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“According to all the big data we've gathered,
our discussions about big data are up 72%
this year alone.”

1 Bob Jacobsen, UC Berkeley
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Predicting a Geyser’s Eruptions i

Bob Jacobsen, UC Berkeley
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Physics of a Geyser Susto Conputg

*.. A .“.

.1' = Long column of water heated from the bottom
Pressure at bottom high, raises boiling point
Eventually, bottom does start to boil

Bubbles rise, start to push out water

Pressure reduces, so boiling point reduces

........

HeATEG Entire column flashes into steam and jets upwards
0CK™ /%
- Top of column ends up empty

Water enters, starts to warm up, process repeats

5 Bob Jacobsen, UC Berkeley
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csc-exercises > .. » OldFaithful
(autosaved)

FILE EDIT VIEW

INSERT CELL KERNEL WIDGETS HELP Trusted ]Python 30 a

B 4+ =2 @ DB 44 v > EHR C » Markdown A m =B | Memory: 2.9 GB/ 8 GB

In [1]:

In [2]:

In [3]:

In [4]:

Out[4]:

Old Faithful

# Data file in this notebook is from https://www.stat.cmu.edu/~larry/all-of-statistics/=data/faithful.dat
# The original paper is available as https://tommasorigon.github.io/StatI/approfondimenti/Azzalinil99@.pdf

# Standard definitions and options
from datascience import Table # high-level abstraction

import pandas as pd # mid-level data frames and series
import numpy as np # low-level arrays and vectors
import matplotlib # plotting

matplotlib.use('Agg") # make nice screen plots

%matplotlib inline

import matplotlib.pyplot as plt

plt.style.use('fivethirtyeight') # a particular plot format
plt.rcParams['figure.figsize']l = (10.0, 5.0) # wide plots to use space well

# Read in the data from a CSV file - headers taken from file
data = Table.read_table("oldfaithful.csv")

# Take a look at the data
data

N Duration Interval

1 3.6 79
2 1.8 54
3 3.333 74
< 2.283 62
5 4533 85
6 2.883 55

Bob Jacobsen, UC Berkeley



In [4]:

Out [4]:

In [5]:

Out [5]:

In [6]:
Out[6]:

In [7]:
Out[7]:

In [8]:
Out[8]:

In [9]:

Out[9]:

# Take a look at the data
data

N Duration Interval

1 3.6 79
2 1.8 54
3 3.333 74
N 2.283 62
5 4533 85
6 2.883 55
7 4.7 88
8 3.6 85
9 1.95 51
10 4.35 85

... (262 rows omitted)

# 0ld Faithful is famous for its repeatability - lets check some statistics

data[2].mean() # data[2] is the Interval column
70.897058823529406

data['Interval'].std() # but we can also refer to it by name
13.569960017586371

data['Interval'l.min()

43

data['Interval'].max() # all the usual summary statistics are available

96

# While we're here, let's look at the other data we have

data['Duration'].mean(), data['Duration'].std() # two statements on a line using commas

(3.4877830882352936, 1.139271210225768)

ng
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In [10]: # Let's see what the distribution looks like
plt.hist(data['Interval']l, bins=30)
plt.figtext(0.75,0.5, data.to_df()['Interval'].describe().to_string()) # add descripitive text block from pandas

plt.title("Interval");
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In [11]: # Not particularly Gaussian!

# semicolon suppresses printing value

Interval

count 272.000000
mean 70.897059
std 13.594974
min 43.000000
25% 58.000000
50% 76.000000
75% 82.000000
96.000000

# Maybe there's two peaks there. But that still doesn't give us a better way to predict the eruption.
# Look at other information we have:

plt.hist(data['Duration'], bins=30)

plt.figtext(0.3,0.4, data.to_df()['Duration'].describe().to_string())

plt.title("Duration");
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In [12]: # Maybe there's a correlation?
np.corrcoef(data['Duration'], datal'Interval'])

Out[12]: array([[ 1. ’

10

[ 0.90081117,

0.90081117],
1.

