0.10

∫
∞

θU

e− (x − θ′ )2

2σ2 dθ′ = 0.0062 ⋅ 0.1 = 0.00062
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