11
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positive linear negative linear
association association
nonlinear no association

1 association



12

Anscombe’s Quartet
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Anscombe’s Quartet
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Property Value Accuracy
Mean of x 9 exact
Sample variance of x : s,z( " exact
Mean of y 7.50 to 2 decimal places
Sample variance of y : sf, 4.125 +0.003
Correlation between x and y 0.816 to 3 decimal places
Linear regression line y=3.00 + 0.500x | to 2 and 3 decimal places, respectively
Coefficient of determination of the linear regression : R? 0.67 to 2 decimal places

13
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R%0.06

REXTHOR, THE DOG-BEARER

T DONT TRUST LINEAR REGRESSIONS WHEN ITS HARDER
O GUESS THE DIRECTION OF THE CORRELATION FROM THE
SCATTER PLOT THAN TO FIND NEWJ CONSTELLATIONS ON IT.

Bob Jacobsen, UC Berkeley
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In [13]: # that's pretty strong, let's look at it
plt.plot(data['Duration'], data['Interval'l);
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In [14]: # Maybe plotting as points would be better...
plt.plot(data['Duration'], data['Interval'],"ob"); # o: dots b: blue
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In [15]: # There seems to be two populations there!

# If we select just one:
long_duration_data = data.where(data['Duration'] > 3.2)
plt.hist(long_duration_data['Duration'], bins=20)
plt.figtext(0.1,0.5, long_duration_data.to_df()['Duration'].describe().to_string())
plt.title("Duration > 3.2");
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In [16]: # But of course duration is more compact because we selected a narrower range,
plt.hist(long_duration_data['Interval'l, bins=20)
plt.figtext(0.75,0.5, long_duration_data.to_df()['Interval'].describe().to_string())
plt.title("Interval with Duration > 3.2");
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count
mean
std
min
25%
50%
75%
max

174.000000
80.051724
5.952866
64.000000
76.000000
80.000000
84.000000
96.000000
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In [17]: # We're down to 50% in 8 minutes and an RMS of 6 minutes on a mean of 80; 10%!
'y

How about interval?
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In [18]:

p.polyld(d)

'trendline'] = f(data['Duration'])

# Try fitting a line instead using two populations
d = np.polyfit(data['Duration'], data['Interval'],1) o
; ? School of Computing

ata

plt.plot(data['Duration'], data['Interval'l,"ob");
plt.plot(data['Duration'], data['trendline'],"k");
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In [19]: # See how wide the difference from the linear fit is
plt.hist(data['Interval']-data['trendline'], 30)
plt.figtext(®.75,0.5, (data.to_df()['Interval']l-data.to_df()['trendline']).describe().to_string())
plt.title("DIfference from Fit");

Difference from Fit

count 2.720000e+02
mean 3.565775e-14
std 5.903088e+00
min  -1.207961e+01
25% -4.483103e+00
20 50%  2.122485e-01

75% 3.924627e+00
max 1.597186e+01
15

15

25

(=]

In [20]: # Performance is about the same. Is there a reason to prefer one method over another here?
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CURVE-FITTING METHODS
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Understanding what we’re seeing - Toast am O
Why does dropped toast always land buttered-side down?

Experimental question!
First establish: Does dropped toast always land butter side down?

Or even more often than 50/50?

How do you assess the experimental result?
See how likely the result is without an effect, i.e with 50/50

This is a “null hypothesis”, which gives a probability for result: the p value
19 Bob Jacobsen, UC Berkeley
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X~ B(n, p). The probability of getting exactly k successes in nindependent Bernoulli trials is given by the probabilit
mass function:

f(k,n,p) = Pr(k;n,p) = Pr(X = k) = (k) (1 pyt

fork=0,1, 2, ..., n, where

(+) =

The cumulative distribution function can be expressed as:

F%mﬂﬂ=PﬂX§kﬁ=z:(>ﬂU—pVﬂ,

im0 \!
where | k| is the "floor" under k, i.e. the greatest integer less than or equal to .
It can also be represented in terms of the regularized incomplete beta function, as follows:!!

F(k;n,p) = Pr(X < k)
= Il_p(n - k,k -+ 1)

~w-n(}) [ et

which is equivalent to the cumulative distribution function of the F- -distribution:4]
_1-pk+1,

F(k;n,p) = Fp_gistribution = ————;dy =2(n—k),dy =2(k+1) |.
(k;m,p) = Fpdistribut (fv D n_k ™ (n—k),dy = 2(k+ ))

21 Bob Jacobsen, UC Berkeley
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The Toast Myth

The Mythbusters TV show did an experiment with 48 pieces of toast, where 29 landed butter side up and 19 butter side down. Let's see if we can figure
out how likely this outcome would be, if toast was equally likely to land on either side. In particular, we'll play a "what-if" game: what if toast was equally
likely to land on both sides? Let's simulate what would happen, under that assumption.

v [2]: # First, list two possible results
sides = make_array('Butter Side Up', 'Butter Side Down')

 [3]: # Make that into a table
possible_outcomes = Table().with_column('Outcome’, sides)

' [4]: possible_outcomes

it [4] : Outcome

Butter Side Up

Butter Side Down

 [S5]: # Ask for 48 cases where the output is sampled (chosen) from those two possibilities
simulated_experiment = possible_outcomes.sample(48)

1 [6]: simulated_experiment

it[6]: Outcome

Butter Side Down
Butter Side Down
Butter Side Up
Butter Side Down
Butter Side Up
Butter Side Up
Butter Side Up
Butter Side Up
Butter Side Up
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NAatA CAinnAan TAAla fAr lntAavraativiAa EvalAavatian * =

In [7]:

Out[7]:

In [8]:

In [9]:

Out[9]:

In [10]:

In [11]:
Out[11]:

# Group them, which also counts them.
simulated_experiment.group('Outcome')

Outcome count

Butter Side Down 25

Butter Side Up 23

# To make this a bit more automatic, define a function that provides the butter-side-up count
def count_up(sample):

counts = sample.group( 'Outcome').where('Outcome', 'Butter Side Up')

number_up = counts.column('count').item(9)

return number_up

# Always test things!
count_up(simulated_experiment)

23

Simulation

Above we saw how to simulate an episode of the TV show (i.e., one experiment), under the “what-if* assumption that toast is equally likely to land on
both sides. Now we're going to repeat the simulation 10000 times, and keep track of the statistic (the number of times the toast landed butter-side-up) we
get from each simulated TV episode.

counts = make_array()
for i in np.arange(10000): # 10000 repetitions
one_simulated_episode = possible_outcomes.sample(48)
number_up = count_up(one_simulated_episode)
counts = np.append(counts, number_up)
results = Table().with_column('Number that landed butter-side-up', counts)

results

Number that landed butter-side-up

21
29
24
26
24

25
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In [12]:

In [13]:

Out[13]:

In [14]:

Out[14]:

In [15]:

Out[15]:

In [16]:

results.hist(bins=np.arange(12,36,1)) # an alternate form of plotting
# note that this method of plotting gives plots/unit and allows close control over binning

12

10

(=]

Percent per unit
+ (=]

~N

_—ull m_

15 20 25 30 35
Number that landed butter-side-up

# With this data, what's the chance of the value they saw or higher?
# This is known as the p-value
results.where(results['Number that landed butter-side-up'] >= 29).num_rows / 10000

0.0966
# Quick, without looking at the number from here,

# what do you expect the mean and std dev of that distribution to be?
results[0].mean(), results[@].std()

(23.982099999999999, 3.4885784483081359)
# Many expect it to be sqt(24), because of Gaussian or Poisson distributions.

# But this is actually binomial distribution, where the std dev is smaller because you pick one of two
math.sqrt(24), math.sqrt(24)/math.sqrt(2)

(4.898979485566356, 3.464101615137754)
# try simulating the British school study:
# 9821 waist-high drops with 6101 butter down landings

# With just a B written on the toast: 9748 drops with 5663 B-down
# from 2.5m: 2038 with 953 B-side down (sign reversed!)

# is there something going on?

iting
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AFTER NINETEEN ADDITIONAL
TRIALS, OF COURSE, THE RESULTS
WERE SHOWN TO BE
ANOMALOUS.

“The Tortoise And The Hare” is actually
a fable about small sample sizes.

Toast with higher statistics:

https://web.archive.org/web/20101120232606/http://www.counton.org/

thesum/issue-07/issue-07-page-05.htm
25 Bob Jacobsen, UC Berkeley
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In [2]:

Out[2]:

In [3]:

Out[3]:

29

Data Science Tools for Interactive Exploration ;S
Merging data - Drinks rourof onni

# create a table of drinks available at several places with there prices
drinks = Table(['Drink', 'Cafe', 'Price'l).with_rows([ # a table of menus for cafes
['Milk Tea', 'Tea One', 4],
['Espresso', 'Nefeli', 2],
['Latte’', 'Nefeli', 3],
['Espresso', "Abe's", 2]
1)

drinks

Drink Cafe Price

Milk Tea Tea One 4
Espresso Nefeli 2
Latte Nefeli 3
Espresso Abe's 2

# create a table of available discounts

discounts = Table().with_columns( # A table of discounts by cafe
'Coupon % off', make_array(25, 50, 5),
'Location', make_array('Tea One', 'Nefeli', 'Tea One')

)

discounts

Coupon % off Location

25 TeaOne
50 Nefeli
5 TeaOne

Bob Jacobsen, UC Berkeley ;
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In [4]:

# combine the tables by matching cafe names
t = drinks.join('Cafe', discounts, 'Location')
t # note you don't have a discount for Abe's

Out[4]: Cafe Drink Price Coupon % off
Nefeli Espresso 2 50

Nefeli Latte 3 50

TeaOne Milk Tea Bl 25

TeaOne Milk Tea 4 5

In [5]: # Compute a column of discounted price
t.with_column('Discounted', t.column(2) * (1 - t.column(3)/ 100))

Out[5]: Cafe Drink Price Coupon % off Discounted
Nefeli Espresso 2 50 1

Nefeli Latte 3 50 1.5

TeaOne Milk Tea 4 25 3

TeaOne Milk Tea 4 5 3.8

30 Bob Jacobsen, UC Berkeley
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In [6]: # What do all possible two-drink orders cost?
# Join with itself, matching on Cafe (you only order in one place)
two = drinks.join('Cafe', drinks)

two

Out[6]:  cate  Drink Price Drink 2 Price 2
Abe's Espresso 2 Espresso 2

Nefeli Espresso 2 Espresso 2

Nefeli Espresso 2 Latte 3

Nefeli Latte 3 Espresso 2

Nefeli Latte 3 Latte 3

TeaOne Milk Tea 4 Milk Tea 4

In [7]: # Add a total price
two.with_column('Total', two.column('Price') + two.column('Price_2'))

Outl7]: Gafe  Drink Price Drink 2 Price_2 Total
Abe's Espresso 2 Espresso 2 4

Nefeli Espresso 2 Espresso 2 4

Nefeli Espresso 2 Latte 3 5

Nefeli Latte 3 Espresso 2 5

Nefeli Latte 3 Latte 3 6

TeaOne Milk Tea 4 Milk Tea 4 8

31 Bob Jacobsen, UC Berkeley
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Another way to understand data - GIS - Bikes (SC
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In [1]: # usual imports
from datascience import *
import numpy as np
import pandas as pd

%matplotlib inline
import matplotlib.pyplot as plots
#plots.style.use('fivethirtyeight')

# Configure for presentation
#np.set_printoptions(threshold=50, linewidth=50)
import matplotlib as mpl

#mpl.rc('font', size=16)

Bikes

In [2]: # Read a dataset from a bike-rental firm containing 354k rentals
trips = Table.read_table('trip.csv')
# see what columns are available in this data set:
trips

Out[2]: St
art End Bike Subscriber Zip
Trip ID Duration Start Date Start Station Terminal End Date End Station Terminal # Type Code

8/31/2015 Harry Bridges Plaza (Ferry
23:26 Building)

8/31/2015  San Francisco Caltrain (Townsend

913460 765 23:39 at 4th)

50 70 288 Subscriber 2139

8/31/2015
23:11

8/31/2015

913459 1036 23:28

San Antonio Shopping Center 31 Mountain View City Hall 27 35 Subscriber 95032

8/31/2015
23:13

8/31/2015

913455 307 23:18

Post at Kearny 47 2nd at South Park 64 468 Subscriber 94107

8/31/2015
23:10

8/31/2015

913454 409 23:17

San Jose City Hall 10 San Salvador at 1st 8 68  Subscriber 95113

8/31/2015 8/31/2015

913453 789 23:09 Embarcadero at Folsom 51 23:22 Embarcadero at Sansome 60 487 Customer 9069

8/31/2015 Yerba Buena Center of the Arts 8/31/2015  San Francisco Caltrain (Townsend

913452 293 3:07 (3rd @ Howard) 68 23:12 at 4th)

70 538 Subscriber 94118

8/31/2015
23:07

8/31/2015

913451 896 23:22

Embarcadero at Folsom 51 Embarcadero at Sansome 60 363 Customer 92562

8/31/2015 8/31/2015

Q12A8N ORER Emharcadorn at SancAama AN Statiart at Markot 7A ATD Sitherribar Q4111
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In [3]: # identify a subsample of "commuters"

commute = trips.where('Duration', are.below(1800)) # Why is this here? Are there significant ones above that?
commute.hist('Duration')

0.14 1

012 4§

01 1

0.08 1

Percent per unit

0.06 1

0.04 1

0.02 1

0 250 500 750 1000 1250 1500 1750
Duration

In [4]: commute.hist('Duration', bins=60, unit='second') # clean the plot up a bit

0.16 1

0.14 1

012 4§

01 1

0.08 1

0.06 1

Percent per second

004 1

0.02 1

0 250 500 750 1000 1250 1500 1750
Duration (second)

33 Bob Jacobsen, UC Berkeley
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In [5]: commute.hist('Duration', bins=np.arange(1801), unit='second') # there are 354K rows

0.175 1

0.15 4

0.125 -

0.1 1

0.075 A

Percent per second

0.05 1

0.025 1

0 250 500 750 1000 1250 1500 1750
Duration (second)

In [6]: # group by starting location to get counts, then sort to get largest values
starts = commute.group('Start Station').sort('count', descending=True)
starts

Out[6]: Start Station count

San Francisco Caltrain (Townsend at 4th) 25858

San Francisco Caltrain 2 (330 Townsend) 21523

Harry Bridges Plaza (Ferry Building) 15543

Temporary Transbay Terminal (Howard at Beale) 14298
2nd at Townsend 13674

Townsend at 7th 13579

Steuart at Market 13215

Embarcadero at Sansome 12842

Market at 10th 11523

Market at Sansome 11023

... (60 rows omitted)




In [7]: # Compute a table counting start —> end trips

pivot = commute.pivot('Start Station',

'End Station')

pivot
Out[7]:
Castro Civic
2nd Arena California
End 2ndat at 2nd at 5th at Adobe Gieen Beale Broadway Ave Street Center Clay at Commercial
Station Folsom South Townsend Howard on / SAP - Stat Caltrain snd Sl ] Batte -
Park Almaden Contat Market Battery St Station Camino (7th at ry Montgomery Ut
Real Market)

2nd at

Folsom 54 190 554 107 0 0 40 21 0 0 44 78 54
2nd at

South 295 164 71 180 0 0 208 85 0 0 112 87 160
Park

2nd at 437 151 185 92 0 0 608 350 0 0 80 329 168
Townsend
5th at

Howard 113 177 148 83 0 0 59 130 0 0 203 76 129
Adobe on

R 0 0 0 0 11 4 0 0 0 0 0 0 0
Arena
Green /

SAP 0 0 0 0 7 64 0 0 0 0 0 0 0
Center
Beale at

Market 127 79 183 59 0 0 59 661 0 0 201 75 101
Broadway

St at 67 89 279 119 0 0 1022 110 0 0 62 283 226
Battery St
California
Ave

Caltrain 0 0 0 0 0 0 0 0 38 1 0 0 0
Station
Castro
Street

and El 0 0 0 0 0 0 0 0 0 30 0 0 0
Camino

Real
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In [8]:

# It's easier to interpret this graphically - the heat plot
plots.rcParams['figure.figsize'] = (11., 11.)

plots.figure()

ct = pd.crosstab(commute['Start Station'l, commute['End Station']) # pandas computation of pivot table
plots.grid(False)

plots.pcolor(ct) # plot that dataframe as color spectrum

plots.xlabel('Start Station Index')

plots.ylabel('End Station Index')

plots.plot();

70

End Station Index

20

10

10

20

Data Science Tools for Interactive Exploration

30 40
Start Station Index

# make a square plot
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In [10]:

Out[10]:

In [11]:

Out[11]:

37

duration =
duration

Start Station

trips.select('Start Station',

Data Science Tools for Interactive Exploration

'End Station',

'Duration')

=X

School of Comoutina

# narrow down the table to three columns

End Station Duration

Harry Bridges Plaza (Ferry Building)

San Antonio Shopping Center

Post at Kearny

San Jose City Hall

Embarcadero at Folsom

Yerba Buena Center of the Arts (3rd @ Howard)
Embarcadero at Folsom

Embarcadero at Sansome

Beale at Market

Post at Kearny

... (354142 rows omitted)

San Francisco Caltrain (Townsend at 4th)
Mountain View City Hall

2nd at South Park

San Salvador at 1st

Embarcadero at Sansome

San Francisco Caltrain (Townsend at 4th)
Embarcadero at Sansome

Steuart at Market

Temporary Transbay Terminal (Howard at Beale)
South Van Ness at Market

765
1036
307
409
789
293
896
255
126
932

# Group the trips from each to each, then select the shortest duration trip in each bin
shortest = duration.group(['Start Station', 'End Station'], min)

shortest

Start Station End Station Duration min
2nd at Folsom 2nd at Folsom 61
2nd at Folsom 2nd at South Park 61
2nd at Folsom 2nd at Townsend 137
2nd at Folsom 5th at Howard 215
2nd at Folsom Beale at Market 219
2nd at Folsom Broadway St at Battery St 351

Bob Jacobsen, UC Berkeley



In [13]:

Out[13]:
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Maps

Data Science Tools for Interactive Exploration

# Get the locations of the stations
stations = Table.read_table('station.csv')

# Table of station locations
# landmark is the town containg the station

stations

station_id name lat long dockcount landmark installation
2 San Jose Diridon Caltrain Station 37.3297 -121.902 27 San Jose 8/6/2013

3 San Jose Civic Center 37.3307 -121.889 15 San Jose 8/5/2013

4 Santa Clara at Aimaden  37.334 -121.895 11 San Jose 8/6/2013

5 Adobe on Almaden 37.3314 -121.893 19 San Jose 8/5/2013

6 San Pedro Square 37.3367 -121.894 15 San Jose 8/7/2013

7 Paseo de San Antonio 37.3338 -121.887 15 San Jose 8/7/2013

8 San Salvador at 1st  37.3302 -121.886 15 San Jose 8/5/2013

9 Japantown 37.3487 -121.895 15 San Jose 8/5/2013

10 San Jose City Hall 37.3374 -121.887 15 San Jose 8/6/2013

1 MLK Library 37.3359 -121.886 19 San Jose 8/6/2013

... (60 rows omitted)

Bob Jacobsen, UC Berkeley
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In [14]:

# Map all the locations
Marker.map_table(stations.select('lat', 'long', 'name'))

Out[14]:
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In [15]: # Show the San Francisco locations
sf = stations.where('landmark', 'San Francisco')
Circle.map_table(sf.select('lat', 'long', 'name'), color='green', area=100)

-

Out[15]:

(GGNRA) 4

N

Leatlet | Data by © OpenSreetMap, under ODBL.
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In [18]: # Calculate the number of trips starting at each station by joining the two data sets
station_starts = stations.join('name', starts,

station_starts

Data Science Tools for Interactive Exploration

'Start Station')

Out[18]: name station_id lat long dockcount landmark installation count
2nd at Folsom 62 37.7853 -122.396 19 SanFrancisco 8/22/2013 7841
2nd at South Park 64 37.7823 -122.393 15 San Francisco  8/22/2013 9274
2nd at Townsend 61 37.7805 -122.39 27 SanFrancisco  8/22/2013 13674
5th at Howard 57 37.7818 -122.405 15 San Francisco  8/21/2013 7394
Adobe on Almaden 5 37.3314 -121.893 19 San Jose 8/5/2013 522
Arena Green / SAP Center 14 37.3327 -121.9 19 San Jose 8/5/2013 590
Beale at Market 56 37.7923 -122.397 19 San Francisco  8/20/2013 8135
Broadway St at Battery St 82 37.7985 -122.401 15 San Francisco  1/22/2014 7460
California Ave Caltrain Station 36 37.4291 -122.143 15 Palo Alto  8/14/2013 300
Castro Street and El Camino Real 32 37.386 -122.084 11 Mountain View 12/31/2013 1137
... (58 rows omitted)
41 Bob Jacobsen, UC Berkeley
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In [19]: # Show how many trips start from each location?
Circle.map_table(station_starts.select('lat', 'long', 'name').with_columns( # adding presentation options
'color', 'blue', # show blue circles
‘area', station_starts.column('count') * 0.1 # set circle size from number starts

))

Out[19]:
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Leaflet | Data by © OpenStreetMap, under ODbL.
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Outside the Box: Text Analysis schoolof Computing

In [1]: # Examine the book "Little Women" to see what we can learn from its text

# usual imports

from datascience import *

import numpy as np

import pandas as pd

%matplotlib inline

import matplotlib.pyplot as plots
plots.style.use('fivethirtyeight')

import warnings

warnings.simplefilter(action="ignore", category=FutureWarning)

from urllib.request import urlopen
import re
def read_url(url):
return re.sub('\\s+', ' ', urlopen(url).read().decode())

In [2]: # Read the book and split into separate chapters
little_women_url = 'http://data8.org/materials-fal7/lec/little_women.txt'
little_women_text = read_url(little_women_url)
chapters = little_women_text.split('CHAPTER ')[1:]

In [3]: # create a table with one chapter's text in each row
Table().with_column('Text', chapters)

Out[3]: Text

ONE PLAYING PILGRIMS "Christmas won't be Christmas witho ...
TWO A MERRY CHRISTMAS Jo was the first to wake in the gr ...
THREE THE LAURENCE BOY "Jo! Jo! Where are you?" cried Me ...
FOUR BURDENS "Oh, dear, how hard it does seem to take up ...
FIVE BEING NEIGHBORLY "What in the world are you going t ...
SIX BETH FINDS THE PALACE BEAUTIFUL The big house did pr ...
SEVEN AMY'S VALLEY OF HUMILIATION "That boy is a perfect ...
EIGHT JO MEETS APOLLYON "Girls, where are you going?” as ...
NINE MEG GOES TO VANITY FAIR "I do think it was the most ...
TEN THE P.C. AND P.O. As spring came on, a new set of am ...

43 ... (37 rows omitted)
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In [4]:

Out[4]:

In [5]:

Out[5]:

Data Science Tools for Interactive Exploration ;9
CERN

# Simple check: Count the number of times "Christmas" appears in each chapter School of Computing
np.char.count(chapters, 'Christmas')

array([8, 9,1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, @0, 0, 0, 0, O,
e, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 6, 0, 0, 0, 1, 0, @, O
0])

8, 0,
’ ’ ’ ’ ’ ’ ’ 0' 0

’ ’

# Count the number of times the characters' names appear in each chapter
# and make a table with a column for each character
references = Table().with_columns([
"Jo", np.char.count(chapters, "Jo"),
"Meg", np.char.count(chapters, "Meg"),
"Amy", np.char.count(chapters, "Amy"),
"Beth", np.char.count(chapters, "Beth"),
"Laurie", np.char.count(chapters, "Laurie")
1)

references

Jo Meg Amy Beth Laurie

44 26 23 26 0
21 20 13 12 0
62 36 2 2 16
34 17 14 18 0
55 13 6 14 35
13 5 6 28 9
9 5 27 7

21 71 3

5

71 16 48 9 17
5 24
5

12 4 5 4

... (37 rows omitted)
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In [6]: # plot appearances by chapter, one curve per character (column)

references.plot()

70 = Jo

60 T AM:\gy
== Beth

50 | === Laurie

40

30

20

10 “ ‘\ \ J lI ‘
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In [7]: # the plot-by-chapter is hard to interpret. Plot cumulative sums:
references.cumsum().plot()

1600
1400 Meg
e Laurie

1000
800
600
400
200

0

0 10 20 30 40

In [8]: # How would you see who's mentioned most often in each chapter?

46 Bob Jacobsen, UC Berkeley #
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timoelliott. com

“When you two have finished arguing your opinions, I actually have data!”

47 Bob Jacobsen, UC Berkeley Q
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Data Science Tools for Interactive Exploration

Notebooks as persuasive objects

You’ve seen some of this already:
Plots and tables to show data
Links to document sources and background information
Ability to rapidly respond to “what if”” questions

Markdown for pretty titles and text

Bob Jacobsen, UC Berkeley

CERN 5
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Notebooks as persuasive objects

You’ve seen some of this already:

School of Computing

You wouldn’t like me
when I'm angry...
Because | always back up
my rage with facts and
documented sources.

-The Credible Hulk

Bob Jacobsen, UC Berkeley
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But your conclusions have to be proportionate

) —

Bob Jacobsen, UC Berkeley

Data Information Knowledge
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Data doesn’t always make hard problems easier...

School of Computing

1 91X :
OUR FIELD HASBEEN || sTRUGGLE No MORE! SIX MONTHS LATER
STRUGGLING WITH THIS T'M HERE TO SOLVE. WO, THIS PROBLEM
PROBLEM FOR YEARS. IT \JITH ALGORITHMS/ 15 REALLY HARD.
( YOU DONT SAY

% ‘\ll
51 Bob Jacobsen, UC Berkeley J




52

Data Science Tools for Interactive Exploration

=X

School of Computing

LOCK ., IT'S ALMOST
I O CLodk!

——

WEPOVAG Vi g AQ g in s, . O

WOW, THE LAST TWO

N

HOURS REALLY FLEW B‘Q

I WoPn ThHt TEn.(uER\ '
DIONT SAY RN THING _
IMPORTANT. i i

Questions? jacobsen@berkeley.edu

Bob Jacobsen, UC Berkeley
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Exercises

Intro - these notebooks & the SWAN service
Simple Applications
Project(s)!

Instructions to get started on Indico (Data Science E1)

https://indico.cern.ch/event/1376644/contributions/5945498/

If you get stuck, ask for help or do an internet search

Learn about each topic, spend more time on ones that interest you.

Don’t try to do every bit of every notebook; pick interesting ones.

Speed is not the issue: no reward for first done or most complete coverage
Not even keeping track

Think about what you’re doing: Learn to use these tools!

53 Bob Jacobsen, UC Berkeley
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DO YOU HAVE AN (DEA FOR You CANT JUST TURN ON School of Computing
YOUR PROJECT YET ? CREATIVITY LIKE A FAUCET,

YOU HAVE TO BE IN THE

N, I'M RIGHT MOOD.

WAITING FOR
INSPIRATION.

WHAT MOOD
IS THAT?

LAST-MINUTE
PANIC .

54 Bob Jacobsen, UC Berkeley